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Abstract

Background: Divergence in gene regulation has emerged as a key mechanism underlying species differentiation.
Comparative analysis of co-expression networks across species can reveal conservation and divergence in the
regulation of genes.

Results: We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods
based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison
of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and
network neighbourhood conservation, we also applied recent advancements in network analysis to do
cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as
network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression
threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs,
in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but
where much less conserved across species than gene centrality. Although individual gene-gene co-expression had
massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes
with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog
with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with
the most conserved gene regulation in over half of the cases.

Conclusions: We have provided a comprehensive analysis of gene regulation evolution in plants and built a web
tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool
can be particularly useful for identifying the ortholog with the most conserved regulation among several
sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for
perturbation experiments.
Background
A functional role has been ascribed to only about half of
all plant protein coding genes to date. For a given spe-
cies the majority of functional information is typically
transferred from Arabidopsis thaliana orthologs identi-
fied by sequence similarity searches. However, due to the
existence of large gene families in plants, these searches
frequently identify several alternative orthologs for each
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gene. Adding to this complexity, gene function can
often only be understood in the context of other genes
(as emergent properties) [1,2], and accumulating evidence
suggests that divergence in gene regulation rather than
the protein coding sequence is the main driving force be-
hind species differentiation [1,3,4]. Therefore, a powerful
and appealing approach to studying gene function across
species is to combine traditional methods based on indi-
vidual genes and static sequence information (comparative
genomics) with network-based methods that incorporate
dynamic omics data (comparative regulomics).
Gene expression databases have been expanding rap-

idly since the first high-throughput microarray studies
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were published in the 1990s [5,6]. Resources such as the
Gene Expression Omnibus [7] now enable us to compile
datasets from several species that extensively profile
gene expression dynamics across large panels of stress
conditions, developmental gradients, tissues and geno-
types. Hence, we are now, for the first time, able to
extensively compare gene regulation across multiple spe-
cies. Cross-species analysis of gene regulation can be
achieved by directly comparing expression profiles or by
indirectly comparing co-expression clusters or networks
[8]. Direct comparison of profiles requires gene expres-
sion to be quantified in comparable samples or tissues
in two or more species (e.g. [9-11]). For example, Patel
et al. [11] identified orthologs with the most correlated
expression profiles across equivalent tissues (“expresso-
logs”) in seven plant species. Comparison of co-
expression across species, on the other hand, examines
to what degree co-expressed genes in one species are
also co-expressed in another species, and thus does not
depend on comparable samples (e.g. [12,13]). For ex-
ample, Yim et al. [13] computed gene function enrich-
ment in lists of co-expressed genes and compared the
results across eight plant species.
A general approach to cross species comparison of

gene regulation is that of network alignment, that is, to
compare co-expression networks by constructing a map
connecting nodes (i.e. genes) across the networks (i.e.
species). As is the case for sequence alignment, network
alignment methods can produce both local and global
alignments between two or more species. Furthermore,
network alignments can map either individual genes or
entire modules of highly connected genes [14], and the
map can be purely ortholog-based (i.e. based on se-
quence similarity) [14,15], purely topology-based (i.e.
based on network similarity) [16] or a combination of
the two [17-21]. Network alignment methods were ini-
tially developed for protein interaction networks [22].
Some of these methods incorporated models of protein
network evolution [23], while such models have only re-
cently been proposed for transcriptional networks [4].
In plants, three particularly interesting network-based

studies of co-expression conservation have been pub-
lished (for a review see Movahedi et al. [24]). Mutwil
et al. [25] computed the similarity of co-expression net-
work vicinities based on Pfam [26] across seven plant
species. The method has also been used to construct a
consensus co-expression network for cellulose synthase
(CESA) genes involved in secondary cell wall formation
[27]. Mohavedi et al. [28] computed the similarity be-
tween co-expression network neighbourhoods, based on
the expression context conservation (ECC) score, in A.
thaliana and Oryza sativa. Both approaches were purely
ortholog-based. Ficklin et al. [29], however, used a net-
work alignment method called IsoRankN [21], which
combines both ortholog and topology information, to
align co-expression networks of O. sativa and Zea mays.
Beyond comparing gene-gene links and network

neighbourhoods directly, methods have recently been
developed to examine global and local properties of net-
works to gain insight into their evolution. One global
property of biological networks is that they tend to be
scale-free, that is, the distribution of the number of links
(i.e. neighbours) per node follows a power law [30-32]. A
consequence of this is that most nodes have few neigh-
bours while a few nodes (called hubs) have many neigh-
bours. Networks can also be used to identify central
genes. Genes with many neighbours have high degree
centrality and genes with neighbours that have many
neighbours have high average nearest neighbour central-
ity. These are both examples of genes with high local
centrality, while genes that often are part of the shortest
route between two arbitrary genes in the network are ex-
amples of genes with high global centrality (betweenness
centrality). Another property of biological networks is
that they are modular and consists of sparsely connected
network motifs [33,34]. Network motifs are recurring
patterns of links between a small number of nodes (e.g.
the feed-forward loop), and it has been suggested that
significantly recurring motifs are templates used to
realize particular functions effectively and that networks
partially evolve through reuse of such motifs [35]. Sev-
eral of these network properties was described in a co-
expression network of A. thaliana [36].
While previous comparative studies in plants have re-

vealed interesting properties of gene expression conserva-
tion, these studies have not utilized recent advancements
in network-based analysis. In particular, network proper-
ties, such as gene centrality and network motifs, have not
been investigated. Here we present a comprehensive study
of A. thaliana, Populus spp. and O. sativa co-expression
networks that compares network properties and motifs as
well as co-expression links and neighbourhoods. Further-
more, previous studies inferred networks using Pearson
correlation, a measure that has numerous issues [37],
and only compared networks at a fixed co-expression
threshold. We conduct our analysis over a range of co-
expression thresholds and infer networks using mutual in-
formation (MI) and context likelihood of relatedness
(CLR), an approach shown to be state of the art in com-
parative studies [38,39]. As a result, our approach yielded
several novel biological observations. For example, we
show that scale free characteristics in the three species
only emerge above a certain co-expression threshold and
that high centrality of genes tends to be conserved. While
relatively few gene-gene co-expression links are conserved
across the species, network neighbourhoods are largely
conserved statistically, especially when comparing net-
works at low co-expression thresholds where the statistical
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power is greater. Finally, by integrating ortholog and net-
work topology information, we show that, for genes with
more than one predicted ortholog, in over half the cases
the most sequence similar ortholog is not the one with the
most conserved gene regulation. We also present a web
tool for Comparative analysis of Plant co-Expression net-
works (ComPlEx) that offers flexible analysis of network
conservation in plants.
Results
Network inference and comparison
We retrieved all available Affymetrix gene expression
microarray data for A. thaliana (At, 6,665 experiments,
19,115 genes, 1,308 transcription factors), Populus (Pt,
462 experiments, 27,793 genes, 1,870 transcription fac-
tors) and O. sativa (Os, 711 experiments, 15,470 genes,
957 transcription factors) from the Gene Expression
Omnibus (GEO) [40]. From the expression data of each
species, co-expression networks were inferred by com-
puting mutual information (MI) for each gene pair, ap-
plying the context likelihood of relatedness (CLR)
algorithm to obtain background-corrected Z-score and
finally by applying a threshold to decide whether a gene-
pair should be linked or not (henceforth referred to as
the CLR threshold). In our analysis, we considered both
gene co-expression networks containing all undirected
links above a certain CLR threshold and gene regulation
networks containing all directed links above a certain
CLR threshold going from a transcription factor (TF) to
a gene. In the gene regulation networks the links are
interpreted as putative regulation where TFs physically
regulate genes through binding to DNA.
We considered genes in the same OrthoMCL group

[41] to be predicted orthologs (if from different species)
and predicted paralogs (if from the same species). The
average number of predicted orthologs per gene varied
from two to four for different species-pairs. For example,
a Populus gene had on average 2.8 predicted orthologs
in A. thaliana, while an A. thaliana gene had 3.6 pre-
dicted orthologs in Populus (Additional file 1: Figure S1).
Using predicted orthologs, we compared networks across
the three plant species based on network properties (e.g.
betweenness centrality), network motifs (e.g. feed-forward
loops), conservation of gene-gene co-expression links
and conservation of network neighbourhoods. A concep-
tual outline of the methodology is represented in Figure 1
(see Methods for details).
We also constructed a web portal for Comparative

analysis of Plant Expression networks (ComPlEx: http://
complex.plantgenie.org/). The site allows users to ex-
plore and compare subnetworks of the three plant spe-
cies, and provides complete results and associated
statistics for all the results presented in this article.
Network properties
We performed an extensive investigation of network
properties by comparing degree distributions, gene cen-
tralities and subnetwork statistics across species and
CLR thresholds (Figure 2).

Degree distributions
The degree of a node is the number of links it has to
other nodes (number of neighbours). We fitted the de-
gree distributions of our networks to the power-law dis-
tribution [30] and the Poisson distribution [42]; the
former describes scale-free networks while the latter de-
scribes networks where each link occurs independently
with an equal probability (commonly referred to as ran-
dom networks). For all species there was a CLR threshold
that acted as a state switch; above this threshold the de-
gree distribution followed a power law (i.e. the network
was scale-free) while below this threshold we observed
an exponential increase in the number of links and net-
work degrees distributions that approached that of ran-
dom networks (Figure 2A).

Gene centralities
Gene centralities indicate the relative importance of
genes within a network (see Background). We observed
that e.g. degree centrality and average nearest neighbour
(avnn) centrality were positively correlated at the global
scale (assortative), but tended to be negatively correlated
for visually distinct subsets of genes (locally disassorta-
tive, Figure 2B); a trend that became more pronounced
in the scale free range (i.e. for higher CLR thresholds).
In A. thaliana, there were two disassortive groups asso-
ciated with poly (U) RNA or chlorophyll binding (FDR
corrected p-values less than 3E-10 [43]) and heme bind-
ing/peroxidase activity (P < 3E-20), respectively. At the
gene level, we found that genes with high local centrality
in one species (top 10%) were significantly more likely
to also have high centrality in the two other species
(Additional file 2). In co-expression networks with a
CLR threshold of four, ~29% of genes with high degree
centrality in one species, and ~40% of genes with high
avnn centrality, also had high centrality in the two
other species (P < 1E-4). These genes were enriched for
similar biological processes including photosynthesis
(P = 2.9E-40 for degree centrality and 1.5E-55 for avnn
centrality), generation of precursor metabolites and en-
ergy (P = 5E-20 and 2.5E-24), translation (P = 7.9E-5
and 5.9E-5) and response to abiotic stimulus (P = 0.02
and 3E-5). High global centrality in terms of betweenness
centrality was considerably less conserved across all spe-
cies (~5%, P = 0.0265) and only enriched for transporter
activity (P = 0.0092). Unlike in the co-expression net-
works, degree and avnn centrality displayed markedly
different characteristics in the gene regulation networks.

http://complex.plantgenie.org/
http://complex.plantgenie.org/
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Figure 1 Method overview. (A) Gene expression data for the three plants were downloaded and (B) used to compute the mutual information
and the corresponding CLR score for each gene pair. (C) A co-expression network was constructed by connecting all gene pairs with a CLR score
above a certain threshold. Links from transcription factors (TFs, blue) to genes (green) were represented as directed links (arrows). Networks from
different species were then compared at different CLR thresholds with respect to (D) network properties and network motifs) and (E) fraction of
conserved links or conserved neighbourhoods.
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High degree centrality was more conserved than high avnn
centrality (27% versus 18%, P < 1E-4), and was expectedly
associated with regulatory processes (hubs in the regulatory
network are typically TFs), but also several developmental
processes including post-embryonic development (2.0E-8)
and the more specific term flower development (0.005) as
well as response to endogenous stimulus (3.6E-13). Genes
with high avnn centrality (genes regulated by high degree
TFs) were enriched for some of the same processes as
in the co-expression network. Unlike high centrality,
low centrality was usually not significantly conserved in
either network types.

Subnetwork statistics
We also studied various network statistics within Gene
Ontology (GO, [44]) subnetworks, that is, parts of net-
works containing genes annotated to the same GO
category (Additional file 3). We classified a network sta-
tistics as conserved in a GO subnetwork if that subnet-
work was ranked among the top 10% in all three
species. Network density is the ratio between the num-
ber of actual links and the number of possible links in
a network. In co-expression networks with a CLR
threshold of four, high density was strongly conserved
across the three species (49%, P < 1E-4) and was ex-
pectedly observed in subnetworks with many high degree
genes (e.g. photosynthesis). Low density was less conserved
(21%, P < 1E-4), but included several development-
subnetworks (e.g. embryo development ending in seed
dormancy). The connectivity of a subnetwork is the
ratio between the number of links from the subnetwork to
the rest of the network and the number of links within the
subnetwork [36]. Both high and low connectivity were
weakly conserved (6% and 15%, respectively P < 1E-4).
Interestingly, subnetworks with conserved low connectiv-
ity were all metabolic processes indicating that these con-
stitute separate modules in the networks. In the gene
regulation networks we also found that highly regulated
(high ingoing connectivity) and highly regulating (high
outgoing connectivity) subnetworks were conserved
(both 16%, P < 1E-4). For example, protein complex assem-
bly was highly regulated, while response to xenobiotic
stimulus and stem cell/seedling development were highly
regulating, across all species.
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Figure 2 Network properties. (A) Comparison of node degree distributions in the gene regulation networks at a CLR threshold of four. The
degree distribution is fitted to a power-law distribution and a Poisson distribution with the same statistical parameters. (B) Average nearest
neighbour degree (X axis) versus degree (Y axis) in the co expression networks at a CLR threshold of four.
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Network motifs
We defined network motifs as directed graphs of three
or four genes that were enriched in GO gene regulation
subnetworks compared to randomized networks (see
Methods). We were specifically interested in motifs that
were conserved, that is, highly enriched in the same sub-
network in all three species (top 20%, Additional file 4).
At a CLR threshold of four, two out of six possible mo-
tifs with three genes, and seven of 22 possible motifs
with four genes, were conserved in a significant number
of different subnetworks (P < 0.0245). Two particularly
interesting motifs were observed: (1) The most con-
served motif (41%, P < 1E-4) consisted of two connected
TFs regulating the same gene (FFL: feed-forward loop,
Figure 3A). This motif also reappeared as part of several
highly conserved motifs with four genes. (2) The third
most conserved motif (35%, P < 1E-4), and the only
motif not containing the FFL pattern among the five
most conserved motifs (>20%), consisted of two uncon-
nected TFs both regulating the same two genes (bi-fan
motif, Figure 3B). Although these two motifs were also
conserved in some common GO subnetworks, their GO
profiles were distinctly different. Motif 1 (FFL) was
chiefly associated with a number of responses to stimu-
lus while motif 2 was chiefly associated with shoot and
flower development (Figure 3).
Gene-gene co-expression
We performed pairwise comparisons of the species
where a link between genes A and B in the network of
one species was considered conserved if a link existed
between any of the orthologs of A and any of the ortho-
logs of B in the network of the other species. Figure 4A-C
shows, for CLR thresholds from two to six, the fraction
of conserved links in each comparison. The trend for all
species was that as the CLR threshold was increased, the
fraction of conserved links dropped. However, when we
compared networks with a CLR threshold of six against
networks with a CLR threshold of two (Figure 4A-C),
the fraction of conserved links was dramatically higher
than when comparing networks with the same thresh-
old. For all species and thresholds, the conservation
observed in co-expression networks was higher than
that observed in randomized networks. In fact, at a CLR
threshold of two, ~30-40% of the links were conserved
even though the networks only contained around 10% of
all possible links.

Network neighbourhoods
We next performed pairwise comparisons of the species
where the regulation of a gene was considered conserved
if its network neighbourhood (i.e. all genes with a link
to it) had a statistically significant overlap with the
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exhaustive list of GOs are given in Additional file 4. (A) Two connected transcription factors (TFs) regulating the same gene (feed-forward loop).
(B) Two unconnected TFs regulating the same two genes (bi-fan motif).
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Figure 4 Network conservation. (A-C) Gene co-expression (link) conservation and (D-F) network neighbourhood conservation. One coordinate
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neighbourhood of one of its orthologs in the other
species (see Methods). Figure 4D-F shows, for CLR
thresholds from two to six, the fraction of genes with
conserved network neighbourhoods in each comparison.
Clearly, network neighbourhoods were vastly more
conserved than gene-gene links. Even more clearly than
for link conservation, neighbourhood conservation was
higher for networks with many links; around 80%
for a CLR threshold of two and dropping as the CLR
threshold increased. Comparing network neighbour-
hoods across species also allowed us to identify network
neighbourhood divergence (i.e. statistically significant
underrepresentation of nodes in common between two
neighbourhoods). Divergence was primarily observed
in large networks (CLR thresholds of two and three)
where ~10-20% of the neighbourhoods were significantly
diverged (Figure 4D-F).

A core of conserved genes
While Figure 4D-F shows the fraction of genes with con-
served and diverged network neighbourhoods for differ-
ent CLR thresholds, Figure 5A shows the corresponding
number of conserved/diverged genes for a fixed thresh-
old of two. Since genes had multiple predicted orthologs,
we observed a number of genes where at least one of the
orthologs had a conserved neighbourhood while at least
one of the other orthologs had a diverged neighbour-
hood. This overlap between conservation and divergence
caused the fractions of conserved and diverged genes
to sum to more than one in the Populus-A. thaliana
comparisons in Figure 4D. We also calculated how
many genes in a given species were conserved/di-
verged in both the two other species (Figure 5B). This
A B

Figure 5 Number of conserved, diverged and conserved-and-diverge
network neighbourhoods at a CLR threshold of two. In each comparison X
conserved ortholog-neighbourhood in species Y (Conserved), genes with a
(Conserved and Diverged), genes with at least one diverged neighbourhoo
(None). These are the number of genes behind the fractions plotted in Fig
now each comparison X ─ > Y, Z requires that a gene is e.g. conserved if a
and Z.
showed that there exists a core of about 8,000 genes
(8,223 A. thaliana genes) with conserved gene regula-
tion across all three plant species. This conserved core
was most enriched for the GO biological process cat-
egories protein modification process (p = 2.8e-19) and
photosynthesis (p = 5.4E-10) (Additional file 5: Figure S2).
Conversely, there were 704 A. thaliana genes with di-
verged gene regulation in both Populus and O. sativa and
389 genes with at least one ortholog with conserved
regulation and at least one other ortholog with diverged
regulation in the two other plants. These were both most
enriched for protein modification process, carbohydrate
metabolic process and pollen-pistil interaction, but there
were also differences such as for anatomical structure
morphogenesis that was significant (p = 5.1E-04) only for
the genes with both conserved and diverged neighbour-
hoods (Additional file 5: Figure S2).

Multiple predicted orthologs
We investigated genes with more than one predicted
ortholog more thoroughly (Figure 6). About 45% of the
genes only had orthologs with conserved regulation (i.e.
conserved neighbourhood). Another ~45% had at least one
ortholog with conserved regulation and at least one other
ortholog with either non-conserved regulation (making up
20 percentage points) or diverged regulation (making up
the remaining 25 percentage points). The last ~10% of the
genes had at least one ortholog with diverged regulation or
orthologs with neither conserved nor diverged regulation.
Thus ~90% of the genes with more than one predicted
ortholog had conserved regulation and ~30% had diverged
regulation, which in both cases are considerably higher
than in the full set of genes (Figure 6B versus Figure 5A).
d genes in network comparisons. (A) Pairwise comparisons of
─ > Y, the genes in species X is divided into genes with at least one
t least one conserved and at least one diverged neighbourhood in Y
d in Y (Diverged) and genes with no significant neighbourhoods in Y
ure 4D-F (at a CLR threshold of two). (B) Corresponding to (A) but
t least one ortholog-neighbourhood is conserved in both species Y
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Figure 6 Genes with multiple predicted orthologs. (A) Conceptual drawing showing how a gene A1 in A. thaliana can have a
neighbourhood that is both conserved when compared to one ortholog P1 in Populus and diverged if compared to another ortholog P5. Lines
between genes in different species indicate orthologs. (B) Pairwise comparisons of network neighbourhoods of genes with more than one
predicted ortholog at a CLR threshold of two. In each comparison X ─ > Y, the genes in species X is divided into genes where all ortholog-
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neighbourhood in Y (Diverged) and genes with no significant neighbourhoods in Y (None).
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Regulation versus sequence divergence
We also compared regulation and sequence divergence
for genes with more than one predicted ortholog. We
found that for only ~45% of the genes that had at least
one ortholog with conserved gene regulation did the
ortholog with the most conserved regulation (i.e. highest
neighbourhood overlap) also have the highest sequence
similarity (i.e. BLAST bit-score). For genes that had
at least one ortholog with diverged regulation, the
ortholog with the most diverged regulation (i.e. lowest
neighbourhood overlap) had the highest sequence similar-
ity in ~25% of the cases; almost exactly what one would
expect by chance given the number of predicted orthologs
between these species. Since genes with conserved
neighbourhoods and genes with diverged neighbour-
hoods are different subsets of genes, we also investi-
gated the overlapping set of genes with both conserved
and diverged orthologs (Figure 7). The same observation
was made here: The most sequence similar ortholog was
the ortholog with the most conserved gene regulation
in ~41% of the cases and the most diverged in ~21% of
the cases.

Reciprocal network neighbourhood comparison
We also looked at network comparisons where a neigh-
bourhood was considered conserved/diverged only if it
was the most significant neighbourhood reciprocally be-
tween the gene in one species and the ortholog in the
other species. Taking such an approach at a CLR thresh-
old of two, conservation levels dropped from ~80%
(Figure 5) to ~40-70% (Figure 8) depending on the species
compared. Reciprocal comparisons particularly reduced
neighbourhood conservation in Populus; Populus has two
highly similar “versions” of many genes, and reciprocal
comparisons only allow one of them to be conserved/
diverged. Despite this, there were ~7,000-10,000 recipro-
cally conserved genes across the three species.

ComPlEx case studies: genes with multiple ortholog
candidates
ComPlEx visualizes conserved link in co-expression net-
works across pairs of species. Gene lists for the compari-
son can be provided directly or by searching for gene
IDs, GO annotations or other keywords in the database.
ComPlEx allows dynamic manipulation of the networks
including relocating nodes, removing nodes (for ex-
ample unconnected genes) and adding co-expressed
genes at any CLR threshold. As an example, we looked
at the co-expression neighbourhood of the transcrip-
tion factor CURLY LEAF (AT2G23380, Histone-lysine
N-methyltransferase). Fittingly, the neighbourhoods were
enriched for genes involved in histone lysine methylation
(FDR corrected p-value of 1e-05 [43]). We used ComPlEx
to show that CURLY LEAF has three orthologs in Popu-
lus, one with conserved and two with diverged regulation,
and two orthologs in O. sativa, one with conserved and
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Figure 7 Network neighbourhood scores versus sequence similarity. (A) In each comparison X ─ > Y, we only consider the subsets of genes
in X with at least one conserved and at least one diverged ortholog-neighbourhood in Y (blue parts of the bars in Figure 6). These genes are
divided into genes where the most sequence similar ortholog also has the most conserved neighbourhood (Conserved), the most diverged
neighbourhood (Diverged) or neither (Not agreeing). (B) A closer look at the ranks of the most significant ortholog-neighbourhood when sorted
by sequence similarity.
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one with diverged regulation (Figure 9). Furthermore,
the tool provides network statistics showing for example
that the genes with the highest betweenness centrality
in both the Populus and the O. sativa subnetworks
(POPTR_0001s15190 and Os10g0563500, respectively)
were the genes that connected the densely linked subnet-
work (containing the conserved ortholog) with a more
sparsely linked part of the network.
In the case of CURLY LEAF, the orthologs with con-

served regulation were also the most sequence similar
orthologs in both Populus and O. sativa. However, as we
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Figure 8 Reciprocal network neighbourhood comparison.
Reciprocal pairwise comparisons of network neighbourhoods at a
CLR threshold of two. In each comparison X ─ > Y, the genes in
species X is divided into genes with a reciprocally conserved
ortholog-neighbourhood in species Y (Conserved), genes with a
reciprocally diverged neighbourhood in Y (Diverged) and genes with
no reciprocally significant neighbourhoods in Y (None).
have shown in this article, this is generally not the case.
We looked at AT3G52480 as an example. Interestingly,
the network neighbourhood of this uncharacterized gene
was enriched for genes involved in response to fructose
stimulus (FDR corrected p-value of 5.5e-06). We used
ComPlEx to show that this gene has two orthologs in
Populus; the most sequence similar ortholog candidate
had diverged regulation, while the one with lower se-
quence similarity had conserved regulation (Figure 10).
This is an example of an A. thaliana gene where the
ComPlEx tools could help a biologist to select the most
appropriate Populus gene for e.g. a knock-down study.
More generally, both these case studies illustrate a par-
ticularly useful application area of ComPlEx for experi-
mental biologists; the ability to take a single gene, draw
the links to co-expressed genes (i.e. the network neigh-
borhood) and then visualize for which ortholog candi-
dates these links are conserved in other species.

Discussion
Biological networks have significantly different proper-
ties from random networks and studying these proper-
ties can provide insight into the basic mechanisms of
biological systems [45]. We conducted a comprehensive
comparison of co-expression networks in plants includ-
ing the use of network properties and motifs that had
previously only been studied in A. thaliana [36]. We also
reported results for a range of co-expression thresholds
(CLR thresholds) while other studies only applied a fix
threshold [25,28,29]. Our observation that scale-free
characteristics in all three species emerged only grad-
ually when the CLR threshold was raised shows that the
organization of co-expression networks is highly thresh-
old dependent. Lowering the threshold eventually led to
so many false positive links that the networks lost their
underlying scale-free organization. On the other hand,
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Figure 9 ComPlEx case study. The network neighbourhood of AT2G23380 (CURLY LEAF) in A. thaliana (CLR threshold of 3.5) and the
corresponding networks of all connected orthologs in Populus and O. sativa. Red links are conserved and are drawn for a CLR threshold of two.
The orthologs of AT2G23380 are marked by green auras and by arrows.
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Figure 10 ComPlEx case study. The network neighbourhood of AT3G52480 in A. thaliana (CLR threshold of five) and the corresponding
network of all connected orthologs in Populus. Red links are conserved and are drawn for a CLR threshold of two. The orthologs of AT3G52480
are marked by green auras and by arrows.
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raising the threshold led to an increasing number of
false negative links; strong co-expression links were
clearly more conserved across pairs of species than weak
links but they were not necessarily strong in both spe-
cies (Figure 4). Thus we chose to conduct in-depth ana-
lysis of network neighbourhood conservation in large
networks where the statistical power is greater (CLR
threshold of two), while we chose to do our analysis of
network properties and motifs in the scale-free range
(CLR threshold of four).
Gene networks in combination with gene centrality

measures are increasingly being applied to select inter-
esting candidate genes for further analysis (e.g. [46]). We
showed that high gene centrality was significantly con-
served across the three species, indicating that networks
in these plants have not only retained the same organisa-
tion (i.e. scale-freeness) but that the genes upholding
this organisation also are the same. Genes with con-
served high local centrality in the co-expression net-
works were most notably enriched for photosynthesis,
and never for development processes, which corre-
sponds with the observation that the photosynthesis
subnetwork was dense while many developmental sub-
networks were sparsely linked. On the other hand, the
genes with the highest degree in the gene regulation
networks were enriched for several developmental
processes. This indicates a pattern in which processes
in mature tissues, such as photosynthesis, are highly
co-expressed while developing tissues display less ex-
pression similarity but are tightly regulated. Such an ob-
servation instinctively makes sense, as developmental
processes must inherently be buffered from extensive
environmental or other modifiers to expression to en-
sure correct establishment of an orgasm. In contrast,
once organ/tissue identity and function has been estab-
lished, the ability to adapt expression to the numerous
changes that can exist in the external environment (both
biotic and abiotic) becomes essential to ensure survival
and healthy functioning of that organ/tissue. Finally, it is
intriguing that one in ten conserved hub-gene remain of
completely unknown function. These presumably essen-
tial and important genes most certainly warrant further
attention from molecular biologists (Additional file 2).
In additional to gene centrality, also Gene Ontology

(GO) subnetworks displayed conserved properties across
the three species. Dense subnetworks was particularly
conserved, almost half of the top 10% most dense sub-
networks were the same across the three species, and
clearly play a central role in the scale-free organization
of these networks by harbouring many hub genes. Che-
micals in biological systems are modified by a series of
chemical reactions, and a particularly strong pattern
in our analysis of subnetworks was the modular (low
connectivity) nature of such pathways. Finally, protein
complex assembly was the most regulated subnetwork
across the species (high ingoing connectivity), suggesting
the importance of timely regulation for the correct as-
sembly of protein complexes.
Assortativity measures to what extent nodes tend to

mix with similar nodes in a network. It has been claimed
that biological networks tend to be disassortative, e.g.
high degree nodes have low degree neighbours or,
equivalently, high degree nodes have low average nearest
neighbour (avnn) degree [47], but different combinations
of (dis) assortative biological networks with (dis) assorta-
tive hubs have also been observed (local assortativity)
[48]. We observed that our co-expression networks were
in general assortative (Figure 2B) and that genes with
conserved high degree and avnn degree where enriched
for the same biological processes. This is somewhat
expected since co-expression networks are highly transitive;
two co-expressed genes will often also be co-expressed with
many of the same other genes. It is therefore intriguing that
we also saw clear evidence of local disassortativity across all
three species (Figure 2B) especially in the scale-free range,
and that this was associated with distinct functional
categories involving binding.
Cellular systems are believed to be modular where

specific patterns of connected genes (motifs) are used
as templates to carry out distinct functions [35]. Our
analysis of network motifs seems to support this hy-
pothesis as different motifs were often enriched in GO
subnetworks of quite different biological function. We
only investigated motifs of three and four genes be-
cause computation of higher order motifs becomes
rapidly intractable and because smaller order motifs
can be interpreted and recognized as e.g. the feed-
forward motif or the bi-fan motif. Also, since we did
not attempt to infer one-way directionality between
TFs in our gene regulation networks (i.e. a directed link
from TF A to TF B was always accompanied by a di-
rected link from TF B to TF A), many theoretically pos-
sible motifs of three and four genes were not observed
in our network (e.g. the motif in Figure 3A is not a
proper feed-forward loop, FFL). This could be the rea-
son why network motifs were clearly less conserved
than gene centrality and network statistics. Although
network properties and motifs have not previously been
studied across plant species, Carrera et al. [36] thor-
oughly investigated such characteristics in a regulatory
network of A. thaliana. Our results now offer the possi-
bility to consolidate their findings across several spe-
cies. For example, the FFL motif is associated with
robustness to perturbations in individual links and was
found to be highly enriched in stress responses by Carrera
et al. Our analysis confirmed this finding in A. thaliana
and, moreover, shows that this is conserved in O. sativa
and Populus.
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In addition to the comparisons of network properties
and network motifs, we also conducted a direct com-
parison of gene-gene links and network neighbour-
hoods in the networks. Although statistically significant,
only ~20-40% of the co-expression links were conserved
in pairs of species when comparing equally sized networks
(same CLR threshold). On the other hand, up to 80% of
the strongest co-expression links (CLR threshold of six)
were conserved when comparing to a network including
weaker links (CLR threshold of two contained ~10% of
all possible links) in the other species. This clearly dem-
onstrates that stronger co-expression is more conserved
than weaker co-expression. It has been suggested that
low gene-gene link conservation in biological networks
is due to a large numbers of non-essential (neutral) inter-
actions [23]; in the same way that most fixed mutations
are neutral in genomic evolution we may hypothesize
that most changes to links in co-expression networks
are also neutral. We thus also compared network neigh-
bourhoods of each gene statistically, and found that a
staggering ~80% of genes had a significant number of
conserved co-expression partners (CLR threshold of
two). Thus, even though there were relatively few con-
served co-expression links in the network they were
numerous enough to constitute a significant enrichment
in most neighbourhoods. These findings are in agreement
with those of Mohavedi et al. [28] where 77% of A.
thaliana – O. sativa orthologs had conserved co-
expression network neighbourhoods even though only
a minority (~10-45%) of the genes in these neighbourhoods
were orthologous. Since they studied 1:1 orthologs, the
observed fraction of genes with diverged neighbour-
hoods were expectedly lower than what we report (8.5%
versus ~20%).
A somewhat surprising trend in the network compari-

sons was that as the CLR threshold increased, conserva-
tion dropped (Figure 4). For link comparisons, the trend
was likely caused by the networks becoming sparser and
thus the a priori chance of a link being conserved de-
creased. This is supported by the observation that strong
co-expression were indeed more conserved than weak
co-expression when compared to a network of the same
size. For network neighbourhood comparisons, the trend
was even stronger, and was likely due to the increasing
statistical power when comparing larger neighbour-
hoods. This is also why we did not see neighbourhood
divergence for high thresholds; small neighbourhoods
were typically not significantly non-overlapping even
when they did not overlap at all. In addition to the size
of the compared networks, the number of predicted
orthologs also affected the level of conservation. Due to
a recent genome duplication in Populus [49], A. thaliana
and O. sativa genes have more predicted orthologs in
Populus and hence obtained higher conservation levels
when compared to Populus than to each other (Figure 4).
Again this was likely due to the higher a priori chance
of a link being conserved when multiple orthologs
existed and indeed this trend was also observed for all
species pairs when comparing exclusively genes with
multiple orthologs (Figure 6). Interestingly, links in the
gene regulation network were consistently less con-
served than links in the co-expression network; up to
ten percentage points for the A. thaliana – O. sativa
comparison (Figure 4). Although this trend was less pro-
nounced for conservation of gene centrality and there
was no corresponding trend for network neighbour-
hoods (perhaps because there were enough conserved
links in most neighbourhoods to make them significant
anyway) this might reflect the role of regulatory net-
works as the driving force behind species divergence. It
has previously been shown that gene regulation net-
works consistently rewire at higher rates than other bio-
logical networks including protein interaction networks
and metabolic pathways [50].
Our analyses of network property, motif and link/

neighbourhood conservation across pairs of species did
not clearly reflect the phylogenetic relationship between
the three plants; A. thaliana and Populus did not show
notably higher conservation to each other than they did
to O. sativa (Additional file 2, Additional file 3 and
Additional file 4, Figure 4). However, the actual number
of genes with conserved neighbourhoods was higher
between A. thaliana and Populus (>11,000) than for O.
sativa comparisons (<10,000, Figure 5A). This was par-
ticularly true for the reciprocal comparisons where almost
10,000 genes were conserved between A. thaliana and
Populus compared to less than 7,000 genes in compari-
sons involving O. sativa (Figure 8). Taken together with
the number of genes with conserved neighborhoods
across all three species (~8,000, Figure 5B), this demon-
strates the truly genome-wide nature of our study. For
example, Ficklin et al. aligned only 1,173 gene loci
between Z. mays and O. sativa [29] and Mohavedi et al.
[28] compared the network neighbourhoods of 4,630 1:1
A. thaliana – O. sativa gene pairs.
Gene duplication followed by subfunctionalization is

an important form of gene evolution [32]. Our ap-
proach allowed us to quantify, in the context of species
comparison, to what extent genes have evolve through
gene duplication, manifested by multiple predicted
orthologs for a gene, followed by regulatory subfunctio-
nalization [51], manifested by gene having at least one
ortholog with conserved regulation and at least one
other ortholog with a non-conserved/diverged regula-
tion (Figure 6). We found that almost half of the genes
with multiple orthologs (~45% depending on the
species pair) where associated with regulatory subfunc-
tionalization. More strictly, about one-quarter were
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associated with regulatory neofunctionalization, that is,
one of the non-conserved orthologs had acquired com-
pletely new co-expression neighbours (i.e. had signifi-
cantly diverged). Interestingly, protein modification was
the biological process most strongly associated with
regulatory subfunctionalization across all three species
(Additional file 5: Figure S2), potentially indicating that
such modifications play an important role in species
differentiation.
Large families of closely related sequences make

ortholog prediction in plants particularly challenging;
predictions from OrthoMCL contained from two to four
orthologs per gene on average depending on the species
pair. Our results showed that, of the genes with multiple
predicted orthologs, the most sequence similar ortholog
was not the ortholog with the most conserved gene
regulation (i.e. network neighbourhood) in well over half
the cases (Figure 7). This demonstrates that relying on
sequence similarity alone might identify an ortholog
with the correct molecular function (using the GO vo-
cabulary), but will more often than not fail to identify an
ortholog that participates in the correct biological
process. Thus taking into account both sequence and ex-
pression is of outmost importance when using e.g. A.
thaliana genes to select targets in non-model organism.
Patel et al. [11] found that the most sequence similar
ortholog was not the expressolog (ortholog with the
most correlated expression profiles across equivalent tis-
sues) in 18-39% of the comparisons. That study thus in-
dicate a less dramatic divergence of regulation and
sequence than what we report here, however, their study
was based on direct comparisons of expression changes
in equivalent tissues while our analysis was based on
comparisons of co-expression partners inferred across
tissues and conditions. Hence, this might indicate that
tissue specific expression of paralogs has diverged less
than that of condition specific expression.
A major research challenge that has received consider-

able attention in recent years is the development of
computational methods to reverse engineer regulatory
network from gene expression data [52,53]. Due to
the complexity of more advanced inference methods,
genome-wide network inference is generally reduced to
applying one of several measures of statistical depend-
ency to compute pairwise correlations and to construct
networks by linking genes with a correlation above a
certain threshold (i.e. co-expression networks) [54]. Mu-
tual information (MI) is a correlation measure that has
gained widespread recognition due to its non-parametric
nature and its robustness to outliers. The CLR algorithm
is a local background correction method that has been
shown to eliminate false positive correlations and indir-
ect dependencies in co-expression networks [38]. For
each pair of genes, the method computes a Z-score
using a null distribution obtained from the scores be-
tween these two genes and all other genes. In our ana-
lysis, we compared networks with a Z-score threshold of
two and upwards. When studying alternative correlation
measures, we found that these measures disagreed pri-
marily in the presence of outliers and that mutual infor-
mation offered a robust compromise between Pearson
(strongly affected by outliers) and Spearman (largely dis-
regarding outliers). We also found that CLR highlighted
the relative co-expression similarity of genes and re-
sulted in more stable and meaningful comparisons when
using the same threshold across species.
A concern when studying co-expression networks in-

ferred across different tissues is that tissue specificity is a
dominant driver of co-expression i.e. that photosynthesis
genes are co-expressed simply because these genes are
highly expressed in leaves and lowly expressed in other tis-
sues. By studying tissue specificity using the tau score
[28], we found that many genes that are thought of as tis-
sue specific, including the photosynthesis genes, are in fact
co-expressed within a number of tissues and that expres-
sion similarity in our networks is mainly driven by co-
expression within tissues and not differential expression
between tissues (see Additional file 6: Figure S3A). One might
speculate that this tendency of universal co-expression is
the reason why we observed such high levels of network
neighbourhood conservation across species even though
we compared expression data from a heterogeneous set of
experiments. It is rather striking that despite the fact that
we used all available experiments without filtering for con-
gruence, we observed significant gene regulation conser-
vation for around 80% of the genes. Nonetheless, more
homogenous datasets would almost certainly have resulted
in higher conservation, at least higher link conservation.
Relatedly, some of the differences between co-expression
networks may stem from noise in microarray data related
to cross hybridization and the fact that the Populus data
come from multiple species within the genus. Sequence-
similar paralogs are known to be associated with particu-
larly unreliable microarray-based expression profiles due
to cross-hybridization [55]. This could in particular have
affected our comparison of paralogous network neigh-
bourhoods. Although we did not observed noticeable
artefacts when comparing the expression of paralogs
with conserved and diverged network neighbourhoods
(Additional file 6: Figure S3B), we cannot rule out
false negative network neighbourhood divergences that
were lost due to averaging of expression across paralogs.
Hence we might have underestimated the divergence of
paralog regulation.

Conclusions
Both the data resources and computational methods are
now available to take the step from sequence-based
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comparative genomics to transcriptomics-based com-
parative regulomics. We conducted the first comprehen-
sive comparison of the co-expression networks of
A. thaliana, Populus and O. sativa that included net-
work properties and motifs as well as gene-gene links
and network neighbourhoods; at different co-expression
thresholds.
The organization of the networks changed from near

random networks at low CLR thresholds to scale-free
networks at higher threshold. The most central genes in
this organization were conserved. Many interesting con-
served properties could be observed in Gene Ontology
(GO) subnetworks such as, for example, that metabolic
subnetworks tended to be modular and sparsely con-
nected to the rest of the network and that network mo-
tifs seemed to act as templates for realizing specific
functions. We identified two particularly interesting mo-
tifs that were enriched in GO subnetworks associated
with response to stimuli and flower development, re-
spectively, in all three species.
At the level of individual gene-gene links, the net-

works were highly diverged (only 30-40% similar), while
at the level of network neighbourhoods they were largely
conserved (~80% similar). This could be because most
individual links are non-essential, and that the under-
lying conservation only emerges as statistically signifi-
cant at the neighbourhood level. We found that about
half of the genes with more than one predicted ortholog
had at least one ortholog with conserved regulation and
at least one ortholog where the regulation was either di-
verged or at least not conserved. These findings go some
way to quantify the level of regulatory subfunctionaliza-
tion that occurred in these species. Interestingly, the
most sequence similar predicted ortholog was not the
ortholog with the most conserved regulation in over half
of the cases (55-60%). We have shown how one can use
sequence to predict candidate orthologs, and then use
network neighbourhood conservation to select the most
appropriate ortholog. And we have provided a web por-
tal, ComPlEx, making this type of analysis readily access-
ible to molecular biologists.
Methods
Data
We downloaded all Affymetrix experiments for A. thali-
ana (6665 experiments), Populus (462 experiments from
multiple Populus species) and O. sativa (711 experi-
ments) from the Gene Expression Omnibus (GEO) (data
downloaded March 2011). Raw data were normalized
using the RMA normalisation method as implemented
in the Bioconductor [56] package ‘affy’ [57] for the R
statistical language using default settings. Expression
data from the different expression datasets for each
species were merged using the MergeMaid (http://astor.
som.jhmi.edu/MergeMaid) package.
Orthologs were predicted using OrthoMCL with de-

fault parameters [41]. BLAST Bit-scores were used to
rank paralogs in the same OrthoMCL group (to resolve
ties when E-values were zero). We used the annotated
transcription factors available from PlantTFDB [58]. We
downloaded the latest TAIR [59] Gene Ontology annota-
tion file and transferred annotation to Populus and O.
sativa trough the orthologs.

Network inference
We computed mutual information for all gene pairs
using a B-spline estimator [60] with a C-program that
was adapted from Carrera et al. [36]. The number of
bins used to compute the probabilistic profiles for the
expression of each gene was chosen in the range of the
square of the number of samples (as recommended by
the authors). We then use the CLR method to
background-correct the MI values and obtain edge-
vicinity Z-scores (called CLR scores) [38,39]. While the
MI score are in the [0, 1] interval, the CLR scores are
fat-tail distributed in the [0, 30] interval. We applied
CLR thresholds between 1 and 10 and performed our
analysis on the resulting networks. We looked at two
distinct types of networks: gene-gene co-expression net-
works that were the direct result of applying a threshold
on all the CLR scores and transcription factor – gene
(TF-gene) regulation networks that were filtered using
the set of annotated TFs. Thresholds lower than three
were often impractical for a number of network analyses
that require intense computation, and were therefore
avoided. The computations were done on several re-
sources including personal computers, academic clusters
and commercial clouds.

Network properties
Both network statistics and motif analysis were per-
formed with a combination of Python and R scripts
using the igraph library for complex network research
[61] and the scipy python library for scientific comput-
ing [62]. For the gene centrality analysis, we selected the
top 10% most/least central genes in each species and
counted the number of genes with predicted orthologs
in the top 10% in the other species. To indicate signifi-
cance, we computed p-values by counting the number of
conserved genes in randomized gene lists. A correspond-
ing approach was used to investigate conservation of
network statistics and network motifs in GO subnet-
works; for each statistics/motif we compared the number
of subnetworks that ranked in the top 10% in all three
species to the corresponding number in randomized
lists. We only considered GO subnetwork with between
10 and 1000 connected genes.

http://astor.som.jhmi.edu/MergeMaid
http://astor.som.jhmi.edu/MergeMaid
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Motifs of size three and four were computed for the
gene regulation networks, and then recomputed for 100
randomized networks with the same degree distribution
[63]. We defined significant network motifs as motifs
that occurred significantly more often in the inferred
networks than in the randomized networks, and ranked
these motifs by their Z-score distance to the random-
ized tests.

ComPlEx website
We did a lot of the analysis through our website (http://
complex.plantgenie.org/). Most of the network statistics
and motif scripts are active on the ComPlEx website and
can be used to compute many different statistics for cus-
tom selections of genes and on a wide range of co-
expression thresholds. ComPlEx has functionality that
extends beyond the scope of this text and was created as
a tool for comparative analysis and exploration of plant
co-expression. It is built with modern html5 technology
while the server runs a combination of Python and PHP.

Network comparison
When comparing species S1 to species S2, conservation
statistics was reported relative to the genes that were
connected (i.e. had at least one neighbour) at a particu-
lar CLR threshold in species S1 and that had at least
one predicted ortholog that were connected in species
S2. A link between genes A and B in S1 was considered
conserved if there existed a link in S2 between one
of the orthologs of A and one of the orthologs of B.
The fractions of conserved links were compared to frac-
tions obtained from comparing randomized networks;
100 randomized networks were generated for each
species by shuffling the gene names in the original
co-expression networks. Randomized networks never
obtain conservation fractions as high as the fractions ob-
tained from the original co-expression network for any
CLR threshold.
A gene A in S1 was considered to have a conserved

neighbourhood if there existed an ortholog A’ in S2 with
a statistically significantly overlapping neighbourhood.
The neighbours of A’ in S2 were mapped back to S1
through orthologs, and a p-value was computed in S1
using the hypergeometric distribution; N = the number
of genes in S1, n = the number of genes in the neigh-
bourhood of A, k = the number of orthologs of the
neighbours of A’ and x = the number of genes in both
the neighbourhood of A and the mapped neighbourhood
of A’. A p-value was computed for each ortholog pair
and statistical significance was determined using the
FDR multiple hypothesis correction controlled at 0.05.
We reported the fraction of genes in S1 with a statisti-
cally significant neighbourhood overlap to at least one
ortholog in S2 using the FDR threshold. Significant
neighbourhood divergence was computed correspond-
ingly. We also used randomized networks to compute
alternative significance thresholds, and this approach re-
sulted in thresholds very close to the FDR thresholds but
at a much higher computational cost.

Additional files

Additional file 1: Figure S1. Ortholog predictions. The average number
of predicted orthologs when comparing one species X to another
species Y (X ─ > Y), where At is A. thaliana, Pt is Populus and Os is O.
sativa.

Additional file 2. Gene centrality conservation.

Additional file 3. Conservation of network statistics in Gene
Ontology subnetworks.

Additional file 4. Conservation of network motifs in Gene Ontology
subnetworks.

Additional file 5: Figure S2. Fraction of conserved, diverged and
conserved-and-diverged genes distributed across selected GO terms. The
“all” bar correspond to the At ─ > Pt, Os bar in Figure 5B, while the other
bars are the “all” bar distributed across GO biological processes from
plant slim. P-values indicating enrichment of conserved, diverged, and
conserved-and-diverged genes in the different GO categories are given
in three columns to the right (Hypergeometric distribution and Bonferroni
correction, the background is the 10 692 connected A. thaliana genes with
connected orthologs in both the two other species).

Additional file 6: Figure S3. Co-expression and paralogs. (A) The
expression of two transcription factors associated with leaf length in
some selected tissues. YAB1 (AT2G45190) is involved in abaxial cell type
specification in leaves and fruits and HB22 (AT4G24660) is involved in
embryo development. Although having tissue specific functional roles,
the two genes were highly co-expressed not only in a number of rele-
vant tissues but also (albeit at somewhat lower expression levels) in roots.
(B) The average expression of the Populus ortholog with the most di-
verged network neighbourhoods against the average expression of the
Populus ortholog with the most conserved network neighbourhoods for
2234 A. thaliana genes that are both conserved and diverged when
compared to Populus (“Conserved and Diverged”-part of the At ─ > Pt
bar in Figure 6B). We observe no noticeable artifacts such as genes with
diverged neighbourhoods being lowly expressed. Also, the correlations
between the most conserved and the most diverged orthologs showed
reasonably dissimilar expression profiles; the correlations were reasonably
normally distributed with a mean correlation of only 0.15 and 74% of the
data within one standard deviation of 0.25 (i.e. within the correlation
interval [−0.1, 0.4]).
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