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Abstract

Background: To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many
of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to
pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid
indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable
compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in
regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important
role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism.

Results: Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus.
Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate
treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7,
AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The
Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group |, 32
group Il, and 5 group Il WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive,
and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by
jasmonate.

Conclusion: Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of
the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort).
Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under
tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling.
Profiling of CrWRKY expression in response to jasmonate treatment revealed potential associations with secondary
metabolism. This study provides a foundation for further characterization of WRKY TFs in jasmonate responses and
regulation of natural product biosynthesis.
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Background

Secondary metabolites (a.k.a natural products or special-
ized metabolites), are compounds synthesized by plants
for attracting pollinators [1], inter-plant communication
[2], and defense [3]. The plethora of natural products syn-
thesized by plants also provides many valuable pharma-
ceutical compounds. Catharanthus roseus (L.) G. Don,
commonly called Madagascar periwinkle or annual vinca,
belongs to the Apocynaceae family and synthesizes over
130 terpene indole alkaloids (TIAs) including the pharma-
ceutically valuable vinblastine and vincristine. Vinblastine
and vincristine provide antineoplastic compounds effective
in the treatment of several types of cancer [4]. The biosyn-
thesis of these compounds, along with other TIAs, is regu-
lated by UV light [5,6], fungal elicitors [7], wounding [8,9],
drought [10], cold [11,12] and salt stress [12]. A principal
elicitor of TIA production in Catharanthus, as well as nat-
ural products in many other medicinal species, is the phy-
tohormone jasmonate which functions in plant defense
signaling to protect the plant from biotic stresses [3,13].

Transcription factors (TFs) play a critical role in res-
ponding to jasmonate to elicit the synthesis of TIAs in
Catharanthus [14—16]. Negative regulators also mediate
jasmonate signaling of the TIA pathway in Catharanthus
[17,18]. In plants, WRKY TFs are critical regulators of re-
sponse to biotic and abiotic stress. WRKY TFs have been
attributed to tolerance of drought [19], salt [20], nutrient
deficiency [21], osmotic [22], cold [23], heat [24], oxidative
[25], wounding [26], pathogens [27], and UV-B stresses
[28]. The WRKY TF family is primarily a plant specific fam-
ily with the exception of several examples in protozoa [29].
The WRKY domain is a 60 to 70 amino acid long DNA
binding domain that recognizes the W-box (TTGACC/T);
however, recent studies suggest this cis-element may be
more degenerate and other components are involved for
WRKY binding to DNA in response to a specific stimulus
[30,31]. The N-terminal portion of the WRKY domain
is characterized by a highly conserved WRKYGQK motif
whereas the C-terminal region of the domain contains ei-
ther a Cys,-His, or Cys,-His-Cys zinc-finger [32]. WRKY
TFs are distinguished by the presence of one or two
WRKY domains. Group I WRKYs typically contain two
WRKY domains whereas group II and group III members
only contain one WRKY domain [32]. Up to five sub-
groups (Ila, IIb, Ilc, IId, and Ile) are recognized in the
group II WRKY TFs [32].

In Arabidopsis, WRKY TFs are well established in sali-
cylic acid (SA) and defense signaling pathways [33-35].
The majority of Arabidopsis WRKY TFs are induced
by treatment with SA [33]. However, the importance of
WRKY TFs in JA signaling network is relatively less stud-
ied. Li et al. [36] identified AtWRKY70 as a positive regu-
lator of SA signaling and negative regulator of jasmonate
signaling. Mutation of AtWRKY33 enhances susceptibility
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to necrotrophic pathogens by up-regulating JAZ pro-
teins, repressors of jasmonate signaling [27,37]. Jasmo-
nate positively regulates AtWRKY18 and AtWRKY40
which also negatively regulate abscisic acid (ABA) re-
sponse [38]. AtWRKY6, AtWRKYS, AtWRKY11, AtWRKY17,
AtWRKY25, AtWRKY28, AtWRKY38, AtWRKY60,
AtWRKY62, and AtWRKY70 are also differentially ex-
pressed by jasmonates to regulate plant defense [22,39-45].

Over the last several years, WRKY TFs have emerged as
a key family in the induction of natural product biosyn-
thesis [46,47]. CGWRKY1, from Coptis japonica, regulates
the production of the benzylisoquinoline alkaloid, berber-
ine [48]. Cotton (Gossypium arboreum) GaWRKY1 affects
the biosynthesis of the sesquiterpene, gossypol [49]. Mul-
tiple biosynthetic genes for the sesquiterpene lactone, arte-
misinin, valuable as an anti-malaria drug, are regulated by
Artemisia annua WRKY1 [50]. Hevea brasiliensis WRKY1
is present in the latex of mechanically wounded (tapped)
trees suggesting involvement in rubber latex synthesis
[51]. The Taxus chinensis WRKY1 was found to regulate
the expression of 10-DEACETYLBACCATIN IiI-10 B-O-
ACETYL TRANSFERASE (DBAT), a gene encoding a key
enzyme catalyzing a rate limiting step in the biosynthesis
of the anticancer terpene, paclitaxel [47]. In Arabidopsis,
camalexin biosynthesis is mis-regulated in wrky33 mutant
[52]. Over-expression in Arabidopsis of Panax quinque-
folius WRKY1, a jasmonate responsive WRKY from
American ginseng, is found to enhance expression of
genes related to drought, salt, and disease resistance, lead-
ing to improvement of seedling survival to drought and
salt stress, in addition to regulating the expression of
genes related to triterpene biosynthesis [53]. In Cathar-
anthus, CrWRKY1 has been demonstrated to respond to
jasmonate, ethylene, and gibberellin signaling to regulate
TIA production [46]. Over-expression of CrWRKY1I in-
creased the production of serpentine while simultaneously
decreasing catharanthine accumulation, suggesting this
WRKY may function in governing gene expression that
specifically directs the flow of metabolites to synthesize
TIAs in Catharanthus roots.

Identification of jasmonate responsive WRKY will thus
provide useful information on plant defense and natural
product regulatory networks. Understanding the number
and types of WRKY TFs present in Catharanthus will pro-
vide a clearer picture on the regulation of TIAs by this im-
portant TF family. Here, we present jasmonate responsive
WRKYs from Arabidopsis and Catharanthus. First, we an-
alyzed Arabidopsis microarray data to help identify the in-
volvement of the WRKY TFs in jasmonate signaling. We
then used the medicinal plant transcriptome data to iden-
tify the Catharanthus family of WRKY TFs. Expression
data from Catharanthus revealed the induction of mul-
tiple WRKY transcripts by methyl jasmonate (MeJA) treat-
ment. Seventy-five percent of the jasmonate responsive
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CrWRKYs are orthologs of AtWRKYs known to be regu-
lated by jasmonate. MeJA-induced WRKYs provide poten-
tial candidates for further regulation of TIA accumulation
in Catharanthus. The identification of orthologs for WRKY
TFs known to be involved in specialized metabolism in
other plant species indicates the possible involvement of
additional WRKY TFs in regulation of TIA production in
Catharanthus.

Results and discussion

WRKY TFs are involved in Jasmonate signaling

The role of WRKY TF family in SA signaling and plant
defense is well established and has been systematically an-
alyzed in Arabidopsis, but remains less clear for jasmonate
signaling. Jasmonate is a key phytohormone regulating
the production of specialized metabolites in many plant
species, including Catharanthus. While Arabidopsis does
not synthesize TIAs as found in Catharanthus, studying
AtWRKYs can answer several important questions. First
we wanted to determine whether the WRKY family is im-
portant for regulating jasmonate signaling in a model spe-
cies, such as Arabidopsis. Second, we wanted to elucidate
jasmonate responsive AtWRKYs to aid the identification of
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CrWRKY orthologs with potentially conserved regulatory
functions. Comparison of orthologous jasmonate respon-
sive. WRKYs from Arabidopsis and Catharanthus will
identify WRKYs that are potentially involved in modulat-
ing jasmonate signaling, and in turn identify candidates
that regulate TIA production.

To clearly establish the role of WRKY TFs in jasmonate
signaling we first identified jasmonate responsive WRKYs
in the model plant Arabidopsis. To ascertain jasmonate
responsive Arabidopsis WRKY TFs we used publically
available microarray datasets (Table 1). The ATH1 Affy-
metrix arrays used contain probes identifying 85% (61
of the 72) of Arabidopsis WRKY TFs (Additional file 1:
Table S1). From five datasets, we identified 39 AtWRKY
TFs that significantly change in response to jasmonate
treatment (Additional file 2: Table S2). Of the 39 jas-
monate responsive AtWRKY genes, 22 were differentially
expressed in at least two jasmonate treated datasets.
AtWRKY6, AtWRKY18, AtWRKY4S, and AtWRKY53 were
differentially expressed in three jasmonate treated datasets.
Expression of AtWRKY7, AtWRKY69 and AtWRKY75
were significantly changed in response to jasmonate in
four datasets. AtWRKY40 and AtWRKY47 expression were

Table 1 The Arabidopsis WRKY transcription factors differentially expressed in response to jasmonate treatment in five
experiments before and after the application of the Benjamini-Hochberg false discovery rate

Genes after Two-Way ANOVA (P =0.05)

Genes after Two-Way ANOVA
(P=0.05) and B-H FDR

Dataset Source Samples used No. No. WRKYs No. No. WRKYs
genes WRKY genes WRKY
genes genes
E-ATMX-13 EMBL  MelJA treated 2819 11 WRKY6, WRKY9, WRKY15, 116 none none
timecourse (0.5, WRKY18, WRKY25, WRKY26,
2,and 6 hr) in cell WRKY39, WRKY40, WRKY47,
suspension cultures WRKY54, WRKY69
E-GEOD-28600 EMBL  JA and JA+ ABA 5279 21 WRKY1, WRKY6, WRKY?7, 533 3 WRKY?7, WRKY38, WRKY70
treated (3 and 24 hr) WRKY 16, WRKY21, WRKY35,
T87 cell cultures WRKY36, WRKY38, WRKY40,
WRKY43, WRKY45, WRKY47,
WRKY52, WRKY53, WRKY54,
WRKY67, WRKY69, WRKY70,
WRKY71, WRKY72, WRKY75
E-MEXP-883 EMBL  MelJA treated (6 hr) 3348 14 WRKY6, WRKY7, WRKY11, 568 4 WRKY26, WRKY33, WRKY40,
WT and myc2 plants WRKY18, WRKY20, WRKY23, WRKY45
WRKY26, WRKY33, WRKY39,
WRKY40, WRKY45, WRKY47,
WRKY69, WRKY75
GSE21762 NCBI JA treated WT and 3743 16 WRKY3, WRKY7, WRKY17, 175 1 WRKY72
coil seedlings WRKY22, WRKY25, WRKY31,
WRKY40, WRKY46, WRKY47,
WRKY52, WRKY53, WRKY60,
WRKY70, WRKY72, WRKY74,
WRKY75
MEQ0337 TIAR MelJA treated (0.5, 1, 4796 15 WRKY3, WRKY7, WRKY18, 950 6 WRKY7, WRKY18, WRKY20,

3 hr) time course on
WT seedlings

WRKY20, WRKY21, WRKY23,
WRKY38, WRKY40, WRKY45,

WRKY40, WRKY45, WRKY48

WRKY47, WRKY48, WRKYS53,
WRKY60, WRKY69, WRKY75

Analysis was performed using a two-way ANOVA. Only WRKY genes responsive to jasmonate treatment are presented.
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significantly changed in all five datasets. Notably,
AtWRKY47, AtWRKY69, and AtWRKY75 expression were
significantly differentially regulated to jasmonate treat-
ment in four or more microarray experiments, but did not
survive application of the Benjamini-Hochberg false dis-
covery (B-H FDR) in any dataset. Arabidopsis WRKY®6,
WRKYI11, WRKY17, WRKY25, WRKY46, and WRKY53,
which have known roles in jasmonate signaling, were
identified as being differentially expressed, but did not
survive the B-H FDR in any dataset (Additional file 2:
Table S2). While the B-H FDR is less conservative than
other procedures (e.g. Bonferroni correction), genes on
the upper end of significant p-values (genes with small
fold changes) may not be easily detected even if the re-
sponse is consistent. This becomes apparent by the large
reduction in significant genes after B-H FDR (Table 1). In
total, eleven WRKYs survived the B-H FDR in at least one
dataset indicating these are jasmonate responsive. We
identified five WRKY TFs previously reported to be jas-
monate responsive [27,36,38,45]. Additionally, we iden-
tified at least six Arabidopsis WRKY TFs (AtWRKY7,
AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and
AtWRKY72) previously unreported to have a role in jas-
monate response (Table 1 and Additional file 2: Table S2).
Expression of AtWRKY7, AtWRKY40, and AtWRKY45
changed significantly and survived the B-H FDR in two
datasets. For these eleven AtWRKYs, the change in expres-
sion in response to jasmonate treatment was small, around
2.5 fold (Additional file 3: Table S3A-E). AtWRKY40
displayed the greatest change in expression, with a 9-fold
induction of transcripts after 1 hr of treatment with MeJA.
Collectively, at least 18% of AtWRKY (11 of 61), up to
64% (39 of 61) or more, were jasmonate responsive
WRKYs based on the microarrays analyzed. Overall, at
least 30% (22 of 72) of AtWRKY TFs play a role in jasmo-
nate response indicating the importance of this family in
the jasmonate signaling network. Further experiments
may eventually reveal that upwards of 50% (39 of 72) of
WRKYs are involved in Arabidopsis jasmonate response
(Additional file 2: Table S2).

The small overlap between WRKY genes differentially
expressed in response to jasmonate treatment in the
microarray experiments suggested a tight developmental
and/or spatiotemporal regulation in Arabidopsis. Two-way
ANOVAs analyzing expression in response to time, as well
as its combined effect with jasmonate treatment, further
indicated AtWRKY regulation is temporally dependent
(Additional file 4: Table S4A-C). The expression of 20
AtWRKY genes was time dependent (Additional file 4:
Table S4A). Jasmonate treatment was found to regulate
the expression of AtWRKY38 and AtWRKY70 in a time
dependent manner. The genetic background of jasmonate
signaling pathway mutants had less effect on WRKY gene
expression. CORONATINE INSENSITIVE 1 (COI1) has
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been established as a jasmonate receptor [54,55].
AtWRKY72 was the only WRKY family member found
to be regulated in a COI1-dependent manner when the
B-H FDR was applied (Additional file 4: Table S4B). No
WRKYs were found to be dependent on MYC2 (Additional
file 4: Table S4C), a major transcriptional regulator of
jasmonate signaling [56,57]. These results indicate that
response of Arabidopsis WRKY TFs to jasmonate treat-
ment is highly dependent upon tissue, timing and cul-
ture conditions, and likely occurs through several major
pathways. Furthermore, WRKY TFs may be important
COI1-independent regulators of jasmonate response.
Unsupervised agglomerative hierarchical clustering ana-
lysis of AtWRKY TFs was performed to identify similar
patterns of gene expression which may indicate related
functions [58]. Gene expression of AtWRKYs formed two
major clusters. Clustering of experiments revealed more
similarities within an experiment than by jasmonate treat-
ment (Additional file 5: Figure S1). Additionally, the two
major clusters separated those experiments in which the
sampled tissues were from either plants or cell cultures.
These findings further support AtWRKY gene expression
in response to jasmonate as highly dependent on culture
conditions and environment. The two major clusters were
further subdivided into two or three clusters. Jasmonate
responsive WRKYs previously annotated or identified by
our microarray analysis primarily occurred in cluster one
and all of the three sub-clusters. The distribution of jas-
monate responsive AtWRKYs indicates at least two major
pathways for the regulation of AtWRKY gene expression.
Interestingly, the only WRKY identified by microarray
analysis to be COI1-depenedent, AtWRKY72, occurred in
cluster 2b, distinct from expression patterns of other jas-
monate responsive WRKYs. These data further suggest
that there are complex tissue and environmental controls
over jasmonate responses that likely occurs through sev-
eral major pathways. These findings from Arabidopsis
provide foundational information about the involvement
of WRKY TFs in jasmonate response and for exploiting
these factors in genetic engineering of transcriptional
regulatory networks for natural product production.

Identification of Catharanthus WRKY TFs

Previously we identified a MeJA responsive group III type
WRKY TE, CrWRKY1, as important for the regulation of
TIA in Catharanthus [46]. Furthermore, the Arabidopsis
data indicates the AtWRKY family as important for regu-
lating jasmonate response. Jasmonate responsive Cr'WRKY
TF may be important for regulating the production of
valuable TIAs. Elucidation of CrWRKYs regulating special-
ized metabolite production will be valuable for future
genetic engineering projects to increase production of
pharmaceutically valuable TIAs. As the first step to identify
important CrWRKY regulators of specialized metabolism
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we sought to identify all WRKY family members in Cathar-
anthus. The recent release of 14 medicinal plants Illumina
sequenced transcriptomes by the Medicinal Plant Genomic
Resource (MPGR), including Catharanthus, provides the
opportunity to identify many CrWRKY TFs [59]. To iden-
tify CrWRKYs, we first downloaded all protein sequences
from MPGR and isolated a single protein sequence for each
locus. We assumed the individual copy of each locus re-
flects the total number of functional genes within the gen-
ome. While this method may include potential errors, such
as RNA-sequencing artifacts, establishing single copies of
genes allows the identification of WRKY family members
and approximate family size. Due to possible variations in
splicing and/or incomplete splicing of introns we searched
contig assemblies with the longest predicted protein se-
quence for each gene in the MPGR database. All CrWRKY
proteins identified from the MPGR database, described
below, were manually verified to contain a WRKY domain.
In several cases (CrWRKYS8, CrWRKY13, CrWRKY17,
CrWRKY21, CrWRKY34, CrWRKY37, and CrWRKY47),
alignment results among Catharanthus contigs for a locus
and the closest matching AtWRKY TF, were utilized to re-
move a conserved intron following the WRKYGQK con-
sensus sequence or correct a frame shift, to generate a full
WKRY domain sequence. As single base pair insertion in
CrWRKYS8 was not clear by aligning other copies of this
contig, the region spanning the insertion was cloned for
verification.

Searching for the established invariant consensus se-
quences WRKYGQK and known alternative WRKYGKK,
WRKYGEK, and WRKYGSK consensus sequences from
the list of proteins, duplicate results were eliminated and
46 putative WRKY TFs were identified (Additional file 6:
Table S5). Comparatively, MPGR annotated 47 potential
CrWRKY TF encoding genes. However, only 35 WRKYs
overlapped between manual searches for the consensus
motifs and the MPGR annotated datasets.

To further validate the number of WRKY TFs a list of
the single longest predicted proteins for each locus was
submitted to the National Center for Biotechnology Infor-
mation Conserved Domain Database (NCBI CDD) and the
Samuel Roberts Nobel Foundation PlantTFcat (PlantTF-
cat) server, for protein domain identification [60]. The
NCBI CDD identified 52 WRKY domain-containing pro-
teins (Additional file 6: Table S5). Similarly, PlantTFcat
(http://plantgrn.noble.org/PlantTFcat/) also identified 52
WRKY domain-containing proteins. The majority of
additional proteins identified by NCBI CDD and PlantTF-
cat as WRKY TFs, had incomplete N-terminal ends of the
WRKY domain (CrWRKY11l, CrWRKY15, CrWRKY48,
and CrWRKY49). One additional predicted WRKY TF,
CrWRKY32, contained a WRKYGRK motif. CrWRKY?9,
which was identified by NCBI CDD, but not PlantTFcat,
had an incomplete C-terminal portion of the WRKY
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domain. Contig Cral5757 was predicted by PlantTFcat to
be a WRKY TF. Inspection of this protein sequence did not
reveal the presence of a WRKY consensus or zinc finger
binding motif. Of the 47 proteins annotated as WRKYs by
MPGR, only 40 were found to be true WRKY TFs as iden-
tified by NCBI CDD and PlantTFcat. In total, 52 proteins
in Catharanthus were predicted as WRKY TFs (Table 2).

Of the 52 possible WRKY TFs from Catharanthus, at
least 48 appear to be authentic (Table 2). The MPGR data-
base contained full WRKY domain sequences for 52 do-
mains from 43 TFs. Partial domain sequences were found
for nine WRKYs. 3" rapid amplification of cDNA ends
(RACE) or 5" RACE was performed to obtain the necessary
domain sequence for 5 WRKYs. 3" RACE was performed
on CrWRKY9. For CrWRKY11, CrWRKY12, CrWRKY1S,
and CrWRKY48, 5" RACE was used to obtain the rest of
the WRKY domain sequence. Clones could not be found
for four genes (CrWRKY49, CrWRKY50, CrWRKY51, and
CrWRKYS52). Expression data, available from MPGR, re-
vealed these four WRKYs are not present in any of the 23
samples sequenced. To validate the MPGR expression data,
quantitative reverse transcription polymerase chain reac-
tion (qQRT-PCR) was used to measure the transcript levels
of CrWRKY49, CrWRKY50, CrWRKY51, and CrWRKYS52.
Gene specific transcripts for CrWRKY49, CrWRKY50,
CrWRKYS1, and CrWRKYS52 could not be detected in
root, stem, leaf, or whole plant samples. Transcripts for
the same four WRKYs could also not be found in 0, 1, 2,
and 4 hour MeJA-treated samples. This data suggests
that these predicted partial WRKY sequences are not in
any of our samples, and that they may be either artifacts
of RNA-sequencing, temporally regulated, or induced
by a factor not present in our growing conditions.
WRKY TFs are known to play key roles in plant senes-
cence [42]. However, senescing medicinal plant tissues
were not utilized for sequencing in the MPGR. Inclu-
sion of senescing tissues may slightly increase the total
WRKY number to more closely reflect fully sequenced
plant species. Future investigations with different treat-
ment conditions may detect the expression of CrWRKY49,
CrWRKY50, CrWRKY51, and CrWRKYS52.

The Catharanthus WRKY family appears to be one of
the smallest reported WRKY TF families to date. Only the
moss Physcomitrella patens, the lycophyte Selaginella
moellendorffii, and Castor bean (Ricinus communis), with
37, 35, and 47 WRKYs respectively, are reported to have
fewer WRKY TFs [61-63]. Our results suggest that the
Catharanthus WRKY family is similar in size to Cucumis
sativus, Fragaria vesca, Jatropha curcas, and Carica pa-
paya with 55, 56, 58 and 66 WRKYs, respectively [64—67].
To further investigate the size of the Catharanthus WRKY
family, we identified the WRKY TFs from serpentwood
(Rauvolfia serpentina) transcriptome sequences (Table 3)
[59]. Serpentwood is closely related to Catharanthus and
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Table 2 A list of Catharanthus WRKY domain containing
proteins along with locus number and group number are
presented

Catharanthus WRKY Locus Group

CrWRKY1 Cra16284 Il
CrWRKY2 Cra549 [

CrwWRKY3 Crad234 I

CrWRKY4 Cra5497 I

CrWRKY5 Cra6088 [

CrWRKY6 Cra8145 I

CrWRKY7 Crag152 I

CrWRKY8 Cra10348 [

CrwRKY9 Cral1128 I

CrWRKY10 Cra13321 I

CrWRKY11 Cra22691 \

CrWRKY12 Cra43671 I

CrWRKY13 Cral311 lla
CrWRKY14 Cra13263 lla
CrWRKY15 Cra54213 lla
CrWRKY16 Cra2068 IIb
CrWRKY17 Cra3503 IIb
CrWRKY18 Cra18915 IIb
CrWRKY19 Cra19580 Ib
CrWRKY20 Cra22725 IIb
CrWRKY21 Cra2271 llc
CrWRKY22 Cra2950 llc
CrWRKY23 Cra6519 llic
CrwRKY24 Cra8670 llc
CrWRKY25 Cra9369 lic
CrWRKY26 Cra19330 llc
CrwRKY27 Cra22395 llc
CrWRKY28 Cra24943 llc
CrWRKY29 Cra28262 llc
CrwRKY30 Cra37309 llc
CrWRKY31 Cra4389% llc
CrWRKY32 Cra102390 llc
CrWRKY33 Cra105225 llc
CrwRKY34 Cra1702 Ild
CrWRKY35 Cra3760 Ild
CrWRKY36 Cra7867 Iid
CrWRKY37 Cral7347 Ild
CrWRKY38 Cral1684 lle
CrwRKY39 Cra16307 lle
CrWRKY40 Cra19395 lle
CrWRKY41 Cra20290 lle
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Table 2 A list of Catharanthus WRKY domain containing
proteins along with locus number and group number are
presented (Continued)

CrWRKY42 Cra21821 lle
CrWRKY43 Cra23742 lle
CrWRKY44 Cra30069 lle
CrWRKY45 Cra3799 Il
CrWRKY46 Cra5093 Il
CrWRKY47 Cra18989 Il
CrWRKY48 Cra24719 I
CrWRKY49 Cra55720
CrWRKY50 Cra56567
CrWRKY51 Cra65443
CrWRKY52 Cra70197

also produces pharmaceutically valuable TIAs (Additional
file 7: Figure S2). We found 54 serpentwood TFs, a num-
ber close to the 52 WRKYs identified in Catharanthus.
The number of WRKYs belonging to each subgroup was
also similar between these two species (Additional file 8:
Figure S3). However, as both serpentwood and Cathar-
anthus WRKYs were identified from transcriptome data,
the actual size of the families may be larger. To address
this possibility, we identified WRKY families from tomato
(Solanum lycopersicum) [68], potato (Solanum tuberosum)
[69], pepper (Capsicum annuum) [70], and bladderwort
(Utricularia gibba) [71], all species of which have
complete genome sequence available (Table 3). We identi-
fied 81 WRKY TFs in tomato (Table 3, Additional file 9:
Figure S4), as previously reported [72]. Bladderwort,
pepper, and potato each contained 65, 66, and 75
complete WRKY TFs, respectively (Table 3, Additional
file 8: Figure S3 and Additional file 9: Figure S4). These
data suggest the ancestor of the Gentianales (Catharanthus
and serpentwood), Lamiales (bladderwort), and Solanales
(pepper, potato and tomato) likely contained around 65
WRKY TFs. Therefore, we conclude that greater than 75%
(52 out of 65) of Catharanthus and serpentwood WRKY
TFs were identified from transcriptome data. Together, the
six asterid species contained a similar number of WRKY
TFs as found in the Brassicales, Arabidopsis and papaya
[66,73]. These data, combined with that from other WRKY
families [64—67], suggests that Brachypodium distachyon
(86 WRKYs), Oryza sativa ssp. japonica (105 WRKYs),
Populus trichocarpa (104 WRKYs), and Zea mays (119
WRKYs) may contain atypically large WRKY families
[29,33,66,74,75] compared to other angiosperms. Arabi-
dopsis and rice both contain expansions in the group III
WRKY subfamily [29,73], whereas an expansion of group
Ile occurs in potato and tomato [72] (Table 3). We did not
find any evidence for subfamily expansions in Cathar-
anthus or serpentwood (Table 3; Figure 1).
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Table 3 The distribution of WRKY TFs from nine plant species

Species Complete WRKY  Partial WRKY Group Group Group Group Group Group Group Unassigned
TFs TFs | lla Ib lic Iid lle mn
Amborella trichopoda 29 3 7 2 4 5 2 4 5 3
Arabidopsis thaliana 72 2 14 3 18 7 8 14 2
Capsicum annuum 66 4 16 4 6 13 1 7 9 4
Catharanthus roseus 48 4 11 3 5 13 4 7 5 4
Oryza sativa ssp. 93 6 15 4 8 16 7 10 34 5
Japonica

Rauvolfia serpentina 49 5 10 2 4 12 5 5 5 11
Solanum lycopersicum 78 3 15 5 8 17 6 17 11 2
Solanum tuberosum 75 9 14 5 6 14 7 15 14 9
Urticularia gibba 65 7 16 4 4 18 7 11 5 7

WRKY TFs identified from the sequenced genomes of A. trichopoda, A. thaliana, C. annuum, O. sativa, S. lycopersicum, S. tuberosum, and U. gibba. C. roseus and R.
serpentina WRKY TFs were identified from transcriptome sequences in the MPGR database. Complete and partial WRKY domain containing proteins were
identified using the NCBI Conserved Domain Database. The presence of WRKY domains were manually verified and phylogenetic analyses were conducted to

determine WRKY subgroups for each of the species.

Phylogenetic analysis of Catharanthus WRKY TFs

To determine the relationship among Catharanthus WRKY
TFs, a phylogenetic tree was constructed with 282 WRKY
domains from 243 TFs from Catharanthus, Amborella tri-
chopoda, Arabidopsis and rice (Oryza sativa ssp. japonica)
(Figure 1). WRKY sequences from Chlamydomonas
reinhardtii (XP_001692342), Dictyostelium discoideum
(XP_643786), and Giardia lamblia (XP_001708807)
were included as an outgroup. Additional, outgroup
sequences include human GCMa (BAA13651) and
FLYWCH CRAa (EAWS85450). We used 84 and 105
WRKY domains from 72 and 94 TFs, from Arabidopsis
and rice respectively, to construct the phylogenetic tree.
Thirty-five domains from 29 Amborella WRKY TFs
were also included in the phylogenetic analysis [76]. We
incorporated the WRKY sequences of Amborella, an
evolutionary basal angiosperm, to reduce long-branch
attractions during phylogenetic tree construction. Ambor-
ella was selected over Physcomitrella patens (moss) and
Selaginella moellendorffii (spikemoss) since the WRKY se-
quences from this phylogenetically important species
remains unreported yet provides valuable insights about
WRKY evolution. The phylogenetic tree contained 58
domains from 48 CrWRKY TFs (Additional file 10:
Table S6). To ascertain potential functions, we compared
Catharanthus and Arabidopsis WRKY TFs by identifying
orthologs. We identified 11 group I, 32 group II, and five
group III WRKY TFs in Catharanthus. Group II WRKY
TFs can be classified into groups Ila, IIb, Ilc, IId, or Ile
[32]. In Catharanthus, we identified three group Ila, five
group IIb, thirteen group Ilc, four group IId and seven
group Ile WRKY TFs.

Evolutionarily, group I WRKY TFs, such as those
found in algae, are some of the most ancient of WRKYs
[29,73]. Recent evidence suggest that the group I WRKYs,
and other WRKY TFs, originated from an ancestral group

IIc-like domain [31]. As previously reported for this group,
ten group I CrWRKYs contained two WRKY domains with
the N-terminal domain forming a separate clade and the
C-terminal WRKY domains forming part of the group
IIc clade [29,73]. To identify orthologs and paralogs in
Amborella, Arabidopsis, Catharanthus and rice, we used
OrthoMCL [77]. We found Catharanthus contains six coor-
thologs (CrWRKY2, CrWRKY3, CrWRKY4, CrWRKY5,
CrWRKY8 and CrWRKY51) to AtWRKY33 (Table 4). Ac-
cording to the phylogenetic tree, CrWRKY5 is most closely
related to AtWRKY33 (Figure 1).

Group Ila was the only group of WRKYs that had similar
numbers between Catharanthus and Arabidopsis. Rice had
four group Ila WRKY TFs whereas both Arabidopsis and
Catharanthus each contained three. The three group Ila
WRKYs from Catharanthus are coorthologs to AtWRKY40
(Table 4).

Previous reports indicate some plants contain variants
of the highly conserved WRKYGQK domain, such as
WRKYGKK, WRKYGEK, WRKYGSK, among others [29].
Variation in this region can reduce, eliminate, or alter
DNA binding activity [78]. WRKY TFs with variants of the
consensus sequence may recognize different cis-elements.
We found AtWRKY50, AtWRKY51, and AtWRKY59
belong to the group IIc WRKY subfamily and possess
a WRKYGKK motif as previously reported [32]. Two
CrWRKYs were identified that contain variants of the
highly conserved WRKYGQK motif. CrWRKY23 and
CrWRKY32 contain WRKYGKK and WRKYGRK se-
quence motifs, respectively. Mutagenesis of the conserved
glutamine was previously demonstrated to reduce, but not
eliminate, DNA binding [78]. More recently, AtWRKY50
was found to generally bind the GAC core of the W-box
with less preference for 5 or 3" bases [31]. Therefore, both
WRKYGKK and WRKYGRK variants are expected to still
bind DNA. Nictotiana tabacum WRKY12, containing a
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Figure 1 The phylogenetic tree of C. roseus (red dot), A. trichopoda (inverted purple triangle), A. thaliana (green square), and O. sativa
(blue diamond) was constructed using the Neighbor-Joining method with P-distance substitution model, pairwise-deletion, and a
bootstrap value of 2000. WRKY domain alignment was performed with ClustalW. Proteins used as an outgroup are indicated by a teal triangle.
WRKY TFs from six additional medicinal species, A. annua (AaWRKY1), C. japonica (CJWRKY1), G. arboreum (GaWRKY1), H. brasiliensis (HDWRKY1),
P. quinquefolius (PQWRKY1), and T. chinensis (TCWRKY1), were included. WRKY TFs involved in regulating secondary metabolism are indicated with
a black dot.

CrWRKY23, CaWRKY1 and NtWRKY12 revealed more
similarity of CrWRKY23 to CaWRKY1 (Figure 2A and B),
suggesting that despite the variant WRKYGKK motif,
CrWRKY23 likely still recognizes the W-box element or at
least the GAC core. Although Hordeum vulgare WRKY46
(SUSIBA2) contains a WRKYGQK motif, HYWRKY46 rec-
ognizes the Sugar Responsive (AATAGAAAA) and W-box

WRKYGKK motif, has been found to bind the WK-box cis-
element (TTTTCCAC), but not the W-box, which regu-
lates expression of the plant defense gene PATHOGENESIS
RELATED1 [79]. However, Capsicum annuum WRKY1, a
WRKYGKK motif WRKY TF involved in plant defense,
can still recognize the W-box [80]. The phylogeny and pro-
tein alignment of the DNA-binding WRKY domains of
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Table 4 Orthologs and paralogs for Arabidopsis and Catharanthus WRKY found using OrthoMCL

Catharanthus roseus Arabidopsis thaliana Other
CrWRKY1, CrWRKY48, CrWRKY52 AtWRKY54, AtWRKY70

CrWRKY2, CrWRKY3, CrWRKY4, CrWRKY5, CrWRKY8, AtWRKY20, AtWRKY33 CmWRKY1
CrWRKY51

CrWRKY6 AtWRKY44

CrWRKY7 AtWRKY2

CrWRKY9, CrWRKY12 AtWRKY1

CrWRKY10 AtWRKY32

CrWRKY13, CrWRKY14, CrWRKY15 AtWRKY40 GaWRKY1
CrWRKY16, CrWRKY20 AtWRKY6, AtWRKY31, AtWRKY42 TcWRKY1
CrWRKY17, CrWRKY18 AtWRKY72

CrWRKY19 AtWRKY9

CrWRKY21, CrWRKY22, CrWRKY26, CrWRKY27, AtWRKY8, AtWRKY12, AtWRKY23, AtWRKY28, AtWRKY48, AtWRKY51, HbWRKY1
CrWRKY29, CrWRKY33 AtWRKY57, AtWRKY71

CrWRKY23, CrWRKY32 AtWRKY50

CrWRKY24 AtWRKY13

CrWRKY25 AtWRKY49

CrWRKY28 AtWRKY75 GWRKY1
CrWRKY30, CrWRKY31 AtWRKY24, AtWRKY43, AtWRKY56

CrWRKY34, CrWRKY35 AtWRKY7 PqWRKY'1
CrWRKY36 AtWRKY21

CrWRKY37 AtWRKY11, AtWRKY17

CrWRKY38 AtWRKYE9

CrWRKY39 AtWRKY65

CrWRKY41, CrWRKY43 AtWRKY22, AtWRKY27

CrWRKY42 AtWRKY 14, AtWRKY35

CrWRKY45, CrWRKY46, CrWRKY47 AtWRKY41, AtWRKY46, AtWRKY53 AaWRKY1

WRKYs in ‘bold font’ are jasmonate responsive, either according to the literature or by our findings in this study. WRKY highlighted in italics are TFs known to regulate
secondary metabolism in A. thaliana, Artemisia annua, C. rosues, Coptis japonica, Gossypium arboreum, Hevea brasiliensis, Panax quinquefolius, and Taxus chinensis.

A 83 CrWRKY23
78 |—CaWRKY1
_| AtWRKY50
46 AWRKY51
NEWRKY 12
AtWRKY59
—

B 0.05
CrWREKYZ3 VERKRVERDREDPEKYVITAYEGIHNHQGP 70
CaWRKY1 RVERDREDSRYVI YEGVHNHQGL 70
AtWREKYSO F KEKRVERDRDDPSFVI EGSHNHSSM 70
AtWRKYS1 KIDVMDDGFRWREKYGF KEKRVERDGDDAAYVITTYEGVHNHESL 70
NtWRKY12 FE TELEILDDGY F ERDGNDSSYLI EGEKHNHESP 70
AtWREYS59 ESSIDERVALDDGY YEGRHNHPSP 70

Figure 2 The phylogenetic relationship and alignment of CrWRKY23 to other WRKYGKK containing WRKY transcription factors. A. The
phylogenetic tree was constructed in MEGAS using the Neighbor-Joining method with P-distance substitution model, pairwise-deletion, and a
bootstrap value of 2000. The tree is unrooted and branch lengths drawn to scale to evolutionary distances. Alignment was performed using
Clustalw. B. Alignment of WRKY domain sequence was performed using ClustalW.
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cis-elements to regulate barley genes involved in starch me-
tabolism [81]. This leaves open the possibility that some
Catharanthus WRKY TFs may not recognize W-box cis-
elements.

Group III WRKY TFs are believed to have dramatically
expanded during the evolution of angiosperms and can
be classified into different subgroups depending on the
species [34,72]. Arabidopsis contains fourteen group III
WRKY TFs which are further divided into eight group Illa
and six group IIIb. In Arabidopsis, most group III WRKY
transcription are induced by plant pathogens [34]. We
identified only five group III WRKY TFs in Catharanthus.
Similarly, we identified 5 group III WRKYs in serpent-
wood and bladderwort (Table 3). Proportionally, the num-
ber of group III CrWRKY TFs is the smallest compared to
Arabidopsis. The low number of group III CrWRKYs, and
similar number from serpentwood and bladderwort, sug-
gests this group has not undergone significant expansion
such as occurred in rice or Arabidopsis [72]. CrWRKY1
and CrWRKY48 were found to be coorthologs to
AtWRKY70 and AtWRKY54 (Table 4). AtWRKY70 mod-
ulates SA and jasmonate signaling [36]. Interestingly,
CrWRKY1 differentially directs the flow of unknown
precursors into TIA products [46], a feature possibly
governed by its jasmonate responsive gene expression.
CrWRKY45, CrWRKY46, and CrWRKY47 are coortholgs
of AtWRKY41, AtWRKY46, and AtWRKY53. AtWRKY46
and AtWRKY53 are partially functionally redundant in
regulating plant defense [43].

We previously reported the role of CrWRKY1 in regu-
lating gene expression and TIA accumulation in Cathar-
anthus [46]. CrWRKY1 is a group III WRKY with overall
protein sequence homology closest to AtWRKY70, and
corresponds to MPGR contig number Cral6284. Phylo-
genetically, CrWRKY1 is located towards the base of the
group III clade and does not clearly group with its Arabi-
dopsis or rice orthologs (Additional file 11: Figure S5A).
To identify the unique feature of CrtWRKY1, we analyzed
the protein sequence alignment. The invariant tryptophan
starting the WRKYGQK motif was used as the reference
point for comparing alignments. Alignment of Cr'WWRKY1
to other group III WRKY TFs revealed that CrWRKY1
lacks an amino acid between the two conserved cysteine
residues at positions 21 and 29 (Additional file 11:
Figure S5B). The closest rice WRKY TFs, OsWRKY21,
OsWRKY61 and OsWRKY47, all have altered spacing
within the WRKY domain sequence. OsWRKY47 possesses
an additional proline residue between the WRKYGQK
sequence and the conserved arginine residue at position 16
[32]. The conserved arginine at position 16 was changed
to threonine followed by a TQS motif in OsWRKY61.
OsWRKY47 contains an extra DDP sequence between po-
sitions 41 and 42 compared to all other Arabidopsis, rice,
and Catharanthus group III WRKY TFs. The altered
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spacing in the WRKY domain may give these WRKY
TFs unique structural properties important for target
gene regulation.

Expression profiling reveals multiple Jasmonate
responsive CrWRKY's

MPGR provides RNA-sequencing based expression data
from different tissues for all sequenced medicinal plants.
For Catharanthus, RNA-sequencing data is also available
for different tissues, seedlings, cell suspension cultures,
and hairy root cultures. These data provide an opportunity
to understand the induction of WRKY genes in response
to conditions that induce the TIA pathway. Furthermore,
several treatments allow for comparison of induction to
the same hormone in varying tissues. In response to
MeJA, a potent and important elicitor of natural product
formation, including TIAs, in Catharanthus and other
medicinal species [82-85], MPGR expression data indi-
cates multiple WRKY TFs are either up or down regulated
in Catharanthus.

To identify or validate WRKY TFs that are up- or down
regulated by MeJA, we performed qRT-PCR on whole
plant samples (root, stem, and leaves) that were collected
from one month old soil grown plants at 0, 1, 2, and 4 hours
after MeJA treatment. Successful induction with MeJA was
verified by measuring JAZ2 expression (Figure 3A). To de-
termine which WRKY TFs were possible regulators of TIA
production, we sought to measure the expression of
multiple pathway genes such as GI0H, TDC, and STR
(Figure 3B). These genes were selected to represent early
(GIOH and TDC) and middle portions (STR) of the TIA
pathway. Any WRKY induced prior or simultaneously to
these genes possibly could regulate that corresponding por-
tion of the pathway and any subsequent segments.

We selected at least two genes from each CrWRKY sub-
group. Four genes (CrWRKY5, CrWRKY8, CrWRKY1I3,
and CrWRKY28) were selected based on involvement of
their orthologs in regulating secondary metabolism genes
in other species. Analysis of sixteen CrWRKYs identified
twelve which displayed significant changes in expression
in response to jasmonate (Figure 3C-D). The fold change
for most CrWRKYs with a significant response to MeJA
was 2 fold or less (Figure 3C-D), similar to our microarray
findings for jasmonate responsive Arabidopsis WRKYs
(Additional file 3: Table S3). CrWRKYS8 was up-regulated
1 hour after MeJA treatment then decreased by 4 hours
after treatment. CrWRKY5 was down-regulated signi-
ficantly at both 2 and 4 hour after MeJA treatment.
CrWRKY13, similar to the ABA responsive AtWRKY40,
was significantly up-regulated 1 and 2 hours after MeJA
treatment. CrWRKY38 was up-regulated by 2 hours after
MeJA treatment. CrWRKY18, CrWRKY21, CrWRKY41,
CrWRKY45, and CrWRKY48 were all significantly down-
regulated at all time points after MeJA treatment. Two
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(See figure on previous page.)

expression were determined using a Student’s T-test.

Figure 3 Quantitative reverse-transcription PCR (QRT-PCR) for quantification of gene expression was performed on mature
Catharanthus plants. Three whole plants were combined for each biological replicate. Each time point consisted of three biological replicates.
Three technical replicates were measured per time point sample. A. Expression of Catharanthus JAZ2 transcripts were determined in after 0, 1, 2,
or 4 hours of MeJA treatment. B. Expression of the TIA biosynthetic genes G10H, TDC, and STR. C-D. Expression of 16 Catharanthus WRKY transcription
factors in response to 0, 1, 2, and 4 hours of MeJA treatment. Significant and highly significant, p-value < 0.05 or 0.01 respectively, changes in gene

WRKYs, CrWRKY26 and CrWRKY36, had a bimodal ex-
pression pattern that was down-regulated at 1 and 4 hours,
but not 2 hours, after MeJA treatment. A bimodal expres-
sion pattern has been observed for some regulators of the
TIA pathway [15]. CrWRKY35 was down-regulated 2 and
4 hours after treatment. Nine of 12 CrWRKYs analyzed
were down-regulated to MeJA treatment. In total at least
25% (12 of 48), and probably more, of CrWRKY TFs are
regulated by jasmonate. Of the twelve jasmonate respon-
sive CrWRKYs, nine have an AtWRKYs ortholog which
were either previously reported and/or identified here
by microarray analysis (p < 0.05 and survived B-H FDR)
as differentially regulated by jasmonate (Figure 3C-D,
Additional file 2: Table S2). When compared to the less
stringent list of AtWRKYs which had expression signifi-
cantly changed (p < 0.05) in response to jasmonate, but
did not survive the B-H FDR, all twelve CrWRKYs have
orthologs to jasmonate responsive AtWRKYs.

To identify potential WRKYs regulating TTIA biosynthesis
through the jasmonate signaling pathway, we compared
the induction times of WRKY genes (Figure 3C-D) to early
and mid- biosynthetic genes of the pathway (Figure 3B).
Similar to previous reports in cell cultures [15], induction
of STR by MeJA began approximately 2 hours after treat-
ment. However, expression of GI0H decreased starting at
1 hour after MeJA treatment, and was further down-
regulated 4 hours after treatment (Figure 3B). TDC tran-
script levels remained unchanged to MeJA treatment
in mature Catharanthus plants. Prior reports of TDC
[7,13,86—88] and GI0H [13,86—88] transcript induction by
jasmonate treatment was identified in seedlings, hairy
roots, or cell cultures; however, our experiments were per-
formed in intact mature Catharanthus plants. Expressions
of WRKY TFs possibly contributing to TIA regulation are
predicted to be altered before early and mid steps of
the TIA pathway. Expression of CrWRKYS, CrWRKY13,
CrWRKY18, CrWRKY21, CrWRKY26, CrWRKY36,
CrWRKY41, CrWRKY45 and CrWRKY48 changed by
1 hour after MeJA treatment indicating these WRKYs
could possibly regulate the expression of early TIA path-
way genes. Altered expression of all twelve CrWRKYs
responding to MeJA occurred by 2 hours after treatment,
the same time at which significant induction of STR oc-
curred. Contrary to TDC and GI0H, which contain four
and one W-boxes in their promoters respectively [46,89],
the characterized STR promoter does not contain any

W-box elements for WRKYs to bind, but this does not
exclude the possibility that WRKY regulate other TFs
controlling STR expression. The spatio-temporal regula-
tion of CrWRKYs, by reducing TDC responsiveness and
down-regulating GI0H, is one possible reason why ma-
ture Catharanthus plants do not accumulate TIA in re-
sponse to jasmonate treatment [90]. These findings
suggest that all CrWRKYs we ascertained as differen-
tially expressed in response to jasmonate are possible
regulators of early and middle steps of TIA biosynthesis.
Presumably, these CrWRKY could also regulate down-
stream steps of the pathways which are temporally
expressed later.

The Jasmonate Response of Catharanthus WRKY Varies
Among Plant Culture Conditions

We sought to determine the similarities between our
qRT-PCR results and the transcriptome data published
by MPGR. As we used one month-old plants to quantify
gene expression, and no data on MeJA treated mature
plants are provided by MPGR, we correlated our data to
three different datasets each representing one aspect
of our samples (5 day MeJA treated seedlings, 6 hour
MeJA treated cell suspension cultures, and 24 hour
MeJA treated hairy root cultures). Seedlings treated
with MeJA most closely represent our samples in physi-
ology as both are whole plant tissues; however, the
MPGR dataset used seedlings rather than mature plants,
which may respond to MeJA differently [90]. While cell
cultures are considerably different in physiology from
whole plants, the earliest time sample (6 hours after
MeJA treatment) was closest to our sample times of 1, 2,
and 4 hours after MeJA treatment. Hairy root cultures
require several weeks to develop to sufficient size; there-
fore, the age of this tissue most likely represents a simi-
lar age as our plant samples, despite our shorter MeJA
treatment time. The Pearson correlation coefficient was
calculated to measure the relationship between the data-
sets. CrWRKY11 and CrWRKY21 were excluded from
the correlations as they appear two times in the MPGR
datasets without expression values. The correlation be-
tween MPGR seedling and cell culture datasets, as well
as between cell culture and hairy root datasets, was quite
low (r=0.179 and r = 0.227 respectively), indicating con-
siderable difference in CrWRKY response to MeJA in
cell culture systems. However, there was a high
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correlation between seedling and hairy root MPGR data-
sets (r=0.892) for MeJA treated CrWRKY genes. Our
qRT-PCR data showed that the correlations ranged from
0.061, between 1 hour MeJA treated plants and 24 hour
MeJA treated hairy roots, to 0.790, between 1 hour
MeJA treated plants and 6 hour MeJA treated cell sus-
pension cultures (Figure 4A). Overall, the three MPGR
datasets correlated well with all three time points of
qRT-PCR data (median value of the 9 correlations =
0.555) indicating similar expression changes in response
to jasmonate treatment. Increasing time after MeJA
treatment in whole plants increased the correlation with
seedling and hairy root cultures. Cell cultures, despite
higher similarities in the 4 hour MeJA treated plant and
6 hour MeJA treated cell culture time frame, showed a
lower correlation between the 1 hour MeJA treated plant
and 6 hour MeJA treated cell cultures. Similar to Arabi-
dopsis, these findings in Catharanthus suggest signifi-
cant differences exist between jasmonate response in
various cultural conditions, including intact seedlings,
adult plants, cell cultures, and hairy root cultures.

Gene expression clusters often contain genes with re-
lated functions [58], including those in natural product
formation [91]. Recently, clustering of MPGR expression
data has aided the identification of Catharanthus IRI-
DOID SYNTHASE [92]. To identify potential clusters of
CrWRKY TFs with similar expression pattern which may
indicate WRKY functions, we performed a hierarchical
clustering. Unsupervised agglomerative hierarchical clus-
tering of 23 transcriptome gene expression datasets from
MPGR revealed three primary clusters: a plant tissue
cluster, a hairy root cluster, and a protoplast cluster
(Figure 4B). Clusters of plant culture type indicate a
greater difference between cultural conditions than be-
tween MeJA treatment. However, clear differences exist
between MeJA treated and untreated samples within sub-
groups of each primary cluster. Clustering of CrWRKY
gene expression revealed three primary clusters. CrWRKYs
of cluster one were most up-regulated in different plant
tissues, suggesting a role in plant development. The sec-
ond cluster of WRKY genes is up-regulated in hairy root
cultures. Members of cluster two may be important for
regulating metabolism and resource direction into primar-
ily root produced alkaloids, such as ajmalicine and serpen-
tine. Identification of CrWRKY1, which plays a role in
serpentine production, in cluster two supports this idea.
CrWRKY46, ortholog to AaWRKY1, a trichome expressed
WRKY in Artemisia annua, was also found in this cluster.
CrWRKY34 and CrWRKY35 orthologous to PqWRKY1
which is suggested to regulate terpene biosynthesis in
Panax quinquefolius (American ginseng) roots also occur
in this cluster. The third cluster consisted of CrWRKY that
were up-regulated in response to MeJA or yeast extract
(YE), an elicitor of TIA biosynthesis, in protoplasts. Most
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Figure 4 Pearson correlation analysis of WRKY expression data
and hierarchical clustering of MPGR transcriptome data for the
CrWRKY TF family. A. Pearson correlation between fold change of
QRT-PCR expression and MPGR datasets for MeJA treated samples.
Fold change for both sets was calculated using the reference gene
EFla as an internal control. B. Hierarchical cluster analysis of MPGR
transcriptome data for the CrWRKY TF family was performed using
GenePattern. The clustering method was a pairwise average linkage
with distance measured using the Pearson correlation coefficient.
Data was log transformed. The median value was subtracted from
each row. Color is based on global expression with purple being
up-regulated and green down-regulated.

of this cluster was also up-regulated in hairy root cultures.
Most CrWRKYs orthologous to WRKYs regulating natural
product formation in other species were identified in this
cluster. Importantly, four CrWRKYs (CrWRKY2, CrWRKYS5,
CrWRKY13, and CrWRKY28), similar to those with known
roles in secondary metabolism (Table 4), were identified as
part of the same sub-cluster in cluster three. The four mem-
bers of this cluster may play key roles in regulation of natural
product formation in Catharanthus. A second sub-
cluster of cluster three, composed of six members, con-
tained five CrWRKYs (CrWRKY4, CrWRKY14, CrWRKY22,
CrWRKY26, and CrWRKY27) which are orthologs to
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WRKY TFs regulating natural products in other species.
The sixth member of this sub-cluster, CrWRKY41, is also
a jasmonate responsive WRKY. Members of this sub-
cluster may also be important for regulation of natural
products in Catharanthus. CrWRKY TFs, determined by
qRT-PCR to be MeJA responsive, were distributed across
all three clusters, indicating jasmonate broadly regulates
WRKYs from each cluster.

Predicted role of CrWRKY orthologs in secondary
metabolism

Catharanthus produces alkaloids, terpenes and latex, all
classes of compounds that contain biosynthetic genes
involved in their production which have been impli-
cated to be regulated by WRKY TFs in other species
[48,49,51]. To associate biosynthesis of natural com-
pounds with jasmonate-responsive CrWRKYs, we com-
pared Catharanthus WRKY TFs to those known to
control secondary metabolism in other plant species
(Table 4). CGWRKY1 is involved in the regulation of the
benzylisoquinoline alkaloid berberine [48]. In Cathar-
anthus, CrWRKY28 grouped closely with CjWRKY1
(Figure 1). The ortholog of CGWRKY1 in Arabidopsis is
AtWRKY75.

AtWRKY33 plays a role in regulating biosynthesis of
camalexin, an indole ring and N-containing defense
molecule, and functions downstream of MITOGEN-
ACTIVATE PROTEIN KINASE 3 and 6 [52]. Recently,
CrMPK3 was shown to regulate TIA accumulation [93].
As Catharanthus produces over 130 different TIA metab-
olites, the multiple coorthologs to AtWRKY33 may be im-
portant for regulating diverse products of this pathway.
However, further experiments are needed to demonstrate
whether the orthologous TFs in Catharanthus act down-
stream of CrMPK3 and are involved in TIA biosynthesis.
Interestingly, CmWRKY]1, from Chlamydomonas, was also
an ortholog to AtWRKY33, suggesting a possible early
function of this TF in defense and regulating secondary
metabolism.

AaWRKY1, which is involved in regulating the accu-
mulation of artemisinin, has three coortholgs in Cath-
aranthus, CrWRKY45, CrWRKY46, and CrWRKY47
(Table 4). In Arabidopsis three group Illa WRKYs,
AtWKRY41, AtWRKY46, and AtWRKY53 are coortholgs
to AaWRKY1. In Catharanthus, increased production of
HMGR and terpenes have negatives effect on the accumu-
lation of certain TIAs [94]. In A. annua, AaWRKY1 affects
the expression of 3-HYDROXY-3-METHYLGLUTARYL-
COA REDUCTASE (HMGR) [50], a rate limiting en-
zyme in the mevalonate pathway. Both AaWRKY1 and
CrWRKY46 are jasmonate responsive genes; therefore,
at least CrWRKY46 may have an evolutionarily con-
served function in regulating the flux of carbon into
Catharanthus terpenes.
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The rate limiting enzyme in the production of pacli-
taxel, DBAT, is regulated by TcWRKY1 [47]. Phylogenet-
ically, TcWRKY1 is basal to the group Ila and IIb clades
(Figure 1). Catharanthus CrWRKY16 and CrWRKY20
were identified as coorthologs to TcWRKY1 (Table 4). In
Arabidopsis, the group IIb AtWRKY6, AtWRKY31, and
AtWRKY42 were found to be coortholgs to TcWRKY1
(Table 4).

GaWRKY1, from cotton, regulates a sesquiterpene
cyclase leading to the production of gossypol [49].
AtWRKY40 was found to be the Arabidopsis ortholog to
GaWRKY1 (Table 4). AtWRKY18 and AtWRKY60 formed
their own ortholog group independent of AtWRKY40.
Catharanthus, however, contains three coortholgs to
GaWRKY1, CrWRKY13, CrWRKY14, and CrWRKY15.
As with AtWRKY40, these CrWRKYs may have a role in
negative regulation of ABA response [95] and positive
regulation of jasmonate responses [38]. Supporting this
idea, like AtWRKY40 and GaWRKY1, we found expres-
sion of CrWRKY13 was induced by jasmonate treatment.
Drought, salinity, and cold all affect TIA accumulation in
Catharanthus [12,96], thus at least CrWRKY13 may func-
tion in regulating the accumulation of TIAs in response to
abiotic stress and plant defense.

HbWKRY1 expression is related to latex production in rub-
ber trees [51]. In Catharanthus, CrWRKY21, CrWRKY22,
CrWRKY26, CrtWRKY27, CrWRKY29, and CrWRKY33 are
coorthologs to HbWRKY1. Six coothrologs (AtWRKYS,
AtWRKY12, AtWRKY23, AtWRKY28, AtWRKY4S,
AtWRKY51, and AtWRKY71) to HbWRKY1 exist in
Arabidopsis (Table 4). Like HbWRKY]1, at least four
Arabidopsis (AtWRKY8, AtWRKY28, AtWRKY48, and
AtWRKY51) and two Catharanthus WRKYs (CrWRKY21
and CrWRKY26) are regulated by jasmonate. Phylogenet-
ically, the group Ilc AtWRKY23 and CrWRKY26 are the
WRKYs most similar to HbWRKY1 in Arabidopsis and
Catharanthus, respectively (Figure 1). As Catharanthus
also produces a latex compound, the jasmonate regulated
CrWRKY26 or one of the other paralogs, may function
in the regulation of latex or terpene production in
Catharanthus.

Heterologous over-expression, in Arabidopsis, of the
Me]JA responsive American ginseng WRKY TE, PgWRKY1,
increased drought and salt stress tolerance, in addition to
regulating terpene biosynthetic genes [53]. AtWRKY?7 in
Arabidopsis and CrWRKY34 and CrWRKY35 in Cathar-
anthus are orthologs to PqWRKY1 (Table 4). Contrary to
the report by Sun et al. [53], which classifies PqWRKY1 as
a group IIc WRKY, we found PqWRKY1 actually falls
within the IId subgroup when compared to the entire Ara-
bidopsis WRKY family (Figure 1). AtWRKY7, CrWRKY35,
and PqWRKY1 are each regulated by jasmonate support-
ing the possible conserved evolutionary function of these
proteins in regulating terpene biosynthesis.



Schluttenhofer et al. BMC Genomics 2014, 15:502
http://www.biomedcentral.com/1471-2164/15/502

Kalde et al. [34] reported a role of most Arabidopsis
group III WRKY TFs in plant defense. Overall, no clear
trend was observed for WRKY TFs possibly involved in
secondary metabolism belonging to a specific group or
subgroup. Further work is needed to verify the predicted
roles of these Cr'WRKYs in the regulation of secondary
metabolism.

Comparative genetics across species has provided invalu-
able information that lead to the isolation and functional
understanding of several key regulators in natural product
formation. In Arabidopsis, the bHLH factor AtMYC2 is
known as a central regulator of jasmonate signaling path-
way. The orthologs of AtMYC2, CrMYC2 and NtMYC2,
from Catharanthus and tobacco, respectively, have thus
been isolated and characterized. While Arabidopsis does
not produce TIAs or nicotine, CrMYC2 and NtMYC2 act
in the jasmonte signaling pathway to regulate biosynthesis
of these metabolites [16,97]. Moreover, AtMYC2 can bind
the jasmonate-responsive elements present in the pro-
moter of Catharanthus ORCA3, an AP2/EFR TF gene, and
activates its expression, illustrating the conserved nature of
these orthologous regulators [98]. These reports further
strengthen our reasoning for cross-species comparison
of WRKY TFs from Catharanthus, Arabidopsis, and
other medicinal plant to identify regulators conserved
in jasmonate response and possibly secondary metabol-
ite production.

Comparison of CrWRKYs with orthologs from other
species, that are known to regulate natural products or re-
spond to jasmonate treatment, helped us develop a model
for WRKY regulation of TIA biosynthesis in Catharanthus
(Figure 5). In this model, jasmonate acts as a central regu-
lator of the TIA pathway with both positive and negative
effects on WRKYs. Phytohormones, including ABA, ethyl-
ene and gibberellin (GA), are also likely involved in
CrWRKYs regulation. Overall, this work provides a funda-
mental base for which future experiments can be designed
to help elucidate the molecular mechanisms controlling
the biosynthesis of highly valuable TIAs.

Conclusion

Taken together, our results illustrate a role for the Arabi-
dopsis WRKY family in regulating jasmonate response.
These findings strengthened our reasoning for investi-
gating Catharanthus jasmonate responsive WRKY TF
which are potentially involved in regulation of TIA bio-
synthesis. Results from Arabidopsis and Catharanthus
suggest that the regulation of WRKY gene expression in
response to jasmonate is dependent upon environmental
and spatio-temporal context. Such information can be
important in designing metabolic engineering projects.
Furthermore, we identified numerous jasmonate respon-
sive orthologs between AtWRKY and CrWRKY TFs that
may be functionally conserved or partially conserved.
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Figure 5 A model of WRKY TFs function in Catharanthus based
on expression data and known roles in A. thaliana. The model
depicts CrWRKYs which were either similar to a WRKY with a known
role in regulating natural product formation in another species or
had transcript level differentially expressed in response to MeJA
treatment. Jasmonate has both positive and negative effects on
CrWRKY transcript accumulation which is possibly important for
fine-tuning TIA and terpene biosynthetic gene expression. The
hormones abscisic acid (ABA), ethylene, and gibberellin (GA) also are
likely important for regulation of Catharanthus WRKYs. Solid lines
depict known regulations and dashed lines indicate hypothetical
regulatory interactions.

The jasmonate responsive CrWRKYs are potential candi-
date TFs for having key roles in modulating jasmonate
signaling and regulating TIA biosynthesis. Information
on how AtWRKYs response to various phytohormones
and stresses may also apply to Catharanthus. This infor-
mation may be useful for understanding how other phy-
tohormones also contribute to the regulation of TIA
production. Moreover, elucidation of CrWRKY functions
may provide valuable insights into the regulation of nat-
ural product biosynthesis in other medicinal plants.

Methods

Plant growth conditions

Catharanthus ‘Little Bright Eyes’ seeds were surface ster-
ilized and were germinated in the dark at 30°C for 3 days
on MS plates, before being then transferred to an ambi-
ent temperature 24 h light photoperiod tissue culture
room for an additional 4 days. Seedlings were transferred
to soil and grown at ambient temperature under 24 h
light. Samples were collected from 1 month-old Cathar-
anthus plants treated with MeJA for 0, 1, 2, or 4 hours.
The MeJA experiment was performed once with each
time having three replicates. Three plants were com-
bined from each replicate time sample. MeJA treatment
consisted of spray application of 100 uM MeJA then pla-
cing plants under a clear plastic dome sealed with tape.
Whole plants were harvested, roots quickly washed, and
then frozen in liquid nitrogen.
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WRKY TF Identification

Contigs translated into protein sequence were downloaded
from the MPGR. The single longest copy of each contig
translated into protein sequence was identified using
Microsoft Excel. Each unique contig number, which trans-
lated into some protein sequence, was determined to rep-
resent a unique gene distinguished by locus number. To
differentiate potential WRKY genes each distinct contig
locus number, but not different length variants of the same
locus number, were considered as a unique product. As
observed in Arabidopsis and other species, the multiple
contig copies that comprise many of the loci may re-
present splice variants, not fully sequenced transcripts or
different alleles. A Microsoft Excel file containing all pro-
tein encoding contigs was searched to manually identify
WRKY and WRKYGQK invariant motif containing pro-
teins. A FASTA file of the single longest protein encoding
contig for the entire genome was submitted to the NCBI
CDD and PlantTFcat servers to identify whole and partial
WRKY domains containing contigs. The process was per-
formed for Amborella trichopoda, Arabidopsis thaliana,
Capsicum annuum, Catharanthus roseus, Oryza sativa
ssp. japonica, Rauvolfia serpentina, Solanum lycopersicum,
Solanum tuberosum, and Urticularia gibba. A file contain-
ing WRKY TFs from Catharanthus, Amborella, Arabidop-
sis, and rice was submitted to OrthoMCL [77] to identify
orthologs and paralogs. WRKY TFs involved in regulating
secondary metabolism from other species were also in-
cluded. GenBank accession numbers for medicinal
plant WRKY TFs included are: AaWRKY1 (FJ390842),
C/WRKY1 (AB267401), Tt WRKY1 (JQ250831), Ga WRKY1
(AY507929), HbWRKY1 (GU372969), and PqWRKYI
(AEQ29014).

Phylogenetic tree construction

The unrooted phylogenetic trees for Catharanthus,
Amborella, Arabidopsis, and Oryza sativa ssp. japonica
and medicinal plant WRKY TFs were constructed using
the MEGAS5 software. The neighborhood joining method,
with bootstrap values of 2000, was utilized to conduct the
phylogeny test. The analysis used p-distance of amino acid
sequence to determine substitution rate. Gaps or missing
data were excluded as needed, according to the pairwise
deletion option. Phylogenetic trees analyzing the bladder-
wort, pepper, potato, serpentwood, and tomato WRKY
families were constructed in the same way.

RNA extraction

RNA was extracted using an extraction buffer composed of
1% 1,5-naphthalenedisulfonic acid and 4% p-aminosalicylic
acid prepared in diethylpryocarbonate (DEPC) treated
water. A 5 M sodium hydroxide solution was added
until the extraction buffer was fully dissolved. For each
RNA sample 5 mL of extraction buffer solution was
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mixed with 5 mL of liquefied phenol. Ground samples
were added to the extraction buffer/phenol solution, vor-
texed 1 minute, 5 mL of chloroform added, then vortexed
again. Samples were spun down for 10 minutes at
6000 rpm at 4°C. The aqueous phase was transferred to a
50 mL centrifuge tube and 1/10™ the volume of 3 M so-
dium acetate (pH 5.3) was added along with 2 times the
volume of chilled 100% ethanol. Samples were incubated
on ice 1 hr prior to centrifugation. The supernatant was
discarded and the pellet dried for 30 minutes. The dried
pellet was resuspended in 4 mL of autoclaved DEPC
treated water and 2.5 mL of 8 M lithium chloride and in-
cubated at 4°C overnight. The RNA was then precipitated
by centrifuging at the above. The pellet was rinsed with
chilled DEPC treated 80% ethanol. The ethanol was dec-
anted and the RNA allowed to dry for 30 minutes before
resuspending in sterile DEPC treated water.

cDNA Synthesis and gene expression

Synthesis of first strand ¢cDNA from total RNA isolated
from plant tissue and quantitative reverse transcription
polymerase chain reaction (qRT-PCR) were performed
as previously reported [89]. Samples for the MeJA treat-
ment consisted of 3 biological replicates each with 3
technical replicates. The comparative cycle threshold
method was used to measure the transcript levels. All
primers used for qRT-PCR can be found in Additional
file 12: Table S7. Significant differences in gene expres-
sion were calculated using the Student’s T-test. P-values
of 0.05 and 0.01 were considered significant and highly
significant, respectively.

5' and 3' rapid amplification of cDNA Ends (RACE) and
cloning

5" and 3' RACE was performed using the RACE kit
(Invitrogen) as directed by the manufacturer. A nested
set of PCRs was performed to isolate the target se-
quence. The first PCR reaction used the AAP primer
and a gene specific primer; whereas the second nested
reaction used the AUAP primer and a second gene spe-
cific primer. 3" RACE was performed as for gene expres-
sion cDNA synthesis with the modification of using the
3" AP primer to create a 3’ adapter. The 3" target se-
quence was amplified through PCR using a nested set of
gene specific primers and the adapter specific 3" AUAP
primer. All 3" and 5" RACE primers are listed in Additional
file 13: Table S8.

Cloning and sequencing of partial WRKY domains

Partial WRKY domain sequences to be cloned were
amplified using 5" or 3" RACE. The sequence was then
separated on an agarose gel and the DNA purified using
a Wizard® SV Gel and PCR Clean-Up System (Promega).
The purified DNA was ligated into pGEM-T Easy vector
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(Promega). Plasmid isolation was performed using a
Wizard® Plus SV Minipreps DNA Purification System
(Promega). 250-300 ng plasmid DNA were sequenced
with either the T7 or SP6 primer using DTCS Quick Start
(Beckmann) according to the manufacturer’s protocol. Se-
quencing was performed with a CEQ™ 8000 Genetic
Analyzer System (Beckman Coulter) Sanger sequencer.

Arabidopsis microarray analysis and gene expression
Jasmonate treated microarray datasets were collected from
NCBIL EMBL, and TAIR. RMA Express was used for array
normalization of each experiment [99]. Background ad-
justment, quantile normalization, and median polish were
applied. Data was exported as log transformed data then
analyzed by two-way ANOVA using the MEV software
[100]. Two-way ANOVAs were performed on each dataset
to determine response to jasmonate treatment and an-
other variable (genotype or time). Controls and probes
not linked to a gene were eliminated post-ANOVA prior
to application of the false discovery rate. The B-H FDR
was calculated in Microsoft Excel according to Thissen
et al. [95]. Significant differences (p <0.05) were deter-
mined before and after application of the Benjamini-
Hochberg false discovery rate (B-H FDR). Significant
differences before the B-H FDR was applied were both in-
cluded because qRT-PCR for CrWRKY TFs indicated
small (less than 2 fold), yet significant, changes to jasmo-
nate treatment.

Hierarchical clustering and correlations
The Pearson correlation coefficient was calculated to
measure the relationship between qRT-PCR and MPGR
datasets. First, the fold change for Catharanthus WRKY
genes from the MPGR dataset was calculated in refer-
ence to 0 hour control treatments. Differences between
control and MeJA treated datasets were then adjusted
using the Catharanthus reference gene EFla (Cra3894)
as an internal control [13], as this gene was used as the
internal control for qRT-PCR expression measurements.
The correlation coefficient between fold changes in ex-
pression was calculated using Microsoft Excel.
Unsupervised agglomerative hierarchical clustering was
performed using the GenePattern [96] website (http://gen-
epattern.broadinstitute.org). The Pearson correlation was
used as a distance measure for both row and column clus-
tering. The clustering method was pairwise-average link-
age with a row centering. Row centering was performed
by subtracting the median value of each row. A global
color scheme using a color gradient was applied for
visualization. Purple, black, and green indicate increased
gene expression, no change and decreased gene expression
respectively. For Arabidopsis microarray data expres-
sion values were first analyzed with RMA Express and
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log transformed values exported for analysis with Gene-
Pattern [93,96].

Availability of supporting data

Catharanthus and serpentwood protein sequences used
in this project was obtained from the MPGR database
(http://medicinalplantgenomics.msu.edu/index.shtml).
Sequences for Arabidopsis proteins were obtained from
TAIR10 (http://www.arabidopsis.org/). Protein sequences
from Amborella (http://www.amborella.org/), bladderwort
(http://genomevolution.org/ CoGe/OrganismView.pl?oid=
36222), pepper (http://peppergenome.snu.ac.kr/), and rice
(http://rice.plantbiology.msu.edu/) and were obtained from
their respective databases. Tomato and potato protein se-
quences were obtained from the Sol Genomics Network
database (http://solgenomics.net/). Sequence alignments
and phylogenetic trees generated by this study were de-
posited into TreeBase under study identification num-
ber 15861 (http://purl.org/phylo/treebase/phylows/study/
TB2:515861).

Additional files

Additional file 1: Table S1. The list of WRKY TFs present or absent
from the Affymetrix arrays used in this study. The Arabidopsis Affymetrix
array contains probes to identify the expression of 61 WRKY TFs. Eleven
of the 72 WRKY TFs in Arabidopsis are not represented on the array.

Additional file 2: Table S2. The WRKY TFs identified as having
significantly altered gene expression in at least one jasmonate treated
dataset. WRKYs cited as identified in this study are those which were had
significantly altered gene expression and survived the B-H FDR in at least
one dataset. N/A indicates a probe to identify that WRKY is not available
on the Affymetrix array but has been reported to be involved in jasmonate
response. References are shown for WRKYs with reported function in
jasmonate response.

Additional file 3: Table S3. The fold change of jasmonate responsive
Arabidopsis WRKY TFs from five microarray datasets. Only those
jasmonate responsive AtWRKYs which survived application of the B-H
FDR are included.

Additional file 4: Table S4. Arabidopsis WRKY TFs were analyzed for
differential expression by genotype in A) coil and B) myc2 mutants or
Q) by time. Analysis was performed using a two-way ANOVA. WRKYs
before and after the application of the B-H FDR are presented.

Additional file 5: Figure S1. Hierarchical cluster analysis of the
Arabidopsis WRKY TF family was performed using GenePattern. The
clustering method was a pairwise average linkage with distance
measured using the Pearson correlation coefficient. Data was log
transformed. The median value was subtracted from each row. Color is
based on global expression with purple being up-regulated and green
down-regulated.

Additional file 6: Table S5. WRKY domain containing proteins were
identified using 4 sources: manual searching, PlantTFcat, NCBI CDD, and
MPGR. Rows indicate overlap in genes identified from the different
sources. The bottom row provides a total number of genes identified by
each method.

Additional file 7: Figure S2. A phylogenetic tree constructed with nine
plant species. The species tree was computed using the NCBI Common
Tree then visualized with MEGAS software.

Additional file 8: Figure S3. The phylogenetic tree with A. thaliana

(green square), A. trichopoda (purple triangle), C. annuum (teal dot), O.
sativa (blue diamond), R. serpentina (red dot), and U. gibba (gold square)
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was constructed in MEGAS using the Neighbor-Joining method with
P-distance substitution model and a bootstrap value of 2000. Proteins
used as an outgroup are indicated by a black triangle. WRKY domain
alignment was performed with ClustalW.

Additional file 9: Figure S4. The phylogenetic tree with A. thaliana
(green square), A. trichopoda (purple triangle), O. sativa (blue diamond),

S. lycopersicum (gold square), and S. tuberosum (red dot) was constructed
in MEGAS using the Neighbor-Joining method with P-distance
substitution model and a bootstrap value of 2000. Proteins used as an
outgroup are indicated by a black triangle. WRKY domain alignment was
performed with ClustalW.

Additional file 10: Table S6. Catharanthus contained at least 48 WRKY
TFs with 56 WRKY domains. The 70 amino acid sequence of each WRKY
domain is provided.

Additional file 11: Figure S5. A-B. A. The phylogenetic relationship
and alignment of CrWRKY1 to other group Ill WRKY TFs. The
phylogenetic tree was constructed in MEGAS using the Neighbor-Joining
method with P-distance substitution model and a bootstrap value of
2000. WRKY domain alignment was performed with ClustalW. B.
Alignment of the closest related rice WRKY genes and Catharanthus
group Il WRKYs was performed using ClustalW.

Additional file 12: Table S7. A list of primers used in gRT-PCR to
measure transcript levels.

Additional file 13: Table S8. A list or primers used in cloning to isolate
full WRKY domains for those TFs in the Catharanthus MPGR database
with partial domain sequences.
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