
Koufariotis et al. BMC Genomics 2014, 15:436
http://www.biomedcentral.com/1471-2164/15/436
RESEARCH ARTICLE Open Access
Regulatory and coding genome regions are
enriched for trait associated variants in dairy and
beef cattle
Lambros Koufariotis1,2,3*, Yi-Ping Phoebe Chen1, Sunduimijid Bolormaa2 and Ben J Hayes1,2,3
Abstract

Background: In livestock, as in humans, the number of genetic variants that can be tested for association with
complex quantitative traits, or used in genomic predictions, is increasing exponentially as whole genome sequencing
becomes more common. The power to identify variants associated with traits, particularly those of small effects, could
be increased if certain regions of the genome were known a priori to be enriched for associations. Here, we investigate
whether twelve genomic annotation classes were enriched or depleted for significant associations in genome wide
association studies for complex traits in beef and dairy cattle. We also describe a variance component approach to
determine the proportion of genetic variance captured by each annotation class.

Results: P-values from large GWAS using 700K SNP in both dairy and beef cattle were available for 11 and 10 traits
respectively. We found significant enrichment for trait associated variants (SNP significant in the GWAS) in the missense
class along with regions 5 kilobases upstream and downstream of coding genes. We found that the non-coding
conserved regions (across mammals) were not enriched for trait associated variants. The results from the enrichment or
depletion analysis were not in complete agreement with the results from variance component analysis, where the
missense and synonymous classes gave the greatest increase in variance explained, while the upstream and
downstream classes showed a more modest increase in the variance explained.

Conclusion: Our results indicate that functional annotations could assist in prioritization of variants to a subset more
likely to be associated with complex traits; including missense variants, and upstream and downstream regions. The
differences in two sets of results (GWAS enrichment depletion versus variance component approaches) might be
explained by the fact that the variance component approach has greater power to capture the cumulative effect of
mutations of small effect, while the enrichment or depletion approach only captures the variants that are significant in
GWAS, which is restricted to a limited number of common variants of moderate effects.
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Background
There is increasing evidence that genetic variation in
most complex quantitative traits is the result of many
mutations of small effect that individually explain only a
small portion of the genetic variance [1-5]. Identification
of such mutations has proved challenging in human,
livestock and plant genetics [6]. Genome wide associations
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studies (GWAS) have been successful in detecting some
of these mutations for some traits, however the mutations
that can be detected with this approach are limited to
those that explain enough of the variance to exceed the
high significance thresholds necessary to avoid false posi-
tives with multiple testing, and are biased towards com-
mon variants as a result of ascertainment of single
nucleotide polymorphisms (SNP) for widely used arrays
[3-8]. A different approach is genomic prediction, where
genetic merit of individuals is predicted based on the ef-
fect of all the variants estimated simultaneously [7-10].
The number of genetic variants (SNP, insertions, dele-

tions and structural variants) that can be tested for
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association with traits or used in genomic prediction is
growing very rapidly, particularly with the increasing
numbers of whole genome sequenced individuals cur-
rently available. In humans, the 1000 genomes project
consortium has reported 38 million SNPs along with 1.4
million short insertion and deletions [11]. In Bos taurus
cattle, 28.3 million SNPs, insertions and deletions have
been detected, and could be imputed into large data sets
for GWAS studies or used for genomic prediction [12].
This presents at least two major challenges; 1) genomic
prediction with such a large number of variants is cur-
rently not practical due to computing limitations 2) For
GWAS, although less computationally demanding (since
the analysis is highly parallelizable), very stringent sig-
nificance thresholds are required to avoid false positives
due to such a high level of multiple testing, and as a re-
sult many variants with small effects (or more accurately
those that explain a small proportion of the variance)
would be missed. This also includes rare variants that
have large effects but explain a small proportion of the
variance [13,14].
One way to reduce the number of variants for either

genomic predictions or GWAS is to use the underlying
biological information to annotate the variants into clas-
ses and prioritize for testing the functional classes with a
higher a priori probability of containing trait associated
variants (TAV), e.g. those variants significant in a
GWAS. In humans, some of the variants that have sig-
nificant impacts on traits and diseases are found in the
protein coding regions of the genome [15], with many
studies focusing on the protein coding and conserved
annotations to determine variants that are associated
with traits [1,15,16]. Other similar studies in humans
have found that the missense (non-synonymous) variants
to be the most enriched annotations for trait associated
SNPs [17,18]. However, a large number of variants with
significant associations are found in the non-protein
coding regions of the genome. Using regulatory and
chromatin structure data, such as the results from the
ENCODE project [19], studies have shown that certain
genomic annotations such as chromatin structure, DNA
methylation, histone modification and other regulatory
regions, are enriched for TAVs [18,20-25]. In livestock
however, information on which class of variants that are
more likely to be associated with complex traits is al-
most completely lacking, including for beef and dairy
cattle.
In this paper, our aim was to identify regions of the

bovine genome that are more likely to contain TAVs.
This information could be used for prioritizing variants
for future GWAS or for genomic prediction. We anno-
tated variants on the Illumina Bovine HD array (777K
SNP) into 17 classes; intergenic (variants that occur in-
between genes), intragenic (variants found within genes),
variants found 5 kilobases (kb) upstream of a TSS, vari-
ants found 5 kilobases downstream of a gene, introns,
exons, protein coding sequence (CDS), synonymous vari-
ants, missense variants (non-synonymous variants), non-
coding conserved variants, microRNA predicted target
variants [26], both 5’ and 3’ untranslated regions (UTRs),
predicted transcription factor binding site (TFBS) [27],
frame-shift, mature microRNAs [28], splice sites and stop
sites. We assessed the level of enrichment and depletion
of TAVs in twelve classes that contained enough SNPs for
analysis, using the results of large GWAS in dairy and beef
cattle [29,30]. To at least partially overcome some of the
limitations of GWAS (where the proportion of variance
explained must be large to overcome stringent significance
thresholds, so variants with smaller effect or rare variants
with large effects can be overlooked) we developed two
novel variance component approaches to determine if
SNPs in any of our functional classes explain more vari-
ance than the same number of randomly chosen inter-
genic SNPs, and to determine which of these annotations
capture the greatest proportion of genetic variants on a
per SNP basis.

Results
Annotation of variants and distribution across the genome
We annotated SNP from 777K Illumina Bovine HD
array into 17 classes (Methods). Of the 17 classes, 5 clas-
ses; frameshft SNPs, exons, mature microRNA SNPs, all
splice sites and all stop sites were not included for fur-
ther analysis due to having very small numbers of vari-
ants or in the case of exons already been represented by
the CDS and UTR classes. This leaves us with a total of
12 classes for further analysis (Table 1). The beef data
set had a larger number of SNPs than the dairy, because
a greater number of SNPs were polymorphic [29,30].
Intergenic variants (those found in non-coding DNA),
were by far the most common (~67% of SNP) as ex-
pected [14]. Intragenic variants constituted 32% of the
total number of variants. In previous annotation studies
using bovine variants it was found that 64.4% of the bo-
vine variants were intergenic and 28.0% of the variants
were in intron regions [31], close to our results for the
proportion of SNP in intergenic (67.8% and 67.3% for
dairy and beef respectively) and introns (30.9% and
31.3% for dairy and beef respectively).

Evidence for enrichment or depletion of functional
classes for trait associations
Multi-breed GWAS results were available for 11 dairy
traits and 10 beef traits (Table 2). For the beef data a total
of 10,181 beef cattle with trait records were genotyped, in-
cluding Bos taurus, Bos indicus (Brahman) and composite
animals [29]. For the dairy data, 17,425 Holstein and
Jersey cattle were genotyped, with the GWAS results



Table 1 Total number of variants annotated in different
genomic classes in the beef and dairy data sets

Class Number variants
in dairy

Number variants
in beef

Total Genomic 632003 729254

Intergenic 428255 (0.68) 490982 (0.67)

Intragenic (genic regions) 203534 (0.32) 237914 (0.33)

Upstream variants 23799 (0.04) 27861 (0.04)

Downstream Variants 26453 (0.04) 30780 (0.04)

Introns 195012 (0.31) 227938 (0.31)

Exon 8913 (0.01) 10416 (0.01)

Protein Coding Sequence (CDS) 6364 (0.01) 7490 (0.01)

Synonymous 3968 (0.01) 4768 (0.01)

Missense 2392 (0.004) 2718 (0.004)

UTR (5' & 3') 2386 (0.004) 2748 (0.004)

Non-Coding Conserved 6331 (0.01) 7399 (0.01)

microRNA Predicted Target 1932 (0.003) 2213 (0.003)

Transcription Factor Binding Sites 229 (0.0004) 271 (0.0004)

Frameshift SNPs 1 1

Mature microRNA SNPs 1 2

All Splice Sites 720 (0.001) 855 (0.001)

All Stop sites 86 (0.0001) 88 (0.0001)

The total number of SNP differ between data sets because the beef data
included more breeds, so more SNP were polymorphic. Annotations were
obtained from Ensembl version 73 [51], with the exception of mature miRNA
SNPs and miRNA predicted targets which came from miRBase databases
[28,53], transcription factor binding sites were from Bickhart [27] and the
non-coding conserved which were obtain from a phastCons study [55].
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coming from a multi-breed analysis [32]. We used a sig-
nificance threshold of GWAS P-value <0.0001 to define
trait associated variants (TAVs) for further analysis since
this gave enough power to identify enrichment or deple-
tion while limiting the number of false positives (complete
results at all significance thresholds are presented in
Additional files 1, 2). We performed permutation testing
on each class to determine if the level of enrichment or
depletion was significantly above or below that that would
be observed by chance, given the number of SNP in the
class (see Methods).
Although the intergenic class had the largest number

of variants (67.8% in dairy and 67.3% in beef), this class
was significantly depleted for TAVs for majority of traits
(Table 3, Figure 1). Although, the dairy trait fertility and
beef traits SC12 and PNS24 were the exception, we must
note though that the number of animals with pheno-
types for these two traits was quite limited (Table 2).
The intragenic class (protein coding class) includes the

CDS, introns, UTRs (both 5’ and 3’), synonymous and
missense classes as a whole. Overall in the intragenic
class we find 6 out of 11 dairy traits and 3 out of 10 beef
traits to be significantly enriched (Figure 1).
The synonymous class was enriched for 4 dairy traits
while in beef we see enrichment in only one trait (LLPF).
The missense class, however, had one of the highest
levels of enrichment after the upstream and downstream
classes in dairy with 7 traits to be significantly enriched
for TAVs, while in beef we see no enrichment or deple-
tion. Similarly, in the CDS class (the protein coding se-
quence class which includes both synonymous and
missense variants) we find 7 dairy traits to be signifi-
cantly enriched while for the beef traits we see only the
trait LLPF to be enriched. The UTR class (both 3 prime
and 5 prime) on the other hand is minimally enrichment
for only 2 dairy traits and one beef trait (LLPF).
The intron class was enriched for just as many traits

as it was depleted, with 4 dairy and 3 beef traits showing
both enrichment and depletion for TAVs. The enrich-
ment for TAVs in this class is perhaps a surprising result
given that in human studies intron variants are found to
be minimally enriched or depleted [1,17,18]. This result,
as well as enrichments for the synonymous class, may be
due to high linkage disequilibrium between SNPs in
these annotations and causal mutations.
Overall, in dairy, the traits fat percent and protein per-

cent were enriched in most of the protein coding anno-
tation classes. The power to detect enrichment for these
traits is greatest because they have the highest heritabil-
ity of all the traits studied here.
Of the non-coding regions the upstream and down-

stream classes were the most significantly enriched, in
fact, they were enriched for more dairy traits than the
protein coding classes. Similarly for the beef traits we
see significant enrichment in the upstream class for
most traits, with the downstream class having equal
highest level of enrichment to the intragenic and intron
classes, (Figure 1). The transcription factor binding site
(TFBS) class, however, had no traits significantly enriched
or depleted in our analysis, most likely due to the very low
number of variants found in this class.
The non-coding conserved class had little enrichment

for TAVs. One dairy trait (protein) was actually depleted
for TAVs in this class (Table 3), while for beef we find
one trait (sc12) to be enriched. The low level of enrich-
ment in this class is surprising given that evolutionary
conserved variants have been suggested as among the
most important for prioritization [33].

Logistic regression analysis on GWAS
In the enrichment or depletion analysis above, we exam-
ined our annotations independently. However, due to
linkage disequilibrium, signals from one annotation may
be present in another annotation. A logistic regression
analysis was performed to determine the significance
and estimated effect that an annotation has on the dairy
and beef traits when fitted with all annotation classes



Table 2 Dairy and beef trait descriptions including the number of phenotype records for the GWAS analysis

Trait ID Animal Trait name and description Number of phenotypes

Fat Dairy Fat Volume 16812

Fat Percent Dairy Fat Percent 16812

Milk Dairy Milk Volume 16812

Protein Dairy Protein Volume 16812

Protein Percent Dairy Protein Percent 16812

Angularity Dairy Angularity 6910

BCS Dairy Body Conditioning Score 6910

Mammary System Dairy Mammary System 6910

Fertility Dairy Fertility 15430

Survival Direct Dairy Survival Direct 15352

SCC Dairy Somatic Cell Count 16297

LLPF Beef Peak force measured in Longissimus lumborum muscle (kg) 5358

CIMF Beef Percent intramuscular fat measured in Longissimus lumborum muscle 5824

CRIB Beef Rib fat at slaughter 5464

SEMA Beef Exit scanned eye muscle area 4539

SC12 Beef Scrotal circumference measured at ages of 12 1112

PNS24 Beef Percent normal sperm at the age of 24 months (%) 964

PPAI_BB Beef Post partum anoestrus interval in BB (days) 629

PPAI_TC Beef Post partum anoestrus interval in TC (days) 863

AGECL_BB Beef Age at first detected corpus luteum in BB (days) 1007

AGECL_TC Beef Age at first detected corpus luteum in TC (days) 1108
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together. We selected our significance level at P-value
<0.0001 for our traits, and converted the data to binary,
where if a variant has a GWAS P <0.0001 we code it as
a “1” otherwise it is coded as a “0” (for not significant).
Similarly for our annotation data, if a variant is found in
an annotation class we code it as a “1” otherwise if it is
not found we code it as a “0”. We recorded the P-value
along with the regression coefficient from the logistic re-
gression analysis (Methods). Results from this analysis
were generally similar to the analysis above, however
there were some important differences.
For both dairy and beef traits, our logistic regression

analysis shows the upstream and downstream classes to
be very significant, with high estimated effects and posi-
tive regression coefficients on most traits (Table 4). In
particular the dairy traits; fat, fat percent, milk, protein,
protein percent and survival direct, all indicating very
significant effects in these classes. We also find signifi-
cance in the CDS and intragenic classes, showing some
of the highest estimated effects in this analysis. However,
the synonymous and missense classes all show minimal
significance, which is somewhat surprising given that in
the enrichment or depletion analysis we found the mis-
sense class to be significantly enriched for many traits. If
the CDS class is removed, the significance and estimated
effect for the missense and synonymous classes greatly
increase (results of this analysis are shown in Additional
file 3).
The intron, UTR, non-coding conserved, TFBS and

microRNA target classes show very minimal effects and
were not significant, with a few exceptions (such as pro-
tein percent and survival direct in the UTR class and
fertility in the intron class).

Genetic variance explained by functional classes of SNP
We used a variance component analysis to determine
how much variance can be explained by the variants in
each class, over and above the same number of ran-
domly chosen intergenic variants. This was achieved by
deriving a genomic relationship matrix (GRM) [34] for
each class, and then estimating the proportion of total
variance explained by the variants using the GRM in a
restricted maximum likelihood (REML) analysis.
To illustrate the difference, or similarity in information

that would be captured by the GRM for each class, we
calculated the Euclidean distance between each GRM.
We found, not surprisingly, that the genomic relation-
ship matrices between the CDS, missense and the syn-
onymous classes are highly similar since the CDS class
consists of both synonymous and missense variants
(with 68% of the CDS class consisting of synonymous
variants) (Figure 2, Additional file 4). We also observe



Table 3 Traits that are enriched or depleted for TAVs in both dairy and beef cattle for annotation classes

Trait Cattle breed Intergenic Upstream Downstream Intragenic Intron CDS Synonymous Missense UTR (5’ & 3’) Non-coding conserved TFBS micro RNA target

Fat Dairy ns + + + - + + + ns ns ns ns

Fat Percent Dairy - + + + ns + + + ns ns ns +

Milk Dairy - + + + + + + + ns ns ns +

Protein Dairy - + + + + + ns + ns - ns ns

Protein Percent Dairy - + + + + + + + + ns ns ns

Angularity Dairy - + + + + ns ns + ns ns ns ns

BCS Dairy ns + + ns ns + ns + ns ns ns ns

Mammary System Dairy ns + + - - + ns ns ns ns ns +

Fertility Dairy + + ns - - ns ns ns ns ns ns ns

Survival Direct Dairy ns + + - - ns ns ns + ns ns ns

SCC Dairy ns ns ns ns ns ns ns ns ns ns ns ns

LLPF Beef - + + + + + + ns + ns ns +

CIMF Beef - + ns + + ns ns ns ns ns ns ns

CRIB Beef ns + ns ns ns ns ns ns ns ns ns ns

SEMA Beef ns ns ns - - ns ns ns ns ns ns ns

SC12 Beef + + + - - ns ns ns ns + ns ns

PNS24 Beef + + + - - ns ns ns ns ns ns -

AGECL_BB Beef ns ns - ns ns ns ns ns ns ns ns ns

AGECL_TC Beef ns ns - ns ns ns ns ns ns ns ns ns

PPAI_BB Beef ns - ns ns ns ns ns ns ns ns ns ns

PPAI_TC Beef - ns ns + + ns ns ns ns ns ns ns

Traits were deemed to be significant by permutation testing. The null distribution for the permutation testing was constructed by testing the same number of SNP in each class, but randomly chosen, for the number
of significant SNP at P<0.0001, and random selection of SNP was performed 1000 times for each class. A class was enriched if the actual number of SNP significant in that class was greater than the number significant
in the 950th highest random set, and depleted if the number of significant SNP was less than the number significant than the 50th lowest random set. Traits that are enriched for TAVs in a functional class are indicated
with +, those that were depleted are marked with -, and traits where no significance occurred is indicated with ns.
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Figure 1 Enrichment or depletion analysis of trait association variants in annotation classes. Permutation testing was performed to
determine if the number of variants found to be significant in each class was greater than expected by chance for the total number of variants in
that class. The number of traits that are significant are shown in blue for dairy and orange for beef. Enriched traits are indicated in the positive
dark blue bars for dairy and positive dark orange bars for Beef. Depleted traits are shown below their corresponding class with light blue bars
indicating depletion in dairy and light orange bars indicating depletion in beef.
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very similar matrices between the upstream and down-
stream classes. To determine the significance in the vari-
ance explained by each annotation class for our traits,
we compared the difference in the variance explained
for the traits in each annotation class to the variance ex-
plained using the same number but randomly selected
intergenic variants. We repeated the random selection
permutation test a total of five times to get a standard
error (S.E) on the random variance explained to assess if
the variants in our classes can explain significantly more
variance than the randomly selected variants. This ap-
proach was performed for the dairy data set only due to
computational restrictions.
We find that variants in the protein coding classes ex-

plained the most variance, over and above the variance
explained by the same number of randomly chosen vari-
ants, for most of our traits (Figure 3, Table 5). Interest-
ingly, the number of traits for which this occurs was
larger than the number of traits that were significantly
enriched for TAVs in this class (Figure 1). For the CDS
class, the additional variance explained is very high (8
traits explain more variance and 4 were significant), par-
ticularly for the traits fat percent (with a 15.0% differ-
ence in the variance explained), milk (4.9% difference)
and protein percent (8.5% difference). In the missense
class 9 traits explain more of the variance and 5 traits
were significant, the highest number of traits in our
study and a slight increase from the 7 traits that were
enriched for TAVs in our previous analysis (Figure 1). In
particular, the trait fat percent explains the largest add-
itional variance in the missense class with an increased
difference of 16.9% (Table 5), and has one of the highest
heritability in our analysis. Milk volume and protein per-
cent also explained considerably more of the variance
(6.8% and 8.3% increase respectively). For the synonym-
ous class the additional variance explained is quite high
(7 traits explained more variance with 4 been signifi-
cant), a similar result to that of our previous number of
enriched traits. While in the UTR class (for both 5’ and
3’) we see 5 traits explaining more variance and 3 to be
significant, indicating some functional effects on traits
and supporting previous studies that the UTRs (particu-
larly the 5’UTR) are significantly associated to traits [1].
We find that the upstream and downstream classes do

not significantly explain more of the variance, which is
surprising given the number of enriched traits in the
previous analysis. Of all dairy traits, only fat percent was
significant in both the upstream and downstream clas-
ses, although there was a trend for the other annotations
to explain more of the variance when compared to the
random intergenic set for the traits fat percent, milk
production and protein percent (Table 5, Figure 3). For



Table 4 Results from logistic regression analysis

Traits Intergenic Upstream Downstream Intragenic Intron CDS Synonymous Missense UTR (5'&3') Non-coding
conserved

TFBS micro RNA
target

Fat 0.05 (−0.01) 4.92 (0.15) 3.36 (0.12) 0.55 (0.10) 0.17 (−0.11) 4.70 (0.12) 0.00 (0.02) 0.26 (0.10) 0.27 (−0.21) 0.07 (0.02) 0.22 (0.18) 0.55 (−0.16)

Fat Percent 0.68 (−0.08) 6.44 (0.14) 4.89 (0.11) 12.71 (0.52) 0.89 (−0.46) 11.69 (−0.44) 0.29 (0.36) 0.06 (0.38) 0.67 (−0.40) 0.48 (−0.08) 0.26 (−0.32) 1.53 (0.28)

Milk 0.67 (−0.06) 1.91 (0.03) 2.80 (0.05) 2.16 (0.64) 2.12 (−0.66) 3.28 (0.14) 0.84 (−0.66) 0.37 (−0.54) 0.05 (−0.66) 0.93 (−0.10) 0.09 (−0.09) 1.26 (0.20)

Protein 3.05 (−0.17) 2.60 (0.00) 5.12 (0.01) 4.20 (0.39) 1.41 (−0.49) 2.85 (0.06) 0.51 (−0.47) 0.86 (−0.28) 0.19 (−0.46) 1.11 (−0.11) 0.20 (0.13) 0.48 (0.10)

Protein Percent 0.21 (−0.02) 15.12 (0.21) 9.59 (0.17) 5.10 (0.38) 0.84 (−0.33) 8.60 (−0.10) 0.00 (0.00) 0.46 (0.11) 4.06 (−0.06) 0.57 (−0.07) 0.55 (0.29) 0.84 (0.15)

Angularity 0.89 (−0.25) 2.59 (0.11) 1.31 (0.02) 7.74 (−0.75) 0.78 (0.79) 1.41 (0.86) 0.06 (−0.26) 1.12 (0.37) 0.16 (0.38) 0.93 (0.29) 0.09 (0.21) 0.71 (0.40)

BCS 1.14 (−0.60) 2.16 (0.02) 2.12 (0.02) 0.12 (0.34) 0.24 (−0.88) 3.04 (2.44) 2.18 (−3.07) 0.21 (−2.13) 0.00 (−0.81) 0.73 (−0.94) 1.05 (1.66) 0.14 (0.22)

Mammary System 1.27 (0.31) 2.70 (0.51) 1.16 (0.38) 2.54 (1.01) 0.52 (−0.86) 1.51 (−0.45) 0.00 (0.07) 0.04 (0.04) 1.34 (−0.32) 0.64 (−0.31) 0.24 (−5.29) 1.61 (0.65)

Fertility 2.52 (0.90) 1.46 (0.97) 0.15 (0.59) 2.44 (3.86) 5.45 (−3.37) 0.57 (−2.92) 0.16 (0.31) 0.62 (−0.98) 0.04 (−3.33) 0.27 (0.23) 0.17 (−3.91) 0.67 (−3.93)

Survival Direct 4.19 (0.28) 7.40 (0.41) 6.19 (0.39) 3.21 (0.43) 0.32 (−0.23) 0.75 (−0.71) 0.41 (0.62) 0.11 (0.55) 4.97 (0.22) 0.95 (−0.16) 0.13 (0.14) 0.53 (−0.20)

SCC 0.88 (0.30) 0.04 (0.17) 0.82 (0.37) 0.55 (0.06) 0.06 (0.16) 0.05 (0.09) 0.00 (0.00) 0.06 (0.10) 0.72 (0.55) 2.05 (0.51) 0.23 (−5.00) 0.66 (−0.88)

LLPF 0.51 (0.12) 28.17 (0.88) 16.27 (0.74) 10.89 (0.37) 0.06 (0.11) 3.11 (0.22) 0.05 (0.22) 0.40 (−0.08) 1.66 (0.19) 0.99 (−0.43) 0.07 (0.14) 1.50 (0.59)

CIMF 0.00 (0.01) 3.38 (0.46) 0.1 (−0.05) 8.15 (−0.19) 0.32 (0.57) 0.71 (0.55) 0.00 (0.08) 0.04 (0.03) 0.08 (0.35) 0.1 (−0.10) 2.96 (1.87) 0.31 (0.30)

CRIB 0.18 (−0.1) 1.16 (0.21) 0.07 (−0.13) 0.19 (0.06) 0.04 (−0.13) 0.42 (−0.46) 0.08 (0.78) 0.81 (−0.77) 0.28 (0.17) 0.75 (−0.67) 0.20 (−4.17) 0.08 (−0.16)

SEMA 1.52 (1.55) 0.69 (−0.15) 0.43 (1.24) 2.44 (1.07) 0.04 (−0.27) 0.07 (−1.02) 0.04 (1.21) 0.44 (−1.23) 0.35 (0.55) 0.90 (−2.40) 0.11 (−2.32) 0.41 (0.86)

SC12 0.22 (−0.06) 2.13 (0.12) 2.99 (0.17) 11.18 (0.19) 0.47 (−0.46) 0.17 (−0.39) 0.00 (0.00) 0.06 (0.07) 0.04 (−0.30) 1.45 (0.26) 0.05 (0.09) 0.00 (−0.01)

PNS24 3.58 (0.45) 0.49 (0.40) 0.40 (0.38) 105.99 (0.65) 1.57 (−1.10) 0.04 (−0.48) 0.04 (0.12) 0.27 (−0.06) 0.27 (−0.34) 0.08 (0.01) 1.00 (0.86) 1.27 (−0.74)

AGECL_BB 2.75 (−0.81) 0.30 (−0.78) 0.67 (−0.83) 1.30 (−0.48) 0.11 (−0.22) 0.12 (−0.23) 0.04 (0.12) 0.17 (−0.09) 0.84 (0.29) 0.00 (0.01) 0.25 (−4.97) 0.79 (−0.99)

AGECL_TC 0.04 (−0.06) 0.14 (−0.14) 1.49 (−1.11) 0.86 (−0.03) 0.04 (0.15) 0.05 (−1.29) 0.05 (1.45) 0.61 (−1.78) 0.00 (0.09) 0.20 (−0.33) 0.14 (−3.09) 0.66 (0.88)

PPAI_BB 0.58 (−0.99) 1.10 (−1.85) 0.24 (−1.07) 0.71 (−0.71) 0.00 (−0.10) 0.62 (0.23) 0.00 (0.31) 0.19 (−0.23) 0.57 (−2.78) 0.17 (0.25) 0.14 (−2.88) 0.49 (−2.89)

PPAI_TC 0.77 (−0.56) 0.11 (−0.35) 0.21 (−0.52) 5.11 (−1.46) 0.74 (1.33) 0.36 (−0.53) 0.09 (1.98) 0.91 (−2.18) 1.01 (1.78) 0.20 (−0.26) 0.18 (−3.73) 0.67 (−3.70)

For each cell the first value is -log10 of the P-value for the annotation class and trait. The second value (in brackets) is the regression coefficient for annotation class and trait. Enriched annotations have positive effects,
depleted annotations have negative effects.
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Figure 2 Heat map visualizing the degree of similarities between the genomic relationship matrices (GRMs) for each annotation. Highly
similar matrices are indicated with a red color and highly dissimilar matrices are indicated with white.

Figure 3 Traits showing a significant increase or decrease in the variance explained for each of the annotation classes tested,
compared with the same number of randomly chosen SNP. This analysis was replicated 5 times, with significance determine as greater or
less than the average of the proportion of variance explained by the randomly chosen SNP +/− 2 times the standard error. Blue bars indicate a
significant increase in the variance explained than the same number of randomly chosen intergenic SNPs. Orange bars indicate a depletion in the
variance explained for that class.

Koufariotis et al. BMC Genomics 2014, 15:436 Page 8 of 16
http://www.biomedcentral.com/1471-2164/15/436



Table 5 Difference in variation explained for each trait in each annotation classes tested when compared with the
same number of randomly chosen SNP

Traits Upstream Downstream Intron CDS Synonymous Missense UTR (5'&3') Non-coding
conserved

Micro RNA
target sites

Fat −0.2 0.0 −2.4 3.8* 5.0* 5.1* 1.8 −1.1 −0.9

Fat Percent 8.7* 4.6* 1.9 18.4* 21.0* 20.0* 5.0* −3.1* −3.2*

Milk 2.2 1.2 −1.3 6.4* 7.5* 7.7* 3.4* −0.3 0.5

Protein −1.0 −1.4 −3.5* 1.2 1.7 3.2* 2.2 −0.6 0.6

Protein Percent 2.2 1.6 0.2 9.4* 10.9* 9.3* 5.9* 0.2 1.9

Angularity −1.9 0.3 −1.2 −0.9 −0.5 −0.4 −1.2 0.9 −1.2

BCS −0.9 −1.3 −1.1 0.6 −0.8 1.4 −1.3 1.2 −0.7

Mammary System −1.1 −2.4 −0.9 0.1 1.1 −0.1 −0.3 0.1 −1.6

Fertility −0.8 −0.2 0.5 −0.4 −0.2 0.1 0.0 0.1 −0.3

Survival Direct −0.8 −1.6 −2.2 −1.9 −0.8 0.1 −1.0 −1.6 −0.7

SCC −3.0 −3.3* −2.2 0.5 0.3 0.1 −0.5 −0.1 −0.8

This analysis was replicated 5 times, with significance determined as greater or less than the average of the proportion of variance explained by the same number
of randomly selected intergenic SNP across five replicates +/− 2 times the standard error. Values with the symbol “*” indicate that there is a significant increase in
variation explained (the differences is greater than 2 times the standard error from the random SNP sets) or a significant decrease in the variance explained
(difference is greater than −2 times the standard error from the random SNP sets).

Koufariotis et al. BMC Genomics 2014, 15:436 Page 9 of 16
http://www.biomedcentral.com/1471-2164/15/436
the non-coding conserved class we see no traits to be
significant. What is even more surprising is that the
non-coding conserved class explains significantly less
variance when compared with the variance explained by
the same number of randomly chosen SNP for the traits
fat, fat percent, protein, protein percent and milk
(Table 5). The trait fat percent, one of the most heritable
traits, is significantly depleted in this class, indicating no
evidence of these variants to be associated or have any
effects on dairy traits. This result, however, is consistent
with the enrichment or depletion analysis.
We find depletion occurring in one trait and overall

no significant extra variance explained for the micro-
RNA target site class, which was not expected given that
3 traits were enriched in the enrichment or depletion
analysis (Figure 1). A variance component analysis was
not performed on the TFBS class due to the very small
number of variants which would not be able to obtain a
positive definite genomic relationship matrix.
To extend on the above analysis, we also examined the

variance explained per SNP for each annotation class to
assess the genetic variance explained by each class in the
presence of all the other classes. This assists with elimin-
ating signals from one classes having on another class,
and allows us to determine the contributing variance
each SNPs have on our traits when categorized in each
annotation. We fitted all the GRM simultaneously using
GCTA [35], and recorded the heritability (the proportion
of genetic variance over the phenotypic variance) and
the S.E for each trait across all of our annotations
(Methods).
Our variance explained per SNP analysis reveals that

the missense and synonymous classes explain the greatest
proportion of the genetic variance, when the results are
expressed as heritability per SNP, compared to all of our
classes combined (Figure 4, Additional file 5), particularly
for the traits fat, fat percent, milk, protein and protein
percent.
We find that the upstream and downstream classes do

not explain as much of the variance per SNP as the mis-
sense and synonymous classes do, however they do cap-
ture more genetic variance per SNP than the intergenic,
intron, UTR, non-coding conserved and miRNA target
site classes. The UTR (for both 5’ & 3’) annotations sur-
prisingly capture a much smaller portion of the genetic
variance per SNP, except for the trait fat percent.
The intron, intergenic and non-coding conserved an-

notations explain the lowest proportion of the genetic
variance per SNP while the miRNA target site annota-
tions capture more of genetic variance per SNP than the
CDS, intron, intergenic and non-coding conserved clas-
ses (Figure 4). These results are almost in complete
agreement with our variance component analysis results
when the GRM is fitted individually (Figure 3). However,
we do find that the CDS class is not in complete agree-
ment with our previous variance component analysis re-
sults and this can be explained since this class is
represented by the missense and synonymous classes
(we see the similarities between the GRMs in Figure 3),
thus when fitted simultaneously the effects are already
captured.

Discussion
We tested whether 12 genome annotation classes con-
tained variants affecting complex traits in dairy and beef
cattle, using a trait associated variant enrichment or



Figure 4 Proportion of genetic variance explained on a per SNP basis for each of the annotations when fitted jointly in the model. The
genetic variance per SNP is expressed as a% divided by10−4. These results show how much variance each SNP contributes to the class for each trait.
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depletion analysis and two variance component ap-
proaches. In the TAV enrichment or depletion analysis
we observed that the upstream and downstream classes
were significantly enriched for most dairy traits and
many beef traits, while the protein coding classes are
also enriched in dairy, but for fewer traits. In the first
variance component approach, where the proportion of
variance captured by the SNP in that class was com-
pared to the proportion of variance captured by the
same number of random SNP, the protein coding classes
(particularly the missense, synonymous and CDS classes)
were significant, while the upstream and downstream
classes were not for most traits. The second variance
component approach, where the GRM for all annotation
classes were fitted at once, demonstrated that the mis-
sense class explained the most variance on a per SNP
basis.
The main difference in results between the TAV en-

richment or depletion analysis and the variance compo-
nent approaches was that the upstream and downstream
classes are highly significant in the first approach, but
not in the variance component approach across most
traits. This difference may arise for two possible reasons.
The first reason arises because the actual causal muta-
tions are unlikely to be in our data set. In the upstream
and downstream classes, there are a very large number
of SNP, so that the chance of at least one of them being
in high linkage disequilibrium with a causal mutation (a
TAV) is higher than for classes with a lower number of
SNP. Secondly, in the TAV enrichment or depletion
analysis, a significance threshold is set, while in the vari-
ance component approach there is no such threshold.
By setting a significance threshold, only variants in link-
age disequilibrium (LD) with undiscovered mutations of
moderate effect size are effectively considered in the en-
richment or depletion analysis. However, given the typ-
ical genetic architecture of complex traits, there are
likely to be very few of these [36]. In contrast, the vari-
ance component approach can capture the cumulative
effects of many variants that have smaller effects [34].
Protein coding regions are known to harbor variants

affecting complex traits and by focusing on these re-
gions, particularly exons, offers some promise for identi-
fying the genetic variants that are associated with
complex traits [37]. The protein coding classes in our
analysis proved to explain the most variance in dairy
traits for a given number of SNPs and on a per SNP
basis (Figure 3 and Figure 4). Missense variants, in par-
ticular, are more likely to have some of the most signifi-
cant effects on traits since these variants alter both the
genetic sequence and the amino acid sequence of a pro-
tein, having the potential to be deleterious or beneficial.
Research in human genetics found that the missense
variants are often significantly enriched for trait associa-
tions [13,17,18]. The variance component analysis indi-
cates that for most dairy traits the missense class both
explains significantly more variance than the same num-
ber of randomly chosen intergenic variants (Figure 3)
and per SNP explains the most variance (Figure 4). In
our enrichment or depletion analysis this class was also
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significantly enriched for most traits (Figure 1). These
results clearly suggest the importance of this class for
prioritization.
One major limitation of our study is that the variants

we investigated are a set of SNPs selected for high minor
allele frequency (MAF) and are evenly spaced across the
genome (they are SNPs on the Illumina Bovine HD
array), rather than the complete set of sequence variants
in the population. This can lead to some annotated vari-
ants to be in high linkage disequilibrium with variants
that can be causative. For example a synonymous variant
(a class enriched for some traits) that is associated with
a trait is unlikely to be the causative mutation but is
more likely to be in high linkage disequilibrium with a
nearby causative mutation. This limitation has been re-
ported in many studies [13,17] and is a possibility for
why we see enrichment for TAVs in the intron and syn-
onymous classes, and why we find the synonymous class
to explain a large proportion of the variance.
This limitation is most prominent in the intron class

(which is enrichment for some traits), where a very large
number of variants are annotated for this class, increas-
ing the chance of these variants to be in LD with causa-
tive mutations that might not be in introns, particularly
for variants near the intron/exon boundaries. However
in the variance component analysis, this class explains
less of the genetic variance when compared to the same
number of randomly selected intergenic SNPs. As men-
tioned earlier, this class has a large enough number of
variants where most of the heritability is captured and it
would be difficult to capture any more or less of the
variance using this heritability alone when compared to
an annotation class with a smaller number of SNPs. Fit-
ting the intron class simultaneously in the model with
all other annotations to examine the proportion of vari-
ance explained on a per SNP basis confirms that the in-
tron class explains very little variance (Figure 4). In
other studies, while the number of variants found in in-
trons constitute the majority of the intragenic variants,
they have been shown to exhibit minimal enrichment for
associated variants [1] or no evidence of enrichment or
depletion [17]. Intron variants with effects on complex
traits cannot be completely ruled out however, as elements
within introns have in some cases been demonstrated to
have regulatory functions [38] and variants found within
introns have been shown to affect phenotypes in mam-
mals [39]. A study in schizophrenia find that introns can
contribute to the etiology of the disease [40].
The UTRs are implicated to have regulatory functions

in controlling gene expression and are known to harbor
binding sites for microRNAs [41]. Studies in human gen-
etics have found that the UTR regions to be some of the
most enriched for trait associated SNPs [14], particularly
the 5’ UTRs [1], other studies on the other hand found
that the UTR variants to be modestly enriched and even
depleted when using a logistic regression analysis [18].
Our study does indicate similar results, with modest en-
richment of the UTR class for TAVs, although, in the
variance component approach we find that this class is
significant, but for fewer traits than other protein coding
classes (Table 5). On a per SNP basis they explain a
much smaller proportion of the variance (Figure 4).
The microRNAs (miRNAs) are known to have import-

ant regulatory functions with claims that about a third
of mammalian genes are actually regulated by miRNAs
[42]. In our study, we examined variations in the miRNA
coding regions and the miRNA target sites. Very few
SNP were found in the miRNA coding regions, (1 in
dairy and 2 in beef, Table 1) which could be indicative of
their highly conserved sequence nature [43], thus their
effects could not be examined. However, we expected to
find significant trait associated variants in their predicted
target sites. Our results show minimal enrichment for
TAVs in miRNA target sites, with our variance compo-
nent analysis showing no extra variance to be explained
by this class. This is surprising given the promising and
important regulatory functions that the miRNAs have
on gene regulation. Our analysis, however, is limited by
the fact that miRNA target sites at present are very diffi-
cult to predict, mainly due to the very limited sequence
binding of miRNAs to the genome and most tools focus-
ing on 3’UTR regions over full genome scale targets
[26]. Similar studies in human genomics have examined
miRNA target sites in 3’UTRs only to find no significant
enrichment [17].
The upstream and downstream classes are significantly

enriched for TAVs for most beef and dairy traits in our
analysis (Figure 1), suggesting possible regulatory elem-
ent mutations with effects on our traits. However, many
variants in these classes may be artifacts (SNPs that are
not within regulatory regions or other functional re-
gions). These artifact SNPs can have implications in our
variance component analysis where significant effects
will be averaged out over a large number of (artifact)
SNPs that have no effect, resulting in these classes cap-
turing a smaller proportion of the variance. Removal of
the artifacts in the upstream and downstream classes
would be possible if prior knowledge of where regulatory
functions such as promoter, enhancer or TFBS are lo-
cated on the genome, eliminating the need to have
poorly defined annotation classes and instead classes
that have potential regulatory functional roles. Further,
the GRMs for both the upstream and downstream clas-
ses are very similar (Figure 2, Additional file 4), indicat-
ing that variants annotated in the upstream class are
potentially annotated in the downstream class, further
emphasizing the need to have accurately defined annota-
tions in these regions. This is a major limitation in our
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study involving the non-coding genome, as the current
map of regulatory elements in the bovine genome is very
limited [27], with almost lacking information for loca-
tions of enhancers, promoters and other non-coding
regulatory factors. Our results clearly suggest the im-
portance of including variants found in the non-coding
genome and that prioritization should not just be limited
to variants found within protein coding regions.
Studies in human genetics are beginning to uncover

the importance that the regulatory genome has on traits
and how variants found in the non-coding regions are as
significant as those found within genes. The regulatory
genome is highly complex with many interactions con-
tributing to the expression and regulation of genes.
Large scale projects such as the ENCODE (Encyclopedia
of DNA elements) project [19] are beginning to uncover
these complexities having assigned biochemical func-
tions to about 80% of the human genome [15].
Related research found that GWAS SNPs are signifi-

cantly enriched for promoter annotated variants [17]
while enhancer annotations also display strong enrich-
ment signals [18,44]. Epigenetic studies in humans found
that changes in DNA methylation at CpG dinucleotide
are heritable and contribute to gene expression [45].
While regions of the genome associated with histone
modification patterns have been shown to influence gene
expression, and to be enriched for TAVs [22,24]. Further
it has been shown that non-coding variants concentrated
around regions of the genome marked by DNase I
hypersensitive sites (DHS) are enriched in traits [46]. An
ENCODE style analysis of the bovine genome would be
extremely valuable for obtaining a greater understanding
of the complexities in the non-coding genome that can
impact traits through regulation, while providing much
greater detailed annotations in the bovine genome that
can be used for prioritization.
Variants in the genome for which the sequence is con-

served across species have been proposed as an import-
ant annotation class for prioritization and are potentially
causative [33,47]. The majority of the conserved variants
are actually found in non-coding regions, and it is believed
that at least some of these are cis regulators for genes [47].
Our study in fact found minimal enrichment in beef and
depletion for TAVs in dairy for the non-coding conserved
class. Similar studies in humans have also found limited
evidence for enrichment of associated SNPs in non-coding
conserved regions [18]. Studies are also questioning the
importance that non-coding conserved variants have in
regulatory functions, such as gene expression, claiming
that we cannot use non-coding conserved sequences alone
to indirectly predict regulatory functions [48]. It has been
shown that removal of ultra-conserved non-coding ele-
ments have no significant effects on traits in mice [49].
We have provided some evidence that variants in non-
coding conserved regions do not contribute greatly to
standing variation for complex traits in cattle.
As previously mentioned, one of the major limitations

in our study, is ascertainment bias and the selection of
SNPs with high minor allele frequencies that are evenly
spaced across the genome resulting in many variants to
be in high LD with a nearby causative variant, compli-
cating the interpretation of the analysis. The best way to
eliminate this high level of LD in our data and greatly
improve this study would be to use whole genome se-
quence data [50]. Whole genome sequence (WGS) data
is not limited to only common SNPs but allows for the
detection of most variations found in the genome, in-
cluding insertions, deletions, structural variants, and rare
variants that could potentially have significant effects.

Conclusion
Our findings suggest annotation of variants based on bio-
logical function can assist in prioritization of variants
more likely to be associated with complex traits in dairy
and beef cattle. The variance component approach indi-
cates protein coding regions explain significantly more
variation than a similar number of randomly chosen SNP
across many traits. We also found significant enrichment
of TAVs in upstream and downstream classes suggesting
that these classes can have potentially important regula-
tory functions. The non-coding conserved regions were,
in some cases, actually depleted for TAVs, leading us to
assume that these variants are not highly significant in our
traits. On a per SNP basis, missense variants explained the
greatest variation for many traits. Finally, while protein
coding regions are highly important in predicting complex
traits, the importance of regulatory function cannot be
over emphasized and having reliable regulatory informa-
tion for further studies in bovine genomics is paramount.

Methods
Annotation of variants using Ensembl databases
We annotated dairy and beef SNPs from the 777K Illu-
mina Bovine HD array into; intergenic, intragenic, exons,
CDS, UTRs (both 5’ & 3’), 5 kb upstream of TSS, 5 kb
downstream of genes, missense, synonymous, frame-
shift variants, splice sites and stop codon classes by
querying the Ensembl variant database version 73 [51].

Annotation of microRNAs and microRNA target sites
We used the miRBase database [28,52,53] to annotate the
microRNA coding variants and for annotation of the target
sites we used the MicroCosm target site database [26,28].

Annotation of non-coding conserved variants
Non-coding conserved variants were obtained through
phastCons [54] for conversed variants across mamma-
lian genomes [55]. We used a threshold conservation
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score of 0.800 to filter and keep the most conserved var-
iants only.

GWAS Data and P-Value enrichment or depletion for
TAVs analysis
P-values for dairy traits were from a multi-breed GWAS
including 17,425 bulls and cows, of either the Holstein
or Jersey breeds [32]. P-values for beef traits were from
a GWAS of Bos indicus, Bos taurus and composite
animals [29]. For each trait, we grouped the anno-
tated variants into 7 different thresholds based on the
GWAS P-value; < 0.1, < 0.01, < 0.001, < 0.0001, < 0.00001,
< 0.000001, < 0.0000001 and < 0.00000001 and calculated
false discovery rates (FDR) for all thresholds to estimate
the number of false positives. The FDR was calculated
with the following formula:

FDR ¼ p−value � m
n

Where the p-value is one of the P-value thresholds
(<0.1, <0.01, <0.001, <0.0001, <0.00001, <0.000001,
<0.0000001 and <0.00000001), m is the number of sig-
nificant variants found in the each threshold and n is the
total number of variants in the class. We chose a GWAS
threshold of P < 0.0001 for our analysis since we found
most enrichment or depletion at that P-value while
FDRs were low, and there were enough significant SNP
for analysis in most classes (Additional files 1 and 2).

Permutation testing to determine enrichment or
depletion of TAVs for annotation classes
We performed a permutation test for each trait to deter-
mine if the observed proportion of significant SNPs in
each annotation was greater than expected by chance
alone. This was done by randomly selecting n variants
(the number of variants found in each annotation class,
Table 1) from the genomic data. As an example, the
exon protein coding sequence (CDS) class has 6364 vari-
ants, therefore we would randomly select 6364 variants
from the genomic total (632003 for dairy and 729254 for
beef ). We selected the total number of random variants
with a GWAS P-value <0.0001 and recorded that num-
ber. We performed this whole process a total of 1000
times to obtain a null distribution of m number of vari-
ants in each annotation. The P < 0.05 value for enrich-
ment was the 950th highest number in the random
permutation test, and P < 0.05 value for depletion was
the 50th lowest number in the random permutation test.

Logistic regression analysis on GWAS data
Logistic regression was applied to model annotations as
variables that influenced trait-association status of the
SNPs thus to eliminate signals from one class been
present in another. The trait-association status was mod-
elled as a binary variable where if a SNP has a GWAS
P <0.0001 we consider it significant and coded as “1”
otherwise it is not considered significant and coded as
“0”. Similarly, we converted all of our functional annota-
tions to binary based on if a variant is found in at a par-
ticular annotation class or not. If a variant is found in a
particular annotation class we coded it with a “1”, if it is
not found in that particular class we code it with a “0”. All
annotations were fitted simultaneously using ASREML
[56]. The estimated effect (regression coefficient) along
with the P-value (multiplied by –Log10) were given. An
annotation with a low P-value and a high estimated effect
is considered as enriched for that trait, while an annota-
tion negative estimated effects is considered depleted for
that trait.

Variance component analysis
The purpose of the variance component analysis was to
determine if SNP in an annotation classes explain more
of the variance than the same number of randomly
chosen intergenic SNP. We calculated the genomic rela-
tionship matrix (GRM) for each class according to Yang
et al. [34], using the genotype information for each SNP.
We determined the measure of similarities between

the GRMs belonging to the annotations, to see if variants
found in one class are also present in another. We did this
by calculating the Euclidean distance between each of the
annotation GRMs using the following formula:

Euc: Dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

mi − pið Þ2
r

Where m and p are the corresponding GRMs for each
functional class.
To calculate the proportion of variance explained for

each independent annotation class we performed a
REML analysis by fitting the following model to the
data:

y ¼ Xb þ Zg þ e

Where y is a vector of phenotypic records, b is a vec-
tor of fixed effects including the breed and sex, X is a de-
sign matrix allocating records to fixed effects, Z is a
design matrix allocating records to breeding values, and g

is a vector of random breeding values, g ∼ N 0;Gσ2
g

� �
,

where g is the genomic relationship matrix described
above, and σ2g is the genetic variance from each class. This

was estimated using ASREML [56], and the estimated
proportion of phenotypic variance (heritability) was
calculated.
To determine the proportion of variance explained by

the same number of random SNP we selected the same
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number of n SNP but from the intergenic variant set.
Similar to what was done above, we calculated the GRM
for the random intergenic data sets and used ASREML
to determine the heritability. This random sampling was
run a total of 5 times to get a standard error and we cal-
culated the average of these 5 runs to obtain the random
set heritability.
Some classes that have a large enough number of vari-

ants, can capture most of the heritability for each trait.
This can be a limitation since it would be difficult to de-
termine the true additional variance explained compared
to that of the randomly selected intergenic set (which it-
self can capture most of the heritability with a large
enough number of variants (Additional file 6)). Annota-
tion classes with a smaller set of variants are not im-
pacted by this, however classes such as the intron class
can be. To get around this limitation we determine the
proportion of genetic variance an annotation explains on
a per SNP basis. This allows us to observe how much of
the variance each SNP contributes to that class and by
fitting our annotations simultaneously on the model
when in the presence of all other annotations. We used
Plink [57] to prepare our data for the software tool
GCTA [35] which was then used to calculate the GRMs
for each annotation, and to performe a REML (restricted
maximum likelihood) analysis.
We fitted our GRMs simultaneously on our model

using GCTA, and recorded the ratio of genetic variance
to phenotypic variance (heritability) for each trait along
with the standard error (S.E). To determine the genetic
variance explained on a per SNP basis we used the fol-
lowing formula for each class:

VarPerSNP ¼ h2 � n
� � � 100
� �

10−4

Where h2 is the heritability and n is the total number
of SNPs in the annotation class. We multiplied this re-
sult by 100 to get a percent (%) of the genetic variance
explained and divided this results by 10−4 for visualiza-
tion of the data.
Availability of supporting data
Dairy and beef cattle SNP annotations for the 777K Illu-
mina bovine HD array are provided in the repository
hosted by LabArchives, LLC (http://www.labarchives.com/)
with DOI: http://dx.doi.org/10.6070/H4N58J9R. Files are
stored in .xlsx format.
Dairy GWAS data is published and available in the

manuscript by Raven et al. [32]. Beef GWAS data is
published and available in the manuscript by Bolormaa
et al. [29].
Additional files

Additional file 1: Dairy cattle enrichment or depletion for trait
associated variants. Results from the enrichment or depletion analysis
across all P-Value thresholds tested from the dairy GWAS. Enriched dairy
traits are labeled as “+”. Depleted dairy traits are labeled as “-“. Non-
significant dairy traits are labeled as “ns”. Table is attached in. xlsx format.

Additional file 2: Beef cattle enrichment or depletion for trait
associated variants. Results from the enrichment or depletion analysis
across all P-Value thresholds tested from the beef GWAS. Enriched beef
traits are labeled as “+”. Depleted beef traits are labeled as “-“. Non-
significant beef traits are labeled as “ns”. Table is attached in. xlsx format.

Additional file 3: Logistic regression analysis on dairy and beef
traits with the CDS class eliminated. We performed a logistic
regression analysis on both beef and dairy traits without the CDS class to
determine the impact this has on the missense and synonymous classes.
The CDS class consist of both missense and synonymous variants, thus
signals form these classes are already represented in the CDS class. By
eliminating the CDS class in our logistic regression analysis, we clearly
see an increase in the significance and the estimated effect for both
classes. Table is attached in. xlsx format.

Additional file 4: Matrix of similarities between the genomic
relationship matrices. The matrix shows the level of similarities
between the genomic relationship matrices for each function class by
calculating the Euclidean distance (measure) between each annotation
GRM. The more similar a GRM is to another the lower the Euclidean
distance measure is.

Additional file 5: Genetic variance explained per SNP in each
annotation class for dairy traits. The following table shows the
heritability for each trait (as a percentage (%)) in each annotation class
along with the average genetic variance explained per SNP (calculated as
the percentage (%)/10−4). Classes that have higher values capture more
of the genetic variance that contributes to the heritability. Lower values
indicate that they only contribute a much smaller amount to the
heritability for that class. Table is attached in .xlsx format.

Additional file 6: Variance component analysis using ASREML in
dairy traits. The following tables show the class heritability for each trait
along with the permutated heritability from the same number but
randomly chosen SNPs (which was replicated 5 times and significance is
determined as greater or less than the average of the proportion of
variance explained by the randomly chosen SNP +/− 2*standard error).
The heritability percent difference is simply the difference between the
class heritability and the permutated heritability. S.E is an abbreviation for
standard error. Table is attached in .xlsx format.
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