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Abstract

Background: Top-down mass spectrometry plays an important role in intact protein identification and
characterization. Top-down mass spectra are more complex than bottom-up mass spectra because they often
contain many isotopomer envelopes from highly charged ions, which may overlap with one another. As a result,
spectral deconvolution, which converts a complex top-down mass spectrum into a monoisotopic mass list, is a key
step in top-down spectral interpretation.

Results: In this paper, we propose a new scoring function, L-score, for evaluating isotopomer envelopes. By
combining L-score with MS-Deconv, a new software tool, MS-Deconv+, was developed for top-down spectral
deconvolution. Experimental results showed that MS-Deconv+ outperformed existing software tools in top-down
spectral deconvolution.

Conclusions: L-score shows high discriminative ability in identification of isotopomer envelopes. Using L-score,
MS-Deconv+ reports many correct monoisotopic masses missed by other software tools, which are valuable for
proteoform identification and characterization.
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Background
In the last two decades, bottom-up mass spectrome-
try (MS) has been the mainstream of proteomics anal-
ysis [1-4]. Although it is efficient and high-throughput
for protein identification and quantification, bottom-up
MS has its limitations. It involves a sample preparation
step in which long proteins are digested into short pep-
tides by proteases, reducing its ability to identify various
proteoforms with multiple changes, such as mutations,
post-translational modifications (PTMs), and degrada-
tions [5,6]. In contrast, top-down MS analyzes intact
proteins, making it the method of choice for complex
proteoform identification.
In a mass spectrum, each peak is represented as

(m/z, intensity), where m/z and intensity are the mass-
to-charge ratio and abundance of its corresponding ion,
respectively. Because of the existence of natural isotopes,
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ions of the same chemical formula and charge state have
different m/z values and correspond to a list of spectral
peaks in a mass spectrum, called an isotopomer envelope.
The monoisotopic mass of an ion is the sum of its atomic
masses using the most abundant isotope for each of its
atoms.
Compared with bottom-up mass spectra, top-down

mass spectra are more complex because they often con-
tain many high charge state isotopomer envelopes, some
of which overlap with one another [7,8]. As a result, a
key step in top-down spectral interpretation is to decon-
volute a complex top-down mass spectrum to a list of
monoisotopic masses.
Given the chemical formula and charge state of an

ion, its theoretical isotopomer distribution can be calcu-
lated based on the frequencies of natural isotopes. When
the chemical formula is unknown and the only available
information is its monoisotopic or average mass, the well-
known averagine model [9] can be used to estimate the
chemical formula from the monoisotopic or average mass.
A theoretical isotopomer distribution is represented as a
list of theoretical peaks (m/z, probability), in which m/z
and probility are the mass-to-charge ratio and probability
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of the corresponding isotopomer. In top-down spectral
deconvolution, theoretical isotopomer distributions are
utilized to identify and group isotopic peaks.
Spectral deconvolution of profile mass spectra has been

studied by several groups [7,10]. In this paper, we focus on
centroided spectra. While profile spectra keep all infor-
mation of raw data, centroided spectra simplify data rep-
resentation and speed up spectral deconvolution. Similar
to mass spectra, isotopomer distributions can be repre-
sented in the profile or the centroided mode (Additional
file 1: Figures S1 and S2). The centroided mode will be
used in the proposed scoring function.
Many software tools have been developed for top-down

spectral deconvolution [7,10-12]. Most tools deconvolute
a top-down mass spectrum in four steps. First, candi-
date isotopomer envelopes are extracted from the experi-
mental spectrum and matched to theoretical isotopomer
distributions. Second, the theoretical isotopomer dis-
tribution in a match is converted into a theoretical
isotopomer envelope by scaling the probabilities to theo-
retical peak intensities. The scale ratio is estimated based
on the peak intensities of the experimental isotopomer
envelope. Third, the matches are evaluated by a scoring
function, and a match is reported only if its score is higher
than a specified threshold. Finally, a monoisotopic mass is
obtained from each of the reported isotopomer envelopes.
The scoring function for evaluating experimental iso-

topomer envelopes determines the accuracy and sensitiv-
ity of spectral deconvolution. Designing a good scoring
function is a challenging problem because complex mass
spectra often contain many noise peaks and overlapping
isotopomer envelopes. Most software tools use scoring
functions based on the intensities of peaks in a pair of
experimental and theoretical isotopomer envelopes, such
as the sum of squared errors of peak intensities [7], the
ratios of neighbouring peak intensities [13], and the dot
product of intensity distributions [12]. The scoring func-
tion in MS-Deconv [8] combines peak intensities and
errors inm/z values.
In this paper, we present a new scoring function,

L-score, for computing the similarity between a pair
of experimental and theoretical isotopomer envelopes.
L-score can be used independently for spectral decon-
volution or combined with other spectral deconvolution
tools for envelope selection.We developed a software tool,
MS-Deconv+, by combining MS-Deconv and L-score.
Experiments showed that MS-Deconv+ outperformed
other existing software tools in top-down spectral
deconvolution.

Methods
Data sets
A data set from Salmonella typhimurium (ST) [14] was
used for training and testing L-score. Cell lysate obtained

from ST was analyzed with a C4-based high-performance
liquid chromatography (HPLC) column coupled with an
LTQ-Orbitrap mass spectrometer. A total of 4, 636 col-
lision induced dissociation (CID) tandem mass spectra
were acquired. The charge states of the spectra range from
1 to 24; the precursor masses of the spectra range from
1, 000 to 20, 000 Dalton (Da). (See Ref. [14] for the detailed
experimental procedure.)
Two Escherichia coli (EC) data sets were utilized to test

L-score and MS-Deconv+. Cell lysate of EC was analyzed
by a reversed phase liquid-chromatography (RPLC) cou-
pled with an LTQ-Orbitrap Velos mass spectrometer. A
total of 3, 704 higher-energy C-trap dissociation (HCD)
and 4, 045 electron-transfer dissociation (ETD) tandem
mass spectra were collected at a resolution of 60, 000.

Theoretical and experimental envelopes
Since the proposed scoring function is designed for cen-
troided data, only centroided isotopomer distributions
and centroided mass spectra are studied. In a centroided
isotopomer distribution, two isotopomers are treated as
the same if they contain the same number of neurons. For
example, a water molecule with two 1H atoms and one
18O atom and another water molecule with two 2H atoms
and one 16O atom are treated as the same although their
masses are slightly different. As a result, isotopomers with
the same number of neurons are represented by one peak.
When the charge state of an ion is z, the distance between
two neighbouring peaks in its centroided theoretical iso-
topomer distribution is approximately 1.00235/z thomson
(Th) [7].
Top-down mass spectra contain some noise peaks. The

noise intensity level of a spectrum is estimated by plot-
ting the histogram of the peak intensity distribution and
assuming that it is in the intensity bin with the largest
number of peaks [7]. A peak is considered as a signal peak
if its intensity is higher than the noise intensity level. In
addition, a charge state is valid if it is no larger than a
user-defined parameter.
We generate a theoretical isotopomer envelope as fol-

lows. First, we select a signal peak from a mass spectrum
and a valid charge state z. The signal peak is called the
base peak of the theoretical and its corresponding experi-
mental isotopomer envelopes. Second, using the averagine
model, we find a monoisotopic mass and its correspond-
ing theoretical isotopomer distribution with the charge
state z such that the m/z value of its most abundant iso-
topomer equals that of the base peak. Third, the peaks
in the theoretical isotopomer distribution are matched to
experimental peaks with similar m/z values in the spec-
trum. Finally, the intensities of the theoretical peaks are
initialized as their probabilities and further scaled based
on the intensities of the matched experimental peaks
(Figure 1). Following the method in MS-Deconv, we scale
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Figure 1 Steps for matching a theoretical envelope with an experimental envelope. (a) A mass spectrum contains an experimental envelope
with four peaks p′

1, p
′
2, p

′
3, p

′
4. One peak p

′
2 is selected as the base peak. (b) For a given charge state z, the averagine formula of a charge z ion is

computed such that them/z value of its most abundant isotopomer equals that of the base peak, and the theoretical isotopomer distribution is
obtained. (c) The theoretical peaks in the theoretical isotopomer distribution are matched to experimental peaks with similarm/z values in the
mass spectrum. (d) The theoretical peak intensities, which are initialized as the isotopomer probabilities, are scaled so that the sum of the intensities
of the top three peaks (red bold peaks) in the theoretical envelope is the same to that (black bold peaks) of the experimental envelope.

theoretical peak intensities so that the sum of the intensi-
ties of the top three theoretical peaks equals that of their
corresponding experimental peaks. If the scaled inten-
sity of a theoretical peak is not higher than the noise
intensity level, the theoretical peak is removed. The list
of the remaining scaled peaks is referred to as a the-
oretical isotopomer envelope, or a theoretical envelope
for brevity.
Given a theoretical envelope, a list of experimental

peaks is extracted from the mass spectrum to form its
corresponding experimental envelope by matching each
peak in the theoretical envelope to an experimental peak
with a similar m/z value (within an error tolerance). If
such an experimental peak is not found, we add into
the spectrum a zero-intensity peak whose m/z value is
equal to the theoretical peak. A theoretical envelope
and its matched experimental envelope are called an
envelope match.

Training and test data sets
We generated and annotated a set of envelope matches
from the ST data set for training and testing L-score.
In short, after tandem mass spectra were identified by

database search, the resulting protein-spectrum-matches
were utilized to obtain annotated envelope matches. The
detailed steps are described below.
ReAdW (http://tools.proteomecenter.org/software.php)

was used to convert the Thermo raw file into a centroided
mzXML file. MS-Deconv [8] was applied to extract a list
of monoisotopicmasses and their corresponding envelope
matches from each tandem mass spectrum of the ST data
set. The deconvoluted mass lists were searched against
a target-decoy concatenated ST proteome database using
MS-Align+ [15]. Default parameter settings were used
in MS-Deconv and MS-Align+. The Benjamini-Hochberg
procedure [16,17] was employed to estimate false dis-
covery rates (FDRs) for identified protein-spectrum-
matches. When the E-value cutoff was 5.74 × 10−4,
a total of 493 target protein-spectrum-matches were
identified and no decoy protein-spectrum-matches were
reported. We assume the 493 target protein-spectrum-
matches are all correct because they have an estimated
0% spectrum level FDR. Of the “correct” identifications,
468 protein-spectrum-matches, from 83 proteoforms of
67 proteins, do not contain PTMs (some may have
truncations).

http://tools.proteomecenter.org/software.php
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Since the PTM localization problem has not been fully
solved in top-down spectral analysis, we used only the
468 protein-spectrum-matches without PTMs to gener-
ate training and test envelope matches. For each of the
83 proteoforms, we selected only one identified spec-
trum with the largest number of monoisotopic masses
to remove similar spectra. The resulting 83 spectra con-
tained 7,995 envelope matches. If the monoisotopic mass
of an envelope match was mapped to a theoretical frag-
ment ion of the identified proteoform within 15 parts
per million (ppm), the envelope match was labeled as
“correct”, otherwise, “incorrect”. Since the data set con-
tains only CID tandemmass spectra, b- and y-ions as well
as b- and y-ions with neutral losses (b-H2O, b-N3H,
y-H2O, y-N3H) were used for labeling envelope matches.
In addition, ±1 Da errors were allowed in mapping
monoisotopic masses of envelopes to theoretical fragment
ions because they are common in extractingmonoisotopic
masses from isotopomer envelopes. Out of the 7,995 enve-
lope matches, 3,726 were labeled as “correct”, and 4,269
were labeled as “incorrect”.
L-score uses several features whose computation

involves the number of peak pairs in an envelope match.
Thus, we divided the 7,995 envelope matches into 4
groups with 2, 3, 4, and ≥ 5 peak pairs, which contained
924, 1, 284, 2, 017, and 3, 770 envelope matches, respec-
tively. The envelopematches in each group were randomly
divided into training and test envelope matches of the
same size. (If one group contains 2n+1 envelope matches,
where n is an integer, the training data set contains n enve-
lope matches and the test data set contains n+ 1 envelope
matches).
We also generated a test set of envelope matches from

the EC HCD data set. Following the method for the ST
data set, we identified 1, 537 protein-spectrum-matches
with an estimated 0% spectrum level FDR, including 625
protein-spectrum-matches without PTMs from 242 pro-
teoforms of 109 proteins. For each of the 242 proteoforms,
we chose a matched spectrum with the largest number
of monoisotopic masses. Finally, a set of 27, 091 enve-
lope matches was obtained, including 9, 744 “correct” and
17, 347 “incorrect” ones. They were further divided into
4 groups with 2, 3, 4, and ≥ 5 peak pairs, which con-
tained 1, 535, 4, 572, 3, 894, and 17, 090 envelope matches,
respectively.

Features of envelope matches
Let S be an experimental mass spectrum. A peak in
an isotopomer envelope is represented by a pair (x, y),
where x and y are the m/z value and intensity, respec-
tively. Let E = (x1, y1), (x2, y2), · · · , (xk , yk) be a the-
oretical envelope where x1 < x2 < . . . < xk , and
E′ = (

x′
1, y′

1
)
,
(
x′
2, y2

)
, · · · , (x′

k , y
′
k
)

its corresponding

experimental envelope in S. Each theoretical peak (xi, yi)
is mapped to the experimental peak

(
x′
i, y′

i
)
for 1 ≤ i ≤ k.

Below we describe five features for distinguishing correct
envelope matches from incorrect ones.

M/z values In a correct experimental envelope, a peak
is likely to have the same m/z value to its correspond-
ing theoretical peak. Differences in m/z values between
experimental and theoretical peaks are an effective feature
for envelope evaluation. The squared m/z error between
two peaks (x, y) and (x′, y′) is (x − x′)2 (Additional file 1:
Figure S3). Them/z distance between E and E′ is the root
mean square deviation of them/z values of their matched
peak pairs. If a theoretical peak does not match any exper-
imental peak and a zero-intensity peak is added to form a
peak pair, the peak pair is excluded from the computation
of them/z distance. Let P be the set of peak pairs of E and
E′ without zero-intensity peaks. We define

dx(E,E′) =

√√√√
∑

((x,y),(x′,y′))∈P
(x − x′)2

|P| .

Peak intensity distributions The difference between the
peak intensities of a theoretical peak and its correspond-
ing experimental peak in correct envelope matches is
often smaller than that in incorrect ones [7]. To design
the distance function for peak intensities used in L-score,
the following factors are considered. First, experimental
envelopes have various average peak intensities. To com-
pare these envelopes, raw peak intensities are converted
into relative intensities by dividing them by the largest
peak intensity in the theoretical envelope. For a peak with
raw intensity y, the relative intensity of the peak is r(y) =
y/yh, where yh is the raw intensity of the highest peak
in the theoretical envelope (Additional file 1: Figure S4).
Second, a correct experimental peak may overlap with
peaks from other envelopes, making its intensity error
very large. To make the feature more reliable, a threshold
is introduced so that the distance function is not signifi-
cantly affected by one very large error in a pair of matched
peaks. Third, the difference between the intensities of a
theoretical peak (x, y) and its corresponding experimen-
tal peak (x′, y′) may be large, e.g., r(y′) − r(y) > 0.5 or
r(y′) − r(y) < −0.5. The main reason for the first case
(r(y′) − r(y) > 0.5) is that the experimental peak over-
laps with other peaks, but the reason for the second case
(r(y′) − r(y) < −0.5) is not clear. It is more frequent to
observe the first case than the second (Additional file 1:
Figure S5). Thus, a penalty factor is applied to the sec-
ond case. Let t be the threshold for large errors and c
the penalty factor. The distance function of a theoretical
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peak p = (x, y) and its corresponding experimental peak
p′ = (x′, y′) is

dy(p, p′) =
{
min{|r(y) − r(y′)|, t}, if y < y′;
c · min{|r(y) − r(y′)|, t}, otherwise.

In the experiments, t = 0.5 and c = 2. The distance
between the intensity distributions of E and E′ is the root
mean square of the intensity distances of their matched
peak pairs:

dy(E,E′) =

√√√√√
k∑

i=1

(
dy(pi, p′

i)
)2

k
.

Supporting envelopes In top-down spectral deconvolu-
tion, the first step is to extract from a mass spectrum a
list of candidate experimental envelopes that satisfy some
basic requirements [8]. For example, a candidate exper-
imental envelope cannot have 3 or more missing peaks.
If the candidate envelope list contains two envelopes that
have the same monoisotopic mass and different charge
states, then one envelope is called a supporting enve-
lope of the other. For an experimental envelope E′ with f
supporting envelopes, we define

s(E′) =
{
f , if f ≤ 3;
3, otherwise.

Neutral loss envelopes If the monoisotopic masses m1
andm2 of two envelopes E′

1 and E′
2 in the candidate enve-

lope list satisfy that m1 − m2 equals (within an error
tolerance) the mass of an NH3 or H2O molecule, then
E′
2 is a neutral loss envelope of E′

1. For an experimental
envelope E′ with f neutral loss envelopes, we define

l(E′) =
{
f , if f ≤ 3;
3, otherwise.

In the implementation of L-score, the envelope detec-
tion and selection methods in MS-Deconv are used to

generate candidate envelope lists, in which supporting
envelopes and neutral loss envelopes are identified.

Missing peak numbers Peaks may be absent from
experimental envelopes. In the generation of candidate
envelopes, an experimental envelope is removed if it has≥
3 missing peaks, 3 theoretical peaks and 2 missing peaks,
or 2 theoretical peaks and 1 missing peak. In addition, an
experimental envelope is removed if it does not contain
k − 3 consecutive matched peaks, where k is the num-
ber of peaks in the theoretical envelope. As a result, most
missing peaks in experimental envelopes are at the ends of
isotopomer distributions. Therefore, locations of missing
peaks are not included in L-score. Since envelope matches
without missing peaks have a higher accuracy rate than
those with missing peaks (Additional file 1: Figure S6), we
introduce another feature m(E′) to represent the number
of missing peaks in an experimental envelope E′.

The scoring function
Wedesigned L-score using a linear combination of the five
features:

L(E,E′) = a1dx(E,E′) + a2dy(E,E′) + a3s(E′) + a4l(E′)
+ a5m(E′).

Logistic regression was applied to find the weights in
the linear combination for each of the 4 groups (the peak
pair number = 2, 3, 4,≥ 5) using the ST training envelope
matches. The resulting weights are listed in Table 1. The
largest (absolute value) weight is from the feature of m/z
distances, showing the importance of this feature.
To compare envelope matches from different peak pair

number groups, we trained a lookup table for each peak
pair number group to convert raw scores L(E,E′) to local
FDRs using the ST training data set. Given a raw score and
a peak pair number group, we count the numbers of cor-
rect and incorrect envelope matches in the training group
whose scores are similar to the given score (the bin size
is 0.02) and use the two numbers to estimate the local

Table 1 The weights of the features in L-score reported by logistic regression using the ST training envelopematches

Feature
#peak pairs=2 #peak pairs=3 #peak pairs=4 #peak pairs≥5

Weight P-value Weight P-value Weight P-value Weight P-value

M/z distance 3.237 3.5E-4 4.987 2.0E-16 3.942 2.0E-16 3.820 2.0E-16

Intensity distribution 0.851 0.028 1.565 2.8E-8 1.448 6.2E-8 1.349 2.0E-10

#supporting envelopes -1.517 1.6E-5 -1.471 8.7E-9 -1.958 2.0E-16 -0.992 2.0E-16

#neutral loss envelopes -2.491 5.5E-13 -0.810 2.38E-7 -0.795 2.8E-13 -0.343 1.1E-11

#missing peaks - - 0.277 0.198 0.386 9.1E-3 0.096 0.314

When the number of peak pairs is 2, the weight for the number of missing peaks (featurem(E′)) is not used because this group does not contain any experimental
envelopes with missing peaks.
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FDR. In practice, candidate envelope matches of a top-
down mass spectrum are ranked and selected based on
their estimated local FDRs.

Combination of MS-Deconv and L-score
MS-Deconv deconvolutes top-down mass spectra with
four steps. First, a list of envelope matches is generated
by enumerating all valid charge states and all signal peaks
in a mass spectrum as base peaks. Second, all envelope
matches are filtered based on the number of missing peaks
and the number of consecutive matched peaks. Third,
a graph model is employed to select a small number of
envelope matches from the list that can explain the spec-
trum well. Fourth, the number x of envelope matches to
report is specified by the user or estimated by the pre-
cursor mass when a tandem mass spectrum is analyzed.
(When the precursor mass isM, the length L of the target
protein is estimated as �M/mavg�, where mavg is the aver-
age mass of the 20 amino acid residues, and the number
of envelope matches to report is estimated as 2(L − 1).)
The envelope matches selected in the previous step are
ranked by their similarity scores, and the top x envelope
matches are reported. Finally, monoisotopic masses are
extracted from the top x envelope matches. The similar-
ity scoring function used in MS-Deconv is referred to as
M-score.
To combine L-score with MS-Deconv, M-score is

replaced by L-score (and the local FDR) in the fourth step
of MS-Deconv (Additional file 1: Figure S7). By combin-
ingMS-Deconv and L-score, we developed a new software
tool, MS-Deconv+, for top-down spectral deconvolution.
Since local FDRs are reported with L-scores for envelope
matches in MS-Deconv+, a local FDR threshold can be
specified to decide the number of envelope matches to
report.
In practice, MS-Deconv+ with default weights of fea-

tures is first used to analyze data sets that are different
from the training data set. To further improve the per-
formance of MS-Deconv+, MS-Align+ can be utilized to
identify highly confident protein-spectrum-matches and
generate a set of training envelope matches to train the
weights of features.

Results and discussion
We implemented L-score and MS-Deconv+ in Java and
tested them on the ST and EC data sets.

Comparison of distance functions for peak intensity
distributions
We proposed a function dy(E,E′) for measuring the dis-
tance between the peak intensity distributions of a the-
oretical envelope E and an experimental envelope E′.

To evaluate the performance of the function, we com-
pared it with the dot product and the Kullback-Leibler
(KL) divergence of peak intensity distributions on the ST
test envelope matches. The dot-product is a function for
computing the similarity between two vectors, which is
used in Hardklör [12]. In an envelope match (E,E′), the
peak intensity distributions of the theoretical envelope
E = (x1, y1) , (x2, y2) , . . . , (xk , yk) and the experimental
envelope E′ = (

x′
1, y′

1
)
,
(
x′
2, y′

2
)
, . . . ,

(
x′
k , y

′
k
)
are repre-

sented as two vectors (y1, y2, . . . , yk) and
(
y′
1, y′

2, . . . , y′
k
)
.

The two vectors are normalized to unit vectors before the
dot product is calculated. The KL divergence is a func-
tion for measuring the relative entropy of one distribution
from another distribution. For two discrete probability
distributions P and Q, the KL divergence of Q from P
is

∑
i ln

(
P(i)
Q(i)

)
P(i). To compute the KL divergence of E′

from E, the two vectors (y1, y2, . . . , yk) and
(
y′
1, y′

2, . . . , y′
k
)

are converted into two probability distributions by divid-
ing each peak intensity by the sum of peak intensities of
the envelope. The three functions were tested on the 4
groups (the peak pair number = 2, 3, 4,≥ 5) of the ST
test envelope matches and compared based on the area
under the curve (AUC) with respect to the receiver oper-
ating characteristic (ROC). The comparison shows that
dy(E,E′) is more powerful than the other two functions in
discriminating correct envelope matches from incorrect
ones, especially when the envelopes contain 4 peak pairs
(Figure 2).

Discriminative abilities of single features and L-score
We tested the discriminative abilities of the five single
features and L-score on the ST test data set and the EC
HCD test data set (Figure 3). The m/z distance has the
best AUC among all the features. Compared with the
single features, L-score improves the discriminative abil-
ity, demonstrating the advantage of combining multiple
features (Figure 3).
Some test envelope matches have missing peaks,

but the features for m/z distances and peak inten-
sity distributions do not utilize this important infor-
mation. We further compared the performance of the
two features and L-score on envelope matches with-
out missing peaks (Figure 4). L-score still outper-
formed the two single features in evaluating envelope
matches.

Comparison with other scoring functions
We compared L-score with M-score, the dot product,
and the KL divergence on the 3, 998 envelope matches in
the test ST data set and the 16, 020 envelope matches in
the test EC ETD data set. (See Additional file 1 for the
parameter settings.) The ROC curves of the four func-
tions demonstrate that M-score and L-score significantly



Kou et al. BMC Genomics 2014, 15:1140 Page 7 of 10
http://www.biomedcentral.com/1471-2164/15/1140

Figure 2 Comparison of the distance function dy(E, E′), the dot product, and the KL divergence of peak intensity distributions on the ST
test data set. For each of the four groups (the number of peak pairs = 2, 3, 4, ≥ 5), the AUCs of the three functions are compared.

increase the AUC compared with the other two functions
(Figure 5). Compared with M-score, L-score increases the
AUC from 0.696 to 0.825 for the ST test envelope matches
and from 0.678 to 0.816 for the EC HCD test envelope
matches.

Combination of L-score and Decon2LS
Decon2LS [11], a reimplementation of THRASH [7],
reports a list of ranked envelopematches from a top-down
mass spectrum. To test L-score coupled with Decon2LS,
L-score was utilized to re-rank the envelope matches

Figure 3 Comparison of L-score and the five single features. The AUCs of L-score and the five single features for the four groups (the number of
peak pairs = 2, 3, 4,≥ 5) are compared. (a) The ST data set. (b) The EC HCD data set.
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Figure 4 Comparison of L-score and the two features form/z distances and peak intensity distributions on envelope matches without
missing peaks. The AUCs of L-score and the two single features for the four groups (the number of peak pairs = 2, 3, 4,≥ 5) are compared. (a) The
ST data set. (b) The EC HCD data set.

in the list reported by Decon2LS. Two lists of ranked
envelope matches (one by Decon2LS and the other by L-
score coupled with Decon2LS) were generated for each
of 242 mass spectra in the EC HCD test data set. For
each i = 1, 2, . . . , 20, we collected two sets of enve-
lope matches with the rank i from the lists of ranked
envelopematches reported byDecon2LS and L-score cou-
pled with Decon2LS and then compared their accuracy
rates (Additional file 1: Figure S8). L-score coupled with
Decon2LS reported more correct top ranked enveloped
matches than Decon2LS. In practice, when Decon2LS
reports x envelope matches from a mass spectrum, the

following procedure can be used to boost the accuracy
rate of reported envelope matches. The RL-value thresh-
old of Decon2LS is lowered so that the number of enve-
lope matches extracted from the spectrum is larger than x.
Then L-score is utilized to re-rank the envelope matches,
and only the top x ones are reported.

Comparison of Decon2LS, MS-Deconv andMS-Deconv+ on
spectral identification
All the tandem mass spectra in the EC HCD and ETD
data sets were deconvoluted by Decon2LS, MS-Deconv,
and MS-Deconv+; the deconvoluted mass lists reported

Figure 5 Comparison of the ROC curves of L-score, M-score, the dot product, and the KL divergence on the ST and EC HCD test data sets.
(a) The ST test data set. The AUCs of L-score, M-score, the dot product, and the KL divergence are 0.825, 0.696, 0.608, and 0.602, respectively. (b) The
EC HCD test data set. The AUCs of L-score, M-score, the dot product, and the KL divergence are 0.816, 0.678, 0.663, and 0.655, respectively.
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Figure 6 Comparison of Decon2LS, MS-Deconv, and MS-Deconv+ on spectral identification by coupling themwith MS-Align+. The
numbers of tandemmass spectra identified from the EC HCD and ETD data sets by the three methods with 1% protein level FDR are compared.
(a) The EC HCD data set. (b) The EC ETD data set.

by the three tools were searched against the EC pro-
teome for protein identification using MS-Align+ [15].
(See Additional file 1 for the parameter settings of MS-
Align+ and the three tools.) The EC proteome database
was downloaded from the Swiss-Prot database, and a
shuffled database of the same size was concatenated to
the target protein database for estimation of FDRs. With
1% protein level FDR, MS-Deconv+ coupled with MS-
Align+ identified more spectra (1, 585 in HCD and 1, 223
in ETD) than MS-Deconv (1, 543 in HCD and 1, 216 in
ETD) and Decon2LS (1, 526 in HCD and 620 in ETD)
(Figure 6). The three methods shared a total of 1, 352
spectral identifications in the EC HCD data set and 607
spectral identifications in the EC ETD data set. Although
the performances of MS-Deconv+ and MS-Deconv were
similar in the number of identified spectra, MS-Deconv+
reported more matched monoisotopic masses (55, 731 in
HCD and 24, 235 in ETD) than MS-Deconv (41079 in
HCD and 21, 360 in ETD) and Decon2LS (39, 991 in HCD
and 10, 479 in ETD) for the spectra identified by all the
tools. These matched masses play an important role in
localizing various changes in identified proteoforms.

Conclusions
In this paper, we proposed L-score for evaluating
experimental isotopomer envelopes, which outperformed
existing scoring functions in distinguishing correct
experimentalenvelopes from incorrect ones. We further
developed MS-Deconv+, a top-down spectral deconvo-
lution tool that combines MS-Deconv and L-score. In
the experiments on the two EC data sets, MS-Deconv+
reported more correct monoisotopic masses than MS-
Deconv. These correct monoisotopic masses provide

essential information for proteoform identification and
characterization.
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