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Abstract

Background: The putative methyltransferase LaeA is a global regulator that affects the expression of multiple
secondary metabolite gene clusters in several fungi. In Trichoderma reesei, its ortholog LAE1 appears to
predominantly regulate genes involved in increasing competitive fitness in its environment, including expression of
cellulases and polysaccharide hydrolases. A drawback in all studies related to LaeA/LAET function so far, however, is
that the respective loss-of-function and overexpressing mutants display different growth rates. Thus some of the
properties attributed to LaeA/LAET could be simply due to changes of the growth rate.

Results: We cultivated T. reesel, a Alael mutant and a lael-overexpressing strain in chemostats on glucose at two
different growth rates (0.075 and 0.020 h™') which resemble growth rates at repressing and derepressing
conditions, respectively. Under these conditions, the effect of modulating LAE1 expression was mainly visible in the
Alael mutant, whereas the overexpressing strain showed little differences to the parent strain. The effect on the
expression of some gene categories identified earlier (polyketide synthases, heterokaryon incompatibility proteins,
PTH11-receptors) was confirmed, but in addition GCN5-N-acetyltransferases, amino acid permeases and flavin
monooxygenases were identified as so far unknown major targets of LAET action. LAET was also shown to interfere
with the regulation of expression of several genes by the growth rate. About a tenth of the genes differentially
expressed in the Alael mutant under either growth condition were found to be clustered in the genome, but no
specific gene group was associated with this phenomenon.

Conclusions: Our data show that — using T. reesei LAET as a model - the investigation of transcriptome in regulatory
mutants at constant growth rates leads to new insights into the physiological roles of the respective regulator.
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Background

Reverse genetics relies on the use of molecular biological
methods to discover the function of a gene by analyzing
the phenotypic effects that result from a manipulation of
its function. While this approach mostly leads to valid
information about the role of a gene in the physiology of
the respective organism, some caveats are to be applied
when these mutants are studied by —omics techniques:
many gene mutants also display altered growth rates,
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and thus studying their gene or protein expression on
plates or in batch cultures will inevitably also identify
genes whose expression is controlled only by the growth
rate itself. This may lead to flawed interpretations as to
the potential targets of the investigated genes, particu-
larly in the case of regulatory genes.

The Aspergillus nidulans LaeA protein, a putative
S-adenosylmethionine-dependent (SAM) methyltransferase,
was originally described as a global regulator of secondary
metabolism [1]. LaeA is known to be a nuclear protein, and
is localized to the nucleus [1-3]. It has therefore been sug-
gested that it regulates transcription by protein lysine or
protein arginine methyltransferase functions [1], and its
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function has putatively been linked to changes in chro-
matin structure [4]. Recent studies in A. nidulans, how-
ever, failed to identify a protein that is methylated by
LaeA, but considerable automethylation was observed
[5]. In addition, the LAE1- (the Trichoderma reesei
orthologue of Aspergillus LaeA) effected transcriptome
of Trichoderma reesei showed no correlation with his-
tone methylation at the affected loci [6].

LaeA was later shown to also control developmental
events, such as conidiation in numerous fungi [7-13],
and fruiting body formation in A. flavus [14,15]. We
have recently shown that in T. reesei, LAEL also controls
conidiation, the expression of polysaccharide hydrolytic
enzymes and of genes involved in eco-physiological fitness,
whereas the effect on secondary metabolite biosynthesis
was not that strongly pronounced as in the Aspergilli
[16,6]. Thus, current knowledge suggests that LaeA has a
dynamic role in both fungal morphological and chemical
development, and nutrition.

In T. reesei, lael mutants are also differing in their
growth rates, being slower in the loss-of-function mu-
tant and faster in mutants overexpressing lael [16]. We
thus wondered to which extent our recent study on the
LAE1-effected transcriptome of 7. reesei [6] would have
been biased by the different growth rates of the lael mu-
tants. This could have been particularly due for genes
that are known to be expressed only at specific growth
rates, such as e.g. those involved in secondary metabolite
biosynthesis. Therefore, we chose to use chemostat cul-
tures on D-glucose as a carbon source at two different
growth rates (one carbon catabolite repressing and one
carbon catabolite derepressing) to investigate the genome-
wide changes in gene expression in relation to LAE1 func-
tion, using Alael and OElael recombinant mutant strain
of T. reesei.

Results

Verification of the experimental strategy

Constant-mass, carbon-limited, chemostat-type continu-
ous fermentations were used to cultivate the parent strain
T. reesei QM 9414, and the Alael and OElael mutant
strains derived from it on glucose (1%, w/v) as a sole car-
bon source at two different dilution rates (D =0.075 h™*

Table 1 Number of genes affected by laeT manipulation in T.

parent strain QM 9414
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and D =0.020 h™"). These two dilution rates (henceforth
referred to as “high” and “low” growth rate) have previ-
ously been shown to represent a state of carbon catabolite
repression and of carbon catabolite derepression, respect-
ively, in T. reesei and also in A. nidulans [17-19]. Cultures
were grown batchwise for 24 hours after inoculation. At
the first 6-7 residence times of the continuous cultiva-
tions, gradually attenuating oscillation of the specific bio-
mass production occurred [20] after which the oscillation
decreased to a non-significant level. The steady-state bio-
mass concentration was 1.49 + 0.11 g/L in all cultures irre-
spective of the dilution rate. By feeding the cultures with a
medium containing 3 g/L D-glucose as a sole carbon
source (see Methods section), this biomass data resulted
in a calculated growth yield (grams of biomass formed per
gram of carbon source consumed) of between 46 and 53%
for all cultures, which correlates well with previously
published data from various fungal D-glucose-limited cul-
tures (see [20] for references), and with our previous studies
on T. reesei steady-states [17,18]. The residual glucose con-
centration was between 0.03 and 0.05 mM at both 0.075
and 0.020 h™'. These values correlate well with the affin-
ities of the high affinity hexose transporters of filamentous
fungi [21], and thus prove that our cultures were indeed
glucose-limited. At 0.02 h™! the low dilution rate, some
conidiospore formation was visible in the parent strain
but not at the Alael-mutant. In addition, both strains ex-
hibited a small degree of pellet formation although the
overwhelming majority of cells displayed filamentous
morphology at 0.075 h™'. In summary, while there were
some minor morphological differences between the two
strains at the two dilution rates applied, they unlikely af-
fected the general experimental strategy. We thus consid-
ered the system appropriate for the purpose of this study.

LAET1 loss of function is more dominant at high growth
rates

1069 of the 9123 genes that were used in the array showed
an at least 2-fold up- or downregulation (with p <0.05) in
T. reesei Alael when compared to the parent strain QM
9414 (Table 1; Additional file 1: Table S1). Of these, only
182 genes were >2-fold regulated both at 0.075 and 0.02 h™%,
respectively. The highest number of genes was encountered

reesei at the two growth rates in comparison to the

. . D[h™"] Total Upregulated Downregulated
Strain comparison
All genes*  Orphan genes  Unknown genes  All genes*  Orphan genes  Unknown genes
Alael vs. QM 9414 0.075 1069 523 33 193 407 16 138
Alael vs. QM 9414 0.020 203 10 79 118 9 40
OElael vs. QM 9414 0.075 13 53 22 36 1 13
OFElael vs. QM 9414 0.020 11 4 17 2 3

*including unknown and orphan genes.
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when the Alael mutant was compared to the parent strain
QM9414 at 0.075 h™* (930 vs. 321 genes at high vs. low
growth rate). Genes that were downregulated in the Alael
strain accounted for the minor fraction in both cases (43%
and 36% at high and low growth rates, respectively).

Only a considerably smaller number of genes (113)
was differently regulated between the OElael mutant
and the parent strain (89 and 28 genes at high and low
growth rate, respectively, with 4 genes being affected at
both growth rates). Genes that were downregulated
accounted for a minor fraction at the high growth rate,
but accounted for 61% at the lower growth rate (Table 1;
Additional file 2: Table S2). The validity of the array data
was approved by qPCR analysis of the expression of a
small number of genes (Additional file 3: Table S3).

Under all conditions (except for OElael at low growth
rates, but this is likely due to the small gene number),
more than a third of all genes encoded unknown pro-
teins (i.e. such that shared orthologs in at least some
other Pezizomycota) or were orphan genes (Table 1). In
order to assess the global changes in gene expression
brought about by the two lael mutations, those genes
for which a function was known or can be predicted
were classified according to the FunCat categorization
[22]; Figure 1. Of these, the majority of genes belonged
to category “metabolism”, followed by “cellular trans-
port” and “transcription”. However, none of the categor-
ies exhibited a statistically significant difference over
another (p > 0.05 in all cases) when the number of genes
in the individual categories was related to the total num-
ber of genes that were differently expressed under any of
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these conditions, This indicates that the cellular effect of
the two lael mutations is not reflected by changes in the
expression of one general gene category.

Since the effect of LAE1 modulation may rather be
reflected in the expression of genes encoding FunCat
subcategories, we calculated the percentage of LAE1-
effected genes of several subcategories in the complete
(>2-fold, p < 0.05) transcriptome and compared it to the
percentage of these subcategories in the whole 7. reesei
genome. Thereby, some significant changes were observed
(Table 2): genes encoding amino acid transporters, heteroin-
compatibility (HET) proteins, GCN5-N-acetyltransferases,
and polyketide synthases (PKS) were significantly (p < 0.05)
more abundant in the transcriptome affected in Alael at
high growth rates than in the genome. A significantly
higher number of genes belonging to the first three gene
groups (vide supra) were differently expressed at the low
growth rate. Genes encoding the PTH11-type receptors
were significantly more abundant among genes that are
higher expressed in the Alael mutant at high growth rates.

In addition, LAE1-effected genes involved in metabol-
ism were found to have a strong bias towards amino acid
metabolism at the high growth rate, with the majority of
them being downregulated (Figure 2). No significant
changes in the expression of genes involved in intermedi-
ary metabolism (carbohydrate, lipid, amino acid and nu-
cleotide metabolism) were noted at the low growth rate.

With regards to secondary metabolism, only 3 of the
11 polyketide synthases (PKS), and 3 of the 10 non-
ribosomal peptide synthases (NRPS) of T. reesei were
shown to be affected by a loss of LAE1 function (Table 2),
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Figure 1 Expression of genes belonging to selected FunCat groups in T. reesei Alael (ALAET) and T. reesei OElae1 (OElael) during
cultivation at 0.075 (HG) and 0.02 (LG) h™’, respectively. “Up” means 2-fold upregulation, “down” 2-fold downregulation when compared to
T. reesei QM9414 (WT). FunCat categories shown are: 01, metabolism; 02, energy generation; 10, cell cycle and DNA processing; 11, transcription;
11.4, RNA processing; 12, protein synthesis; 14.13, protein degradation; 20, transport; 20.09.16, cellular export and secretion; 30.01, intracellular
signalling; 30.5, transmembrane signaling; 32, cell rescue and defense; 34, interaction with cellular environment; 41, development.
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Table 2 Comparison of some FunCat subcategory genes differentially expressed in the Alae7 mutant compared to the

T. reesei parent strain

Function FunCat D=0.075 [h™"] D=0.020 [h™"] Present in the genome p-value*
Down Up Down Up Number %

Amino acid transporters 20_01_07 M 7 2 3 36 04 <0.01

C2H2 transcription factors 11_02_03_04** 3 6 0 1 54 0.6

Cytochrome P450 proteins 32_07 2 6 1 0 61 0.7

Flavin monooxygenases 16_21_05 2 5 0 4 43 0.5

GCN5N-acetyltransferases 14_07 5 3 2 1 20 0.2 <0.02

Glycoside hydrolases 01_25_01 6 10 0 7 194 2.1

Heteroincompatibility proteins 36_20 4 1 1 1 23 0.25 <0.05

Major facilitator superfamily 20_03 16 21 3 11 174 1.9

Mitochondrial function 42 16 3 3 3 1 83 09

NRPS 01_20_36 1 2 1 0 10 0.1

PKS 01_20_05 2 1 0 0 12 0.13 <0.05

PTH11-receptors 30_05_02_24 2 3 0 1 24 0.25

SSCRP 70_27 14 12 0 3 130 14

*Only given for subcategories that were statistically supported to behave differently in the mutant.
**The subcategory specification refers to all transcription factors; C2H2 transcription factors do not have their own number.

and with the exception of the NRPS Trire2:71005, which
was downregulated in the Alael mutant at both growth
rates, all the other genes were down- or upregulated only
at D =0.075 h™". It is interesting to note that this number
of affected PKS- and NRPS-encoding genes is nevertheless
significantly higher than in our previous study [6], in
which only a single NRPS gene (the siderophore synthase

Trire2:69946) was found to be >2-fold downregulated in
the Alael mutant.

We also applied the same analysis to the genes which
were at least 2-fold differently regulated between the
OElael mutant and the parent (Additional file 2: Table
S2). However, no specific gene category or subcategory
was found to accumulate to a significant extent.

35 -
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Figure 2 Expression of genes belonging to metabolism-related FunCat groups in T. reesei Alae1 (ALAE1) and T. reesei OElae1 (OElae1)
during cultivation at 0.075 (HG) and 0.02 (LG) h, respectively. “Up” means 2-fold upregulation, “down” 2-fold downregulation when
compared to T. reesei QM9414 (WT). FunCat categories shown are: 01.01, amino acid metabolism; 01.03, nucleotide metabolism; 01.05, carbohydrate
metabolism; 01.06, lipid metabolism; 01.25.01, extracellular carbohydrate degradation; 01.25.03, extracellular protein degradation.

Alael vs WT (HG) up
Alae1 vs WT (HG) down
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LAE1 loss-of-function affects growth rate regulation of
gene expression

While the above data revealed genes that are affected by
LAE1 function at a constant growth rate, we surmised
that there may be also genes whose response to changes
in the growth rate is dependent on LAEl. To this end
we retrieved two data sets: one which contained genes
that were growth rate dependent in 7. reesei wild-type,
but not in Alael, and another one which contained only
genes whose expression was growth rate dependent in
the Alael mutant strain, but not in the wild type. This
revealed a total of 758 and 131 genes, respectively. Their
annotation is given in Additional files 4 and 5: Tables S4
and S5: as can be seen, no specific gene category was
significantly enriched in these two gene pools, indicating
that the interference of LAE1 with growth-rate regula-
tion affects specific genes rather than gene groups of
similar function. A similar analysis was also made for
the effect of lael overexpression. Again, the number of
genes was considerably smaller, and the majority of them
consisted of unknown proteins (data not shown).

In addition, we also monitored those genes, whose
growth-rate dependent expression in the lael mutants
was reverted, i.e. opposite as to the parent strain. 26
genes that were higher expressed at the high growth rate
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in T. reesei QM 9414 were found to be downregulated
in T. reesei Alael, and 12 genes displayed the opposite
trend. No specific FunCat category or subcategory was
detected to be enriched in these two groups, which
accounted for only a minor portion of the LAE1 effected
transcriptome (Additional file 6: Table S6).

The majority of genes effected by LAE1 are not clustered
in the genome

We were further interested whether the genes affected
in their expression by LAE1 function would show a clus-
tering in the genome. To test this, we made use of REEF,
a program that performs a serial hypergeometric distri-
bution tests in a sliding window along the chromosomes
implemented in Phyton program [23]. This program has
the advantage that it uses statistical models to assess the
significance of physical clusters detected. It has also pre-
viously shown to lead results consistent with other
methods [24]. REEF detected 124 and 31 of the 930 and
321 genes differentially expressed between the Alael and
the parent strain during cultivation at high and low
growth rate, respectively, to be clustered in the genome
(Table 3). The clustering was evident from a 2.2 and 2.6-
fold enrichment in gene density in the transcripts from
high and low growth rates, respectively, over the average

Table 3 Clustering of transcripts that are differentially expressed in Alael vs the parent T. reesei QM 9414 at the two

growth rates

) D=0.075[h""] D=0.020 [h"]
Scaffold [,\S,;tz,;] Area [Mbp] Genes Cluster size Area [Mbp] Genes Cluster size
Begin End clustered [genes] Begin End clustered [genes]
1 2.76 2.26 243 9 50 245 2.57 3 39
2 2 0.04 0.15 7 28 0.04 0.21 4 44
133 145 7 30
3 191 0 0.16 9 54
4 1.83 1.08 1.19 7 29 0.64 0.81 4 45
1.15 1.26 7 30
5 1.73 0.7 0.86 8 39 0.84 1.04 5 61
6 145 041 0.54 8 28 0.84 1.01 3 36
7 143 1.07 1.21 9 44 113 1.25 3 37
1.21 133 8 31
8 141 0.35 0.52 9 52
0.57 0.69 7 27
0.83 0.94 8 35
10 1.16 0.92 1.04 7 28
19 0.66 0.55 0.66 7 27 0.5 061 3 23
20 0.63 043 0.55 3 19
24 05 0.21 0.32 7 22
25 044 0.16 0.3 3 35
Total: 124 554 31 339
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distribution in the genome. 16 and 9 clusters were found
for the transcripts from high and low growth rate, of
which 4 were present under both conditions. 7 and 5, re-
spectively, occurred with a 200,000 bp distance from one
of the ends of the respective scaffold. This demonstrates
that about a tenth of the genes affected in their expression
by LAE1 loss-of-function are clustered in the genome.

We also evaluated the genes contained in these clusters,
but no obvious trend was seen: gene groups more fre-
quently occurring were identical to those more abundant
in the genome. We also specifically looked for clustering
of genes encoding secondary metabolites (NRPS, PKS)
and potentially being involved in their biosynthesis (tran-
scription factors, ABC transporters, cytochrome P450 pro-
teins, aldo/keto reductases/dehydrogenases, flavoproteins)
but obtained a similar result (data not shown).

Discussion

To investigate the physiology of microbial mutant strains,
they are usually cultivated on solid medium or in batch
cultures. Under both conditions, individual nutrients will
gradually become growth limiting, and cause changes in
the actual specific growth rates, that in turn may pro-
foundly influence the metabolism and consequently the
physiology of the cell. While this fact has been well con-
sidered in studies of yeasts and bacteria, much fewer re-
ports are available for the applications of methods that
take the specific growth rate into consideration for fila-
mentous fungal research [17-19,25-28].

Because of this similarity to methyltransferases and its
localization to the nucleus, LaeA/LAE1 has been postu-
lated to regulate transcription by lysine or arginine protein
methyltransferase functions [1,29]. However, subsequent
work showed that LAE1-modulated expression of genes
in T. reesei did not correlate with corresponding changes
in the histone methylation state at these gene loci [6]. In
addition, Patananan et al. [5], using several different ex-
perimental approaches failed to identify a protein or other
substrate in A. nidulans that becomes methylated by
LaeA. Instead, LaeA was shown to methylate itself at
M207, yet this methylation was not essential for LaeA
function, and the corresponding M207 does also not
occur in the T. reesei LAE1. All this evidence suggests that
LaeA/LAE1 may exert its function by binding to other
proteins rather than by methylating histones or other
DNA-binding proteins.

LaeA has been isolated because of its role as a regulator
of secondary metabolism in A. nidulans [1], and it was
therefore surprising that we recently found only a single
NRPS to be downregulated in the Alael mutant [6]. In the
present study, two PKS and one NRPS genes were affected
by lael loss-of function, and this effect occurred only at
the high growth rate (or was much stronger in the case
of the NRPS). The fact that our previous study was
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performed with lactose grown cells [6] may explain this
discrepancy, because growth on lactose is character-
ized by a very slow growth rate. Thus the effect of
LAE1 on secondary metabolism in 7. reesei appears to
be growth rate dependent, and more pronounced at
the high growth rate. Veiga et al. [30] have also found a
growth rate-dependency of LaeA and VeA function in
Penicillium chrysogenum, although in the opposite
direction.

Our data also showed that only a comparatively small
percentage of the genes that are affected by LAE1 modula-
tion (i.e. 10%) are in fact clustered in the genome. This
value is much smaller than clustering percentages ob-
tained for gene expression in 7. reesei under other condi-
tions such as conidiation [24]. While a similar clustering
analysis of differently expressed genes in 7. reesei growing
on glycerol and glucose yielded still a lower value (4.3%;
C.PK, unpublished data), the significance of the 10%
found in this study is unclear. In any case, the data show
that most of the genes that are affected by LAE1 loss of
function do not appear to be clustered in the genome of
T. reesei.

However, the present study revealed a new level at which
LaeA/LAE1 may control gene expression: we show that
the expression of 50% of the GCN5-N-acetyltransferases
(GNATS) present in the T. reesei genome is altered in
the Alael strain, most of them being downregulated.
This effect of LAE1 has not been revealed in previous
studies [6], probably due to the use of batch cultures or
of different carbon sources. GNATS catalyze the transfer
of the acetyl group from acetyl coenzyme A to a primary
amine. While — despite of the similarity to the GCN5
protein of the SAGA complex [31] - some of them may
thus fulfill metabolic functions, a subgroup of them is
known to acetylate histones at specific lysine residues, a
process that leads to transcriptional activation and has
been implicated in chromatin assembly [32,33]. Unfor-
tunately, none of the 7. reesei GNATs has so far been
functionally investigated, but one — Trire2:120120 — has
been shown to be induced on the cellulase inducing car-
bon sources cellulose [34,35] and lactose [36], is downreg-
ulated in T. reesei Alael strain [6] and its overexpression
in T. reesei leads to a twofold stimulation of cellulase pro-
duction. This gene is, however, not expressed on glucose
and was therefore not detected under the conditions of
this work. However, the above noted correlation between
LAE1 function and action of the GNAT Trire2:120120
may also be valid for several of the GNATSs detected to be
LAEI1-dependent in this work. In A. nidulans, LaeA func-
tion has recently also been linked to histone acetylation:
in a multicopy suppressor screen for genes capable of re-
storing secondary metabolite production in an A. nidulans
AlaeA mutant, the histone acetyltransferase EsaA was
identified [37]. However, EsaA binds to the target histone
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by a chromo-domain and is a member of the Myb_Cef
protein family (Pfam 11831), and not a GNAT. Thus, a
direct link between GNATs and LaeA/LAE1, which may
explain the postulated LaeA-dependent chromatin modifi-
cation [29], still requires scientific testing. Interestingly, an
orthologue of S. cerevisiae SPT10 — an acetyltransferase
that directly activates the transcription of histone genes,
and whose function is essential for normal cell division
[38] — is also strongly downregulated in the 7. reesei Alael
mutant. Its downregulation in 7. reesei Alael may be a
factor contributing to the slower growth observed in this
mutant. We should also like to note that the other ob-
served effects such as changes in the growth-rate
dependent regulation in the Alael strain would be fully
compatible with an action of LAE1 via GNATSs, because
acetylation by them can also lead to repression of gene
expression [39].

Another group of genes that were significantly influ-
enced by LAE1 in this study — but not detected to be af-
fected previously [6] — were amino acid transporters.
These transporters can reliably be predicted by the pre-
sence of a common structural motif consisting of 12
alpha-helical putative transmembrane segments and cy-
toplasmically located N- and C-terminal hydrophilic
regions, and belong to the amino acid/polyamine organo-
cation superfamily [40]. In yeasts, they are usually absent
during growth on an inorganic nitrogen source but up-
regulated once organic nitrogen becomes available, using
transcriptional [41] and/or posttranscriptional mecha-
nisms [42]. In contrast, the present study shows that these
amino acid transporters are expressed in 7. reesei during
growth on an inorganic nitrogen source. These finding is
also consistent with the observation that 7. reesei prefers
amino acids as carbon sources when grown in the pres-
ence of cellulose or lactose and amino acid mixtures [43],
and thus regulation of expression of these permease genes
still deserves attention. Interestingly, there is now emer-
ging evidence that amino acid uptake in yeast is regulated
by GNAT-dependent histone acetylation [44,45], which
would fit to the above supposed role of LAEI in histone
acetylation. We also noted that the effect of LAE1 on
amino acid permeases is paralleled by a severe downregu-
lation of a significant number of genes involved in amino
acid metabolism in 7. reesei Alael (mainly at the high
growth rate), and the above findings of regulation of
amino acid uptake by LAE1 can therefore be extended to
a general effect on amino acid metabolism. Also, some
extracellular proteases and oligopeptide transporters were
effected by LAE1 (cf. Additional file 1: Table S1), but these
two groups as a whole remained not significantly affected.

Most of the other FunCat groups found to be influ-
enced by LAE1 function were already identified in our
earlier study, which used lactose as a carbon source to
induce cellulase gene expression [6]. Yet differences in
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the numbers of genes in the individual groups were
noted. It is unclear, however, whether these observations
are growth rate- or carbon source-specific.

Conclusions

In this study, we used growth at controlled growth rates
on glucose as a limiting carbon source to study the
changes in gene expression effected by the protein meth-
yltransferase LAE1 in T. reesei at a genome wide level.
The corresponding results confirm several previously de-
tected targets, but also reveal new findings: on one hand,
the effect of LAE1 becomes mainly visible upon its dele-
tion whereas overexpression has only a little effect. Also
genomic clustering of the lael-effected transcripts was
observed to a much lower extent than previously [6],
and is thus either due to the use of glucose as a carbon
source or the use of constant growth rates for compari-
son. However, we detect for the first time that lael gene
deletion affect the regulation of gene expression by the
growth rate. The latter finding likely points to an indir-
ect influence, and suggests that LAE1 influences the
formation of both positive as well negative signals or
regulators of the respective genes. On the other hand,
additional LAE1 targets were obtained of which the
GCN5-N-acetyltransferases may offer a new understanding
of the mechanism of LAEI action. Our data show that —
using 7. reesei LAE1 as a model — the investigation of the
transcriptome in a regulatory mutant at constant growth
rates may reveal new insights into the function of the re-
spective gene.

Methods
Strains and cultivations
T. reesei QM9414 (ATCC 26921), a moderately cellulase-
producing mutant, and the mutants Alael and OElael
prepared from it [6] was used throughout this work and
kept on potato dextrose agar (Sigma, St. Louis, MO).
Chemostat-type continuous cultivations were performed
and analyzed as described earlier [17]. Inoculum cultures
were pre-grown in 500 ml Erlenmeyer flasks on a rotary
shaker (250 r.p.m.) at 30°C in a medium described by Karaffa
et al. [17] with D-glucose (10 g/L) and peptone (0.1 g/L)
as carbon sources. The feeding medium [17] contained D-
glucose at an initial concentration of 3 g/L, a value low
enough to make the culture carbon-limited. Two to four
separate steady-states (i.e., independently initiated and run
continuous cultures at the constant-mass stage) were sam-
pled and analysed for each dilution rate and fungal strain.
Fungal biomass taken from the steady-state chemostat
cultures (i. e., from ones that exhibited no changes in bio-
mass dry weight in three successive samples taken over a
period of three residence times, and had very little (0.03 —
0.05 mM) residual D-glucose left in the medium during
the same period) were subjected to total RNA extraction
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(see below). RNA was subsequently divided for the pro-
cedures of the microarray and Real-Time PCR analysis,
respectively. This way, mycelia growing under identical
environmental (and consequently physiological) conditions
were used for the two expression analysis methods.

Analytical methods

Determination of the mycelial dry weight (DCW) and the
assessment of residual glucose concentration in growth
media occured as described earlier [46].

Transcriptome analysis

Mycelia were harvested from steady-state glucose-limited
cultures. Total RNAs from cultures with high and low
dilution (=specific growth) rate were extracted using SV
Total RNA Isolation System (Promega), according to
the manufacturer’s instructions. ¢cDNA synthesis, la-
belling and hybridization was performed by Roche
NimbleGen (Roche-NimbleGen, Inc., Madison, WI,
USA) with a high density oligonucleotide microarray
using 60-mer probes representing the 9.129 genes of T.
reesei as described by Metz et al. [24]. Microarray
scanning, data acquisition and identification of probe
sets showing a significant difference (p =0.05) in ex-
pression level between the different conditions were per-
formed essentially as described previously [24]. Genes
were identified by the aid of a completely manually anno-
tated T. reesei genome database proprietary to C.P.K. The
Euclidean distance metric method, as implemented in
DNASTAR v5.1.2. build 3 (DNAstar Inc., Madison, WT),
was used for Hierarchical Clustering. Genes were then
classified according to their major annotation in the MIPS
Functional Catalogue [33]. To determine whether there
were differences in the functional categories in each clus-
ter, the distribution within each cluster was compared
to the total distribution of all the annotated genes using
independent chi-square tests. The microarray data and
the related protocols are available at the GEO web site
(www.ncbi.nlm.nih.gov/geo/) under accession number
GSE55652.

qPCR

DNase treated (DNase I, RNase free; Thermo Scientific)
total RNA (1 pg) was reversely transcribed with the
Transcriptor High Fidelity cDNA Synthesis kit (Roche),
according to the manufacturer’s protocol with a combin-
ation (1:1) of the provided oligo-dT and random hexamer
primers. Reactions were performed with ready-to-use Light-
Cycler® 480 Probes Master mix (Roche), according to
the manufacturer’s protocol. Primers, amplification effi-
ciency and R-square values are given in Additional file 7:
Table S7. Determination of the PCR efficiency was per-
formed using triplicate reactions from a dilution series of
c¢DNA, and the amplification efficiency then calculated
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from the given slopes in the Realplex v2.2 software. Ex-
pression ratios were calculated using REST© Software
[30]. All samples were analyzed in two independent exper-
iments with three replicates in each run.

Analysis of genomic clustering of transcripts

T. reesei genes have not yet been mapped to chromo-
somes, but their appearance on genomic scaffolds is
known. In order to identify whether the transcripts
would be clustered to particular areas on these scaffolds,
we aligned them onto an ordered list of genes on the in-
dividual scaffolds. We tested the presence of clustering
of expressed genes by two methods: one employed REEF, a
software that identifies genomic regions enriched in specific
features, using test statistic based on the hypergeometric
distribution applied genome-wide by using a sliding win-
dow approach and adopting the false discovery rate for
controlling multiplicity [23]. The software, source code
and documentation were downloaded from http://tele-
thon.bio.unipd.it/bioinfo/reef/ . To use it for T. reesei, the
scaffolds were treated as chromosomes. A window width
of 100 kb, a shift of 10 kb and a threshold g-value of 0.05
were used. A minimum number of 7 and 3 clustered genes
were used as a threshold for the analysis of expression at
the high and low growth rate, respectively.

Additional files

Additional file 1: Table S1. Genes differentially regulated in T. reesei
Alael in comparison to the parent strain T. reesei QM 9414.

Additional file 2: Table S2. Genes differentially regulated in T. reesei
OFElael in comparison to the parent strain T. reesei QM 9414.

Additional file 3: Table S3. Quantitative expression patterns
determined by gRT-PCR of selected genes.

Additional file 4: Table S4. Genes regulated by the growth rate in
T. reesei Alael in comparison to the parent strain T. reesei QM 9414.

Additional file 5: Table S5. Genes regulated by the growth rate in the
parent strain T. reesei QM 9414 in comparison to T. reesei AlaeT.
Additional file 6: Table S6. Genes regulated in the opposite way in

T. reesei Alae1 and the parent strain T. reesei QM 9414.

Additional file 7: Table S7. Primers, amplification efficiency and
R-square values for the gPCR analysis.
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