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Abstract

Background: Starvation not only affects the nutritional and health status of the animals, but also the microbial
composition in the host’s intestine. Next-generation sequencing provides a unique opportunity to explore gut
microbial communities and their interactions with hosts. However, studies on gut microbiomes have been
conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals
and their changes under changing environmental conditions. To address this shortcoming, we determined the
microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in
the intestine of Asian seabass in response to starvation.

Results: We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria
(48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative
analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but
significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of
orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic
activity in the microbiome were significantly enriched in response to starvation, and host genes related to the
immune response were generally up-regulated.

Conclusions: This study provides the first insights into the fish intestinal microbiome and its changes under
starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic
conditions will shed new light on how the hosts and microbes respond to the changing environment.

Keywords: Fish, Microbiome, Starvation, Stress, Interaction, Nutrition
Background
Wildlife species can often be affected by starvation due to
changes in environmental factors (e.g., temperatures, salin-
ity and oxygen concentration). Starvation not only affects
the nutritional and health status of animals, but also the
microbes in their intestines [1]. Physiological changes dur-
ing starvation drives the animals and their intestinal mi-
crobes to rapidly acclimate to the situation [1-3].
The composition and interactions of the gut micro-

biota may affect the amount of energy extracted from
the diet and energy harvest [4,5], and play an important
role in the metabolism of dietary substrates and immune
system modulation [6]. The balance of gut microbial
community composition can be altered by many factors,
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including stress [7,8], antibiotic exposure [9], nutritional
status [10], age [11], degree of hygiene [12] and bacterial
infection [13]. Diets play a dominant role in shaping gut
microbiota and altering the metabolism and population
sizes of key symbiont species, resulting in biological
changes to the host [14]. An altered microbiota in the
intestine can lead to altered immune functions of hosts,
and also increase the risk of disease [14,15]. However, as
studies on gut microbiomes have largely been performed
on humans and land animals [16-21], not much is
known on gut microbiomes and their changes under
changing environmental conditions in organisms living
in aquatic habitats.
Studies of bacteria community are traditionally carried

out on the basis of representative genomes and signature
genes such as 16S ribosomal RNA (rRNA). However, ana-
lyses of 16S rRNA can only appraise the phylogenetic com-
position of a sample and provide no direct information
about its functional capabilities [22]. Full scale metage-
nomics can augment the information content of the data
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generated by not only determining the relative abundance
of all genes, but a description of the functional poten-
tial of each community as well. Compared with the signa-
ture gene-based methods, this new technique gives a
much broader description than phylogenetic surveys [23].
Recently, an analysis of 16S rRNA was performed to as-
sess the bacteria composition in the grass carp [24,25] and
the zebrafish [26]. However, little is known about the gene
content of fish microbiota and the effects of starvation on
microbial populations in fish.
The Asian seabass Lates calcarifer is an important

farmed foodfish species. The fish has the ability to toler-
ate all levels of salinity from fresh to seawater allowing
them to be cultured in both environments. This species
feeds on crustaceans, mollusks, and smaller fish [27]. In
this study, we sequenced the metagenomic DNA isolated
from the intestine of the Asian seabass using a Hiseq 2000
sequencer. We characterized the intestinal microbiome,
and analyzed the influence of starvation on the compos-
ition of the gut microbial communities. By using compara-
tive metagenomic studies and analyzing expression of
selected host genes with quantitative reverse-transcriptase
PCR (qRT-PCR), we have constructed a primary microbial
gene catalogue, and investigated the changes of the micro-
bial composition and the host-microbe interactions in the
intestine under starvation. Our analysis suggests variable
microbiomes and host-microbiota signatures in the fish
intestines in response to starvation.

Results and discussion
Metagenomic analysis suggests variable microbiomes in
fed vs. starved seabass intestines
The intestine is one of the major organs in fish that in-
teracts with the environment, and is involved in adapta-
tions and stress responses. The intestinal microbiota are
composed of a diverse and vast population of microor-
ganisms [28]. To characterize and compare the microbial
communities in the Asian seabass intestine in response to
starvation, we sequenced two metagenomic DNA samples
isolated from Asian seabass intestines at eight days post
fasting challenge (experimental sample) and from fed sea-
bass intestines (control) by using the Illumina Hiseq 2000
sequencing system. The sequencing yielded 71,254,936
reads for the experimental sample and 64,649,316 reads
for the control sample. The sequences gave an overall
average length of 101 bp and represented 13.7 Gb of DNA
data. After trimming of the low-quality sequences and
adaptors, 69,893,230 and 62,408,866 high-quality reads for
the experimental sample and the control sample were ob-
tained. The high quality reads were classified from phylum
to family using the program MetaPhlAn [29] with the de-
fault settings.
In the control sample, we found that 96.3% of the meta-

genomes were assigned to bacteria and 3.7% were assigned
to Archaea. The metagenome included 33 phyla, 66 clas-
ses, 130 orders and 278 families (Additional file 1). Proteo-
bacteria (48.8%), Firmicutes (15.3%), Bacteroidetes (8.2%)
and Fusobacteria (7.3%) were the four most abundant bac-
teria phyla (Figure 1). The results were generally consist-
ent with those observed in the intestinal samples of other
fish species. In grass carp, Proteobacteria and Firmicutes
were dominant in the gut bacteria [25], and in adult zebra-
fish, Proteobacteria (79.4%) and Fusobacteria (13.6%)
phyla were common members of the intestinal microbiota
[26]. However, there are some differences in the intestinal
microbiota among different fish species. For example, in
grass carp, Actinobacteria (more than 10%) were the most
prevalent members of the intestinal bacterial communi-
ties, and they were more abundant than Bacteriodetes
[25]. In our study, only 1.1% and 0.5% of the microbiota
members were Actinobacteria in the control sample and
in the experimental sample, respectively. Therefore, Acti-
nobacteria were much less abundant than Bacteriodetes
(8.2%) in the Asian seabass intestine. Diet plays a domin-
ant role in shaping gut microbiota and changing key
populations [14,30,31]. The grass carp is an herbivorous
species, while Asian seabass is a strict carnivore, feeding
on crustaceans, mollusks and smaller fish in the wild.
Therefore, the difference in bacterial communities be-
tween grass carp and Asian seabass may be caused by
evolved differences that have arisen in the context of dif-
fering diets. In addition, our data supported prior findings
suggesting that gut microbiota differ between fish and
mammalian intestines. Firmicutes and Bacteroidetes were
the most dominant phyla in mammals [32,33], whereas
Proteobacteria were the most abundant bacteria phyla in
fish. This difference suggests that gut environments differ
in their selectivity/hospitability for bacterial proliferation.
In the experimental sample, we found that 97.7% of the

metagenomes were assigned to bacteria, and 2.3% were
assigned to Archaea (Additional file 1). Proteobacteria
(39.1%), Bacteroidetes (36.0%) and Firmicutes (10.1%)
were the three most abundant bacterial species in the ex-
perimental sample (Figure 1). Both metagenomes showed
very small differences in diversity when reviewed in light
of the numbers of present taxa (Additional file 1). How-
ever, dramatic differences in microbial community com-
position of the fish intestine across samples were observed
(Figure 1 and Table 1). We found that a total of three or-
ders and four families showed apparent shifts in relative
abundance in response to starvation. More detailed infor-
mation on these shifts in microbial community compos-
ition was presented in Additional file 1. These findings are
consistent with previous studies in humans, in which the
relative abundances of different bacterial species in the gut
microbiota were highly sensitive to diet [10,32].
Significantly more reads were assigned to the Bacteroidetes

phylum in the experimental sample (36%) as compared to



Figure 1 Comparison of the taxonomic composition in the intestinal microbiome of Asian seabass in response to starvation. The
relative abundances (percentage) for the top 20 taxa of the metagenomes at phylum and class levels between the control sample (Feed) and the
experimental sample (Fast) are presented. Asterisks indicate significant differences (Bootstrap test: ***P < 0.001).

Table 1 Shift in intestinal microbiota in Asian seabass in
response to starvation

Rank Classification Control (%) Experimental (%) P-value

Phylum Bacteroidetes 8.2 36.0 <1E-15

Class Betaproteobacteria 20.8 7.9 <1E-15

Class Bacteroidia 1.3 24.4 <1E-15

Class Sphingobacteria 1.1 7.8 <1E-15

Order Burkholderiales 20.3 7.4 <1E-15

Order Bacteroidales 1.3 24.4 <1E-15

Order Sphingobacteriales 1.1 7.8 <1E-15

Family Oxalobacteraceae 20.0 7.1 <1E-15

Family Sphingobacteriaceae 1.1 7.8 <1E-15

Family Bacteroidaceae 0.6 23.2 <1E-15

Family Aeromonadaceae 0.1 2.4 <1E-15

The significant changes in microbial composition (relative abundance, %) from
family to phylum in the fish intestines in response to starvation are presented.
P-value indicates significance level as calculated using a bootstrap
statistical test.

Xia et al. BMC Genomics 2014, 15:266 Page 3 of 11
http://www.biomedcentral.com/1471-2164/15/266
the control sample (8.2%). At the class level, Bacteroidia
(1.3% in the control sample vs. 24.4% in the experimental
sample) and Sphingobacteria (1.1% in the control sample
vs. 7.8% in the experimental sample) contributed to higher
percentages of the microbiota in the experimental sample
than in the control sample. The significant elevation of
Bacteroidetes in the intestinal community of the starved
seabass sample is in agreement with some other studies
[2,34,35] on dietary shifts. For example, in mice [34], fast-
ing was associated with a significant increase in the pro-
portional representation of the Bacteroidetes [from 20.6%
(fed) to 42.3% (fasted)]. Bacteroides with a much larger
genome size (e.g., Bacteroides fragilis Strain NCTC9343:
5,205,140 bp) are normally mutualistic in the animal
gastrointestinal flora. A large part of the proteins made by
the Bacteroides genome are able to break down polysac-
charides and metabolize their sugars [36]. They play a fun-
damental role in the processing of complex molecules to
simpler ones in the host intestine. Their ability to harvest
alternative energy sources from food might allow Bacter-
oides to be more competitive than other bacteria in the
fish intestine during starvation.
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In contrast, Firmicutes are more abundant in the con-
trol sample (15.3%) than in the experiment sample
(10.1%). The pattern that the relative abundance of Firmi-
cutes in the gut is positively correlated with dietary caloric
intake is frequently observed in humans, mice, pythons
and in zebrafish [37,38]. In addition, the Betaproteobac-
teria class was more abundant with 20.8% in the control
sample as compared with 7.9% in the experimental sam-
ple. The increased abundance of Betaproteobacteria class
in response to feed was also observed in zebrafish [39],
suggesting that Betaproteobacteria play a role in the inter-
actions between microbiota, diet and hosts in fish.
To better understand the temporal changes of microbial

community composition during starvation, we further
amplified the 16S rRNA sequences from metagenomic
DNA that was isolated directly from the intestine samples
at three, six and twelve days post fast by using conserved
primers targeting the domain Bacteria, and generated six
libraries (one library per treatment per time) for Sanger
sequencing. For each time point of the fasting challenges,
around 350 high-quality sequences with a minimum
length of 500 bp were obtained. The taxonomic classifica-
tion for the control library d12 (fed fishes) is drastically
different from the control libraries d3 and d6 that were
composed entirely of Cetobacterium. This is unexpected
and may suggest that the classification is invalid at lower
level (e.g., species and genus) due to a limitation of the
BLAST-based approach. However, the phylogenetic
analysis of the 16S rRNA gene data suggests a similar
shift of bacteria components post the fasting challenge as
our next generation sequencing-based metagenomic study
(Additional file 2). For example, Bacteroidales were the
most dominant order in the experimental samples, but
were negligible in the control samples; Proteobacteria
phylum (including Yersinia, Pectobacterium, Acinetobac-
ter) and Fusobacteria phylum (including Cetobacterium)
were the most dominant components in the control sam-
ples, but only low proportions of these bacteria were
detected in the experimental samples at the three
time points. Our data showed that the microbial com-
munity composition in the fish intestines can be quickly
changed in response to starvation in less than three days.
However, in human, a 10-day dietary intervention is not
sufficient to alter the enterotype of an individual [40].
Compared to the changes of microbial composition in
humans, the changes of the intestinal microbiota in fish
are more rapid and significant. A recent comparison of
the microbiota of zebrafish intestines and their housing
water under fed and starved conditions suggested that
some bacterial taxa observed in the fish intestine are
found at similar frequency in the water, while other taxa
are enriched specifically in the intestine [39]. This suggests
that the fish gut looks a lot more like the surrounding
environment, and even more so under starvation conditions
due to a limited selective environment as compared
to mammals.

Metagenomic comparisons between fed and starved
fishes by functional investigations
Functional investigations by blasting the metagenomic
data against public databases may reveal the genetic de-
terminants of microbial interactions, and illuminate the
mechanisms responsible for directing the changes in mi-
crobial diversity in response to fasting challenges. In
order to generate a primary catalogue of microbial genes
from the fish intestines, and explore the data differences
caused from the fasting challenge, we first performed
de novo assembly for the high quality reads. The de novo
assembly of the high quality reads from two samples pro-
duced 326,789 scaffold sequences with a N50 length of
1,447 bp. Eighty-three percent of these reads was mapped
back to the assembly. Of the scaffolding sequences,
299,018 sequences had a minimum length of 500 bp
and gave a total length of 443 Mb with a N50 length
of 1,857 bp. Sixty-one percent of the reads from the
control sample and sixty-nine percent of the reads from
the experimental sample were mapped back to the assem-
bled sequences (≥ 500 bp). We then used the software
Prodigal (Prokaryotic Dynamic Programming Gene find-
ing Algorithm v2.15) [41] to predict the whole range of
open reading frames (ORFs) for the metagenomic DNA
sequences (≥ 500 bp). Even though a total of 462,828
ORFs were found, most of the ORFs appeared to be in-
complete. We classified these predicted genes by aligning
them to the Clusters of Orthologous Groups (COG) pro-
tein database that was derived from all of the proteins
encoded by the genomes of bacteria, archaea and unicellu-
lar eukaryotes [42]. We found that 28,989 predicted ORFs
were assigned to 3,182 COG orthologous groups, which
could be classified into 30 COG functional categories
(Additional files 3 and 4). Nearly six percent of the reads
from the control sample and thirteen percent of the reads
from the experimental sample were mapped back to the
predicted ORF sequences with COG annotation.
There were significant differences in read counts of COG

functional categories between the two datasets (Additional
file 4). We found that three functional categories, including
transcription, cell division and chromosome partitioning
and replication, recombination and repair were signifi-
cantly depleted in the experimental samples (P < 1E-15).
Six functional categories, e.g., cell envelope biogenesis,
outer membrane and defense mechanisms were signifi-
cantly enriched during starvation (P < 1E-15; Figure 2).
To further identify genes in the intestinal microbiome,

which are associated with starvation, statistical compari-
sons for the 3,182 COG orthologous groups were per-
formed. Substantial fluctuations in the metagenomic
components were found during starvation. We observed



Figure 2 Comparisons of COG functional categories
significantly enriched or depleted in the Asian seabass
intestinal microbiomes. The relative abundances (percentage) for
nine significant different COG functional categories (P < 1E-15) in
response to fast challenge are presented. ‘Fast’ shows the experimental
samples without feeding and ‘Feed’ shows the control samples that
were given feed.
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that 44 orthologous groups were significantly depleted
(Additional file 5). These included the genes CitF (Citrate
lyase, alpha subunit), EntF (Non-ribosomal peptide syn-
thetase modules and related proteins) and transketolase
(N-terminal subunit). These genes were mainly associated
with energy production and conversion, secondary metab-
olites biosynthesis, transport, and catabolism, and carbo-
hydrate transport and metabolism. Thirty genes were
significantly enriched, including RhsA (Rhs family pro-
tein), NanH (Neuraminidase) and TesA (Lysophospholi-
pase L1 and related esterases). Of the enriched genes, 16
(53%) were associated with functional categories including
Carbohydrate transport and metabolism, Inorganic ion
transport and metabolism, and Amino acid transport and
metabolism.
Gut microbiota provide their host with a physical bar-

rier to pathogen infection by competitive exclusion and
production of antimicrobial substances [43]. Antibiotics
are produced by bacteria to outcompete intestinal patho-
gens. To further explore the microbe-microbe interac-
tions, we downloaded 19,080 prokaryote genes related to
antibiotic activity from UniProt protein database (http://
www.uniprot.org/). By using local blast alignment, 1,674
of the metagenomic sequences were mapped to 300 anti-
biotic related genes (Additional file 6). We found that
seventy-two genes (e.g., ABC transporter related protein,
dTDP-glucose 4,6-dehydratase, glucose-1-phosphate thymi-
dylyltransferase, isoleucine-tRNA ligase 2) were significantly
depleted in the experimental sample. Also seventy-two
genes (e.g., efflux pump membrane transporter BepE,
ribosomal RNA large subunit methyltransferase N) were
significantly overrepresented in the experimental sample
(Additional file 7). The overall mapping rate was only
1.67% in the control sample, while in the experimental
sample, the rate was higher (9.42%) (a ratio of 5.6 between
two datasets). As compared with the overall mapping rate
of the reads to COG orthologous groups (a ratio of 2 be-
tween the two datasets), a much higher proportion of
reads in the experimental sample mapped to antibiotic
related genes. Our data suggest that the relative pro-
portions of bacteria with genes related to antibiotic activ-
ity may be increased in the fish intestine in response to
starvation. Of the enriched genes, at least six genes were
related to beta-lactamase activity, e.g., beta-lactamase
type II, putative beta-lactamase hcpD, putative beta-
lactamase hcpE and beta-lactamase blaTLA-1. An in-
crease in antibiotic-producing strains could benefit the
fish by excluding potential pathogens from colonizing the
intestines. This observation could be due to the reduction
in overall bacterial abundance with the exception of a few
larger genome generalists (in Bacteroidetes) that harbor
antibiotic resistance genes and can, in the conditions of
nutrient deprivation, turn to harvesting host-produced
products. This is in agreement to the human intestine-
adapted bacterial symbiont, which turns to host mucus
glycans when polysaccharides are absent from the diet
[44]. However, it is also possible that these genes may sim-
ply be hitching a ride with a microbe that is a generalist
which can better survive these conditions.

Functional interactions between intestinal microbiota and
their hosts during starvation
The importance of the intestinal microbiome in the de-
velopment of both the intestinal mucosal and systemic
immune systems have been shown in mammals [45]. In
most species of fish, starvation is experienced during
certain periods of every year largely due to environmen-
tal conditions [46,47]. Starvation affects many physio-
logical changes to satisfy its energy requirements in fish
[47]. Recent studies have shown that starvation can in-
duce stress responses in fish. For example, starvation re-
sulted in a significant reduction of the intestine length,
the surface area of the intestinal mucosa and the muco-
sal thickness [48,49] and increased xenobiotic resistance
and paracellular permeability of epithelial cells in the
anterior intestine [50]. To further explore the host-
microbe interactions in fish intestine, ten genes related
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to immunity, defense and inflammatory response and
four genes related to lipid metabolism and transport,
and cholesterol metabolism were selected for expression
analysis (Additional file 8). Temporal expression of the
14 genes was analyzed by qRT-PCR using RNA isolated
from the Asian seabass intestine sampled at three, six and
twelve days post fasting. The expression analysis clustered
these genes into two groups (Figure 3). The apolipopro-
tein and phosphoethanolamine N-methyltransferase 3
genes related to lipid metabolism and transport, choles-
terol metabolism [51,52], and the placenta-specific gene 8
protein gene showing defense response to bacteria [53]
were down-regulated in the starved experimental fish at
all time-points of fasting (2.6 - 61.1 fold). Interestingly,
mucin-2, which provides an insoluble mucous barrier that
serves to protect the intestinal epithelium [54], was weakly
increased at three days post fasting (1.1 fold), but quickly
down-regulated at six and twelve days post fasting (2.2 -
2.3 fold). The intestinal barrier functions as one of the first
lines of defense against microbial pathogens [55]. Dra-
matic decreases in the gene expression of mucin-2 and
placenta-specific gene 8 protein may lead to disruption of
the mucosal barrier in the long term, increasing suscepti-
bility to pathogen infections. Moreover, the immune-
related genes, such as complement C1q-like protein 2
(52–270 fold), class I histocompatibility antigen (20–22
fold) and CD46 (4–15 fold) were highly up-regulated from
samples at three and six days post fast. However, at 12 days
post fasting, immune related genes were only slightly in-
creased, e.g., class I histocompatibility antigen (2 fold) and
CD46 (2 fold), or down-regulated, e.g., complement C1q-
like protein 2 (1.7 fold). These data suggest that long-term
Figure 3 Gene expression profiles in the Asian seabass intestines acro
changes of gene expression in 14 genes at three, six, twelve days post fast
expression and green shows decreased expression in response to fast chal
malnutrition or starvation will damage the mucosal bar-
rier of the Asian seabass by increasing the permeability of
the intestinal mucosal barrier. The intestinal microflora,
especially the opportunistic pathogens could then cross
the intestinal barrier when the intestinal mucosal barrier
is damaged or the normal flora has been destroyed by an-
tibiotics or nutrition deficiency. Based on prior findings
from mammals, short-term stress experienced at the time
of immune activation can enhance innate and adaptive
immune responses, but long-term stress can suppress im-
munity by decreasing immune cell numbers and function
and/or increasing active immunosuppressive mechanisms
[56]. However, the underlying mechanisms of the nexus
between host immune system and intestinal microbiota in
response to nutrient changes need further exploration. Fu-
ture studies targeting the microbial metaproteome and
the interactions between the intestinal microbiota and
their hosts in response to different nutrition conditions or
stressors with a combination of continued sequencing,
cultivation and functional genomics are likely to provide
further insights into the functions of metagenomes in the
fish intestine.

Conclusions
We determined the primary microbial gene catalogue
and investigated the changes of the microbial compos-
ition and host gene expression in the intestine of Asian
seabass in response to starvation. Proteobacteria (48.8%),
Firmicutes (15.3%) and Bacteroidetes (8.2%) were the
three most abundant bacteria phyla. The components of
intestinal microbiota community shifted in response to
starvation with significant enrichment of Bacteroidetes,
ss starvation treatments as revealed by qPCR. A heat map for fold
in the Asian seabass intestine is shown. Red indicates increased
lenge.
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but depletion of Betaproteobacteria. There were signifi-
cant differences in COG functional categories and ortho-
logous groups, and genes related to antibiotic activity in
response to starvation. Genes related to antibiotic activ-
ity in the microbiome were significantly enriched in re-
sponse to starvation, and host genes related to immune
system were generally up-regulated. This study provides
the first insights into the intestinal microbiome and its
changes under starvation in fish. Since our next gener-
ation sequencing datasets are from two pooled samples,
the inter-individual variation can not be evaluated, which
strongly influenced the power of our data analysis. Fur-
ther detailed study on interactions between individual
intestinal microbiomes and hosts under dynamic condi-
tions will shed new light on how the hosts and microbes
respond to the changing environment.

Methods
Ethics statement
All handling of fishes was conducted in accordance with
the guidelines on the care and use of animals for scien-
tific purposes set up by the Institutional Animal Care and
Use Committee (IACUC) of the Temasek Life Sciences
Laboratory, Singapore. The IACUC has specially approved
this study within the project “Breeding of Asian seabass”
(approval number is TLL (F)-12-004).

Fish management, fasting challenge, sample collection
and metagenomic DNA extraction
An Asian seabass population was constructed by mass
crossing of 50 F1 generation Asian seabass in the Marine
Aquaculture Center, Singapore. The fingerlings were
transferred to the animal facility of the Temasek Life
Sciences Laboratory, Singapore. By gradually diminish-
ing the salinity of the water, the fish was accustomed to
living in freshwater. For challenge experiments, twelve
fishes at the age of 11 months (~330 g) were transferred
equally to two 1,000 litre recirculating tanks with water
volume of ~500 litres in each tank. Nearly 30% water
was changed per day. Six fishes in the control tank were
fed to satiation twice daily with pelleted feed (Biomar,
Nersac, FR, France) that was kept in a cold room. The
uneaten feed was removed from the bottom of the tank.
The other six fishes in the test tank were not given ac-
cess to feed before sampling. All fishes were euthanized
by immersion in ice-water (4°C or less) for nearly 20 mi-
nutes at 8 days post fasting. Deceased fish were then
decontaminated with 70% ethanol and transferred into a
laminar flow hood. Entire intestines were removed from
each fish of each tank after dissection under sterile con-
ditions. To isolate microbial cells, the pooled whole in-
testine from the fishes in the same tank were cut into
small pieces and homogenized in ~10-fold dilution of
cold sterile 1× phosphate-buffered saline solution using
autoclaved mortars and pestles, which made it possible to
isolate most of the gut wall-associated microbes. The mix-
tures were centrifuged at low speed, and the suspensions
were filtered with a 100 μm Nylon net filter (Millipore,
Billerica, MA, USA). The filtrate was centrifuged at full
speed for 20 min. The cells were collected for isolation of
metagenomic DNA using the QIAamp DNA Stool Mini
Kit (Qiagen, Valencia, CA, USA) according to the manu-
facturer’s instructions. DNA obtained was submitted to
Macrogen Inc. (South Korea) for 100-cycle paired-end se-
quencing with the Illumina Hiseq 2000 sequencing system
(Illumina, San Diego, CA, USA).

Fasting and sampling of tissues for quantitative real-time
PCR (qPCR) and 16S rRNA sequencing
Thirty-six Asian seabass at the age of three months
(body weight: ~50 g) originally maintained in a 1,000 L
tank containing 500 L of freshwater were divided equally
into two tanks containing 3,00 L of freshwater. Eighteen
fishes, used as a control, were fed twice daily with pel-
leted feed (Biomar, Nersac, FR, France), and the other
eighteen fishes in the test tank were not given access
to feed before sampling. Six fishes from each group
were sacrificed at three, six and twelve days post fast-
ing, respectively. Before experiments, the pestles and
dissecting tools were first soaked in 5% concentration
of Clorox bleach (The Clorox Company, Oakland, USA)
for ~15 minutes, and autoclaved for 20 minutes after
washing and rinsing in ddH2O. The working surface area
and the deceased fish were decontaminated with 70%
ethanol. Small sections (~1 cm of length) from the middle
part of the intestine samples were taken and homoge-
nized in 1 ml of Trizol reagent (Invitrogen, Carlsbad,
USA) with sterile KONTES® pellet pestle driven by a
cordless motor (Fisher Scientific, New Hampshire, USA).
RNA isolation was conducted using the Trizol reagent
(Invitrogen, Carlsbad, USA) according to the manufac-
turer’s instructions. The remaining intestine samples from
each fish was taken for DNA isolation using the QIAamp
DNA Stool Mini Kit (Qiagen, Valencia, CA, USA) accord-
ing to the manufacturer’s instructions.

16S rRNA amplification, cloning and sequencing
Bacterial 16S rRNAs were amplified by PCR using for-
ward primer S-D-Bact-0008-a-S-20 (5′ AGA GTT TGA
TCC TGG CTC AG 3′) [57], which targets the Bacteria
domain, and the reverse primer S-*-Univ-1492-b-A-21
(5′ ACG GCT ACC TTG TTA CGA CTT 3′) [58],
which targets all living organisms. PCR was conducted
as described in Suau et al. [59]. The purified products
were ligated into the pGEM®-T Vector Systems (Promega,
Madison, USA) and then transformed into E. coli strain
XL-1 (Stratagene, CA, USA). Randomly picked clones
from the libraries were sequenced by using single pass
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sequencing using M13 forward sequencing primer
(Promega, Madison, USA) with a 3730 xl DNA analyzer
(Applied Biosystems, Foster city, CA).

Analysis of seabass intestinal gene expression with qPCR
From published transcriptome datasets of the Asian sea-
bass [60-62], 14 genes related to immune and metabolism
activity were selected for analysis of gene expressions in
seabass intestines by qPCR (Additional file 8). One primer
pair for each gene was designed using the program
PrimerSelect (DNASTAR, Wilmington, DE, USA). Gene
expression was analyzed as described in Xia et al. [61].
Briefly, equal aliquots of total RNA from each of the six
fish intestines under the same conditions were pooled,
and around 1 μg of the DNase I-treated total RNA were
reverse transcribed to cDNA by MMLV reverse transcript-
ase (Promega, Madison, Wisconsin, USA) with random
hexamer primers. PCR was performed in triplicate with
the iQ SYBR Green Master Mix as described by the
manufacturer in an iQ™5 Real Time PCR Detection Sys-
tem (Bio-Rad, Hercules, CA, USA). Ten-fold dilutions of
the cDNA preparation were used as DNA templates. For
the PCR reaction in a total volume of 20 μl, a master reac-
tion mix (per tube) contains 10 μl of Supermix, 0.3 μl of
forward primer (300 nM final), 0.3 μl of reverse primer
(300 nM final), and 1 μl of the diluted cDNA template.
Thermal cycling conditions were as follows: 3 min at
95°C, followed by 40 cycles: 95°C for 15 sec, anneal-
ing temperature for 30 sec, 72°C for 30 sec. The PCR
products for each of the primer pairs giving one spe-
cific band were confirmed on 2% agarose gels stained
with Ethidium Bromide fluorescence under ultraviolet
light and by melting curve analysis (only one peak was
observed). Elongation factor-1 alpha gene (EF1A) has
been suggested as the reference gene in qRT-PCR as-
says [63,64]. For analysis of the change of gene expression,
the values of triplicate qPCR reactions were normalized to
EF1A gene expression, calculated by the ΔΔCT method.
The normalized expression values were then used to
construct a heat map by Cluster 3.0 with parameter
settings as hierarchical clustering, uncentered correl-
ation and complete linkage (http://bonsai.ims.u-tokyo.
ac.jp/~mdehoon/software/cluster/software.htm#ctv).

De novo assembly of the intestine metagenomes for the
Asian seabass
Paired-end data were processed to filter the low quality
reads and adaptors using the CLC Genomics Workbench
(CLC bio, Cambridge, MA). De novo assembly of the
high-quality short reads was carried out using the SOAP-
denovo Assembler (V1.05) [65] with assembly parameters
‘-d -D -R -F -K 53’. After assembly, the resulting genomic
sequences with a length less than 500 bp were filtered
out with software NGS QC Toolkit [66]. The software
packages Bowtie 2 [67] and SAMtools [68] were applied
for aligning sequencing reads to the assembled genomic
sequences and retrieving statistical data.

Phylogenetic analysis, gene prediction and functional
classification of the metagenomic data
MetaPhlAn (v1.7.3) is a computational tool for profiling
the composition of microbial communities from metage-
nomic shotgun sequencing data by running BLAST
searches against unique clade-specific marker genes
identified from 3,000 reference genomes [29]. This tool
was used for profiling the composition of microbial
communities from our sequencing reads. The assembled
genomic sequences were used to predict the whole range
of ORFs with Prodigal (Prokaryotic Dynamic Program-
ming Genefinding Algorithm v2.15) [41]. The predicted
ORFs were then aligned to the protein database of
Clusters of Orthologous Groups (COG) database
[69] using BLASTp algorithm with an E-value thresh-
old of E-7. Prokaryote protein gene sequences with the
biological process category annotated as antibiotic resist-
ance or antibiotic biosynthesis were downloaded from
UniProt protein databases and used for gene functional
analysis.
Taxonomic assignment for high quality 16S rRNA se-

quences was carried out using the Ribosomal Database
Project (RDP; http://rdp.cme.msu.edu/) [70]. The rRNA
analysis files downloaded from the RDP website were
then imported into the software MEGAN [71] to analyze
the taxonomic content of DNA reads.

Identification of changed genes, pathways and taxonomic
units in fed vs. starved gut microbiomes
The online tool Xipe (written by Beltran Rodriguez-Muller;
http://edwards.sdsu.edu/cgi-bin/xipe.cgi) provides a non-
parametric statistical analysis of the distribution of samples.
This tool can be used to compare two different populations
and identify the differences between those samples. The
STAMP (Statistical Analysis of Metagenomic Profiles) [72]
is a software package for analyzing metagenomic profiles.
Both tools have been applied or suggested in previous
metagenomic studies [73,74]. In our data analysis, the
proportions of the relative abundance profiles of the
composition of microbial communities exported from
the software MetaPhlAn were first adjusted to read
counts per million mapped. Bootstrap analyses of en-
richment and depletion of bacterial taxa, genes and
pathways between dietary treatments were carried out
using the tool Xipe (with the parameters: sample size
of 5,000 and confidence level of 0.9) and the software
STAMP (with the following parameters: Bootstrap
as statistical test, asymptotic as confidence interval
method, Storey’s FDR as multiple test correction
method and 10,000 bootstrap replicates). A feature is

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm#ctv
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm#ctv
http://rdp.cme.msu.edu/
http://edwards.sdsu.edu/cgi-bin/xipe.cgi
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considered significantly different if it shows significant
differences in both analyses.

Availability of supporting data
The 16S rRNA sequences have been deposited in NCBI
under accession #s: KC599554 - KC601631. The metage-
nomic sequence data are available under the DNA Data
Bank of Japan (DDBJ) Sequence Read Archive database
(accession no.: [DDBJ: DRR004449 and DRR004450]).

Additional files

Additional file 1: Taxonomic profiles detected in the intestinal
metagenomes of the Asian seabass.

Additional file 2: Comparison of the intestinal bacteria variation in
Asian seabass as detected by 16S rRNA sequencing in response to
starvation. The generated 16S rRNA sequences for each sample are
normalized to the total number of the sequences. Each unique color
represents a sample. Each circle represents one taxon.
The area size for each color within a circle is proportional to the relative
abundance of one taxon in different samples. The samples at three, six,
twelve days post fast are named as Fast-d3, −d6 and -d12, and the
controls are named as Feed-d3, −d6 and -d12, respectively.

Additional file 3: The information of significant annotation of the
intestine metagenomes of the Asian seabass against COG database.

Additional file 4: Comparison of COG functional categories of the
intestinal metagenomes in the Asian seabass in response to
starvation.

Additional file 5: COG orthologus groups significantly enriched or
depleted in the intestinal microbiome of the Asian seabass.

Additional file 6: Genes in the Asian seabass intestinal microbiome
involved in antibiotic activity.

Additional file 7: Genes with antibiotic activity significantly
enriched or depleted in the intestinal microbiome.

Additional file 8: Primers used in the expression analysis of
selected genes from the Asian seabass.
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