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Abstract

Background: Selecting genes and pathways indicative of disease is a central problem in computational biology.
This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as
L1-norm based regularization and its extensions elastic net and fused lasso, have been introduced to deal with this
challenge. However, these approaches tend to ignore the vast amount of a priori biological network information
curated in the literature.

Results: We propose the use of graph Laplacian regularized logistic regression to integrate biological networks
into disease classification and pathway association problems. Simulation studies demonstrate that the performance
of the proposed algorithm is superior to elastic net and lasso analyses. Utility of this algorithm is also validated by
its ability to reliably differentiate breast cancer subtypes using a large breast cancer dataset recently generated by
the Cancer Genome Atlas (TCGA) consortium. Many of the protein-protein interaction modules identified by our
approach are further supported by evidence published in the literature. Source code of the proposed algorithm is
freely available at http://www.github.com/zhandong/Logit-Lapnet.

Conclusion: Logistic regression with graph Laplacian regularization is an effective algorithm for identifying key
pathways and modules associated with disease subtypes. With the rapid expansion of our knowledge of biological
regulatory networks, this approach will become more accurate and increasingly useful for mining transcriptomic,
epi-genomic, and other types of genome wide association studies.

Introduction
Technologies for high throughput genetic profiling have
revolutionized the study of human development and dis-
ease. Expression profiles spanning the entire human
genome not only allow investigators to better under-
stand disease subtypes [1], but also define new cate-
gories associated with sensitivity to pharmacologic
treatment [2,3] and other clinical outcomes [4,5]. A cen-
tral problem in these genomic studies is to construct an
accurate predictive model and delineate specific genes
or pathways driving a phenotype. Logistic regression is

widely used for classification [6-9]. The number of
genes, however, in high-throughput studies are often
much larger than the number of specimens in a given
study. This limitation causes instability in the algorithms
used to select driver genes and poor performance of
predictive models. The lasso algorithm for logistic
regression was introduced to address these problems
and perform feature selection through L1-norm regulari-
zation [10]. However, the number of variables selected
by the lasso is bounded by the number of observations
in an experiment. Furthermore, correlated variables are
rarely selected as part of the predictive model at the
same time. Various extensions of the Lasso algorithm,
such as elastic net, pelora, grouped lasso and fused lasso
introduce grouping or smoothness regularization terms
to address these limitations [11-14]. Of these, the fused
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lasso and elastic net have been successfully applied to a
largest number of gene expression and genome wide asso-
ciation studies [15-18]. Both fused Lasso and elastic net
allow correlated genes or neighboring genes on a chromo-
some to be selected into a predictive model together.
However, these algorithms tend to ignore functional inter-
actions between individual gene products documented in
the scientific literature. Integration of network information
in the gene marker identification has shown to outperform
methods without network information by Chuang et al
[19]. Specifically, their networked-based scoring and
greedy search algorithm identified more robust gene mar-
kers with better prediction accuracy on metastasis status
of breast cancer patients in two cohorts. In recent years,
vast amounts of data detailing biologic networks has been
organized into searchable databases. For example,
BioGRID documents protein and genetic interactions
from more than 39,991 publications [20]. The KEGG
pathway database similarly curates molecular interactions
and relational networks representing systemic functions at
the level of both the cell and organism [21]. To incorpo-
rate biological network information into regression mod-
els, a network-constrained regularization algorithm has
been previously proposed for use with linear regression
[22]. Use of this network-constrained algorithm has been
shown to out-perform both lasso and elastic net analyses
executed independently of biologic input.
Classification algorithms integrating network structure

information have been proposed in other settings. For
example, a network constrained support vector machine
has been proposed to analyze functional magnetic reso-
nance imaging data [23] and cancer microarray data
[24-26]. Network based prior has also been demon-
strated to improve variable selection accuracy under the
Bayesian inference framework [27,28].
Here, we propose a graphical Laplacian network regu-

larized logistic regression method following the frame-
work established by Li et al. [22]. We hypothesize that
the integration of biological networks, such as Protein-
Protein interactions, will improve prediction accuracy
and variable selection in logistic models. To validate use
of the proposed algorithm, we studied its theoretical
properties and compared its performance to L1-norm
regularized logistic regression and elastic net logistic
regression on both simulated and real biologic data.
Lastly, we demonstrate the utility of the proposed algo-
rithm by using it to differentiate breast cancer subtypes
and delineate biologic network modules associated with
the triple negative breast cancer (TNBC) subtypes.

Materials and methods
Graph laplacian regularized logistic regression model
Suppose that the data set has n observations with p genes.
Let y = (y1, ..., yn)

T be the response with yi Î {0, 1} and

X = [x1|, ..., |xp] be the matrix of biomarkers measured on
n samples with xj = (x1j, ..., xnj)

T for j = 1, ..., p genes.
Without loss of generality, we can assume that each gene
is standardized. The binary clinical variable, y, can be pre-
dicted using the logistic model:

Prob (y = 1|X; β) =
1

1 + e−Xβ
(1)

The parameter b can be estimated by maximizing the
log likelihood function of the logistic model. However, it
is well known that this estimation procedure performs
poorly for both prediction purposes and variable selec-
tion when p ≫ n. Although various sparse parameter
estimation procedures have been introduced to address
these problems, these approaches tend to generate dis-
connected biomarkers that are rarely interpretable.
To incorporate biological network information into the

model estimation procedure, we adopted the network-
constrained regularization framework proposed by Li et
al [22]. Given a biological network G = (V, E), where V is
the set of genes that correspond to p predictors, E is the
adjacency matrix, and euv = 1 if there exists an edge
between u and v, otherwise euv = 0. The normalized
graph Laplacian matrix L for G can be defined by

L = I − D− 1
2 ED− 1

2 (2)

where D = diag(E·1p) is a degree matrix with the diag-
onal elements equal to the degrees for each node in G.
For any fixed non-negative regularization parameters l
and a, we define the logistic graph Laplacian net (Logit-
Lapnet) criteria as:

L(λ,α,β) =
n∑

i=1

[−yiXiβ + ln(1 + eXiβ)] + λα|β|1 + λ(1 − α)〈β ,β〉L (3)

Where

|β|1 =
p∑

j=1

|βj|,

〈β ,β〉L = βTLβ =
∑

euv �=0
(
βu

du
− βv

du
)
2

.

du, dv are the degrees of nodes u and v respectively.
In (3), Xi is the ith row of the matrix X. The first term
in equation (3) is the negative log likelihood function
of the logistic model. The second term is an L1-norm
penalization on b, which encourages sparsity on the
coefficients. The last term is a generalized L2-norm
penalty using the graph Laplacian matrix, which
encourages smoothness on coefficients of genes that
are connected in the biological network. If we set a =
1, the Logit-Lapnet criteria is equal to the simple lasso
logistic regression. When L = I which is identity
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matrix, the Logit-Lapnet criteria becomes the elastic
net logistic regression.
The model estimation can be formulated into a con-

vex optimization problem:

β̂ = argmin
β

L(λ,α,β). (4)

To solve problem (4) we used CVX, a package for spe-
cifying and solving convex programs [29,30]. The con-
vexity property of Logit-Lapnet guarantees an optimal
solution using any convex optimization solver.

Theoretical properties of logit-lapnet
To study the behavior of the proposed method, we ana-
lyzed the theoretical properties of Logit-Lapnet.
Lemma 1 If xi = xj, then β̂i = β̂jfor any a < 1 and l >

0.
The proof of this lemma is given in the additional file

1. This lemma states that if two predictors are identical,
the coefficients of these two predictors will be the same.
In the L1-norm penalized logistic regression, only one
predictor is selected.
Theorem 1 Given data (y, X) and parameters (l, a),

let β̂(l, a) be the Logit-Lapnet estimator for problem (4).
If β̂iβ̂j > 0 and eij = 1, define Dλ,α(i, j) = 1

|y|1 |β̂i(λ,α) − β̂j(λ,α)|,
then

Dλ,α(i, j) ≤
√
2(1 − ρ)

2λ(1 − α)
(5)

where ρ is the sample correlation of xi and xj .
The upper bound in (5) provides a quantitative

description for the grouping effect of Logit-Lapnet on
the network structure. For two highly correlated genes
(ρ = 1) that are connected in a biological network, the
difference on the estimated coefficient is almost zero. As
a goes to 1, the Lapnet becomes lasso logistic regression
and the difference becomes unbounded.
Lemma 2 The maximum value of l in problem (4)

with β̂ �= 0satisfies

λmax ≤ 1
2α

(2|XTy|∞ + |
n∑

i=1

XT
i |∞) (6)

The maximum value of l is reciprocal to a. It is clear
that when a = 1, the Logit-Lapnet criteria becomes Lasso
and a small penalization can produce an empty model.
When a = 0, the penalization becomes much larger to
generate an empty model. In practice, Lemma 2 provides
a search guidance on the regularization path. The proof
of Lemma 2 is also given in the additional file 1.

Gene expression profiles and differential gene analysis
Gene expression data from breast cancer specimens pro-
filed by TCGA consortium was used to test the proposed

Logit-Lapnet method. Level III RNA-Seq data (Illumina
HigSeq RNASeqV2 from UNC) from patients with inva-
sive breast carcinoma was obtained from the TCGA data
portal https://tcga-data.nci.nih.gov/tcga/ in September,
2012. These data profiled 20501 genes in 806 distinct
breast cancer specimens. Normalized read counts were
used for all analyses and were log-transformed prior to
their use. Genes with normalized read counts less than
10 in more than 90% of patients were excluded from
further analyses. The normalized read counts were log-
transformed and standardized prior to applying the
method.
Of the 806 breast cancers characterized by the TCGA,

261 patients had incomplete information on the three
markers used to define TNBC and were excluded. Of the
remaining cancers, 85 TNBC and 460 non-TNBC were
further separated into training (n = 327; 51 TNBC, 276
non-TNBC) and test (n = 218; 34 TNBC, 184 non-
TNBC) sets. A total of 4871 differentially expressed gene
products (P ≤ 0.05, t-test; ≥ 1.5 fold-change between
TNBC vs. non-TNBC on training) were merged with pro-
tein-protein interaction (PPI) networks. This provided us
with 797 genes and PPI networks of 937 interactions
available for analysis using our proposed algorithm.

Protein-protein interaction (PPI) network
To construct the graph Laplacian matrix for testing the
Logit-Lapnet method on breast cancer data, networks of
protein-protein interactions (PPI) identified by two-
hybrid screening in Homo sapiens were obtained from
The Biological General Repository for Interaction Data-
sets (BioGRID, version 3.2.98) http://www.thebiogrid.
org. At the time it was accessed, BioGRID documented
21483 interactions between 7700 genes.

Results and discussion
Simulation studies
We initially used a benchmark simulation proposed by
Li to explore the performance of the proposed Logit-
Lapnet algorithm [22]. In brief, a network with 200 dis-
tinct transcription factors (TFs) was simulated. Each TF
in this simulation regulated 10 genes with a total of
2,200 genes in the simulated network. The clinical vari-
able y was assigned a binary value and was associated
with the first four TFs and their target genes. In model
I, we assumed that two of the TFs and their targets
were positively associated with the clinical variable and
the other two TFs and their targets were negatively
associated with the clinical variable.
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The clinical variable was defined as y = [Prob (y = 1|
X; b) > ϱ] where ϱ ~ U(0,1). Expression levels for the
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200 TFs were then simulated using a standard normal
distribution. Each TF and its target genes were jointly
distributed as a bivariate normal with correlation of 0.7.
In model II, gene expression levels were simulated

similarly to model I except that a TF could be both a
transcriptional activator and repressor at the same time.
The coefcient vector was defined as:
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Model III was similar to model I except that we
decreased the association of the target genes on the clin-
ical variable and made the model even sparser.
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Model IV was similar to model II in allowing tran-
scription factors to function as both activators and
repressors. However, the clinical association of the tar-
get genes was decreased.
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For each model, we simulated both a training data set
as well as an independent test data set of 100 samples.
A 10-fold cross-validation procedure was applied to the
training data set to identify the optimal tuning para-
meter. Genes with non-zero coefficient in the estimated
model were found to be associated with the clinical vari-
able. The sensitivity and specificity of our variable selec-
tion performance was defined as the following:

True Negative (TN) := |β̄ . ∗ ¯̂
β|0, False Positive (FP) : = |β̄. ∗ β̂|0

False Negative (FN) := |β . ∗ ¯̂
β|0, True Positive (TP) : = |β . ∗ β̂|0

Sensitivity : =
TP

TP + FN
, Specificity : =

TN
TN + FP

(7)

where the |·|0 counts the number of non-zero elements
in a vector, β̄ is the logical not operator on a vector and.*
is the element-wise product.
We repeated the experiment 50 times. Results are sum-

marized for each model in Table 1. We also computed
the Bernoulli error loss on the test data set. For all four
models, we compared the performance of the proposed
algorithm to both the L1 penalized logistic regression and
the elastic net algorithm. Our method resulted in much
higher sensitivity in identifying associated genes with the
same specificity compared to the other two algorithms
(Table 1). Our method also gave much smaller MSE
compared to the Lasso and elastic net logistic regression.
We computed the Receiver Operator Curve on the whole
regularization path for each of the algorithm. In all four
models, the proposed algorithm demonstrated much
higher precision compared to Lasso and elastic net logis-
tic regression (Figure 1).

Biomarker identification using logit-lapnet in human
breast cancers
Breast cancers are clinically categorized according to the
expression of several gene products, including the estro-
gen receptor (ESR1), progesterone receptor (PGR) and
human epidermal growth factor receptor 2 (ERBB2).
These biomarkers are routinely used not only to define
prognosis but also determine treatment. [31,32]. Of the
breast cancer subtypes defined by these biomarkers, tri-
ple negative breast cancers (TNBC) lacking expression
of ESR1, PAR and ERBB2(her2) are the most clinically
aggressive. TNBC demonstrate high rates of disease pro-
gression and recurrence [33]. Outcomes for this breast
cancer subtype are generally poor, largely due to the
fact that treatment options for women with TNBC are
limited. However, a subgroup of TNBC are highly sensi-
tive to conventional chemotherapy [34].
We chose to next validate use of our method by test-

ing its ability to identify the key biomarkers used to
define breast cancer subtypes. To accomplish this goal,
we used patterns of gene expression in a large set of

Table 1 Results of simulations.

Sensitivity Specificity Bernoulli Error Loss

# Lasso Elastic Lapnet Lasso Elastic Lapnet Lasso Elastic Lapnet

1 0.3146 0.4995 0.7583 0.9744 0.9945 0.9832 19.24 17.2 13.84

(0.059) (0.069) (0.071) (0.0028) (0.002) (0.005) (0.578) (0.537) (0.493)

2 0.1852 0.4386 0.6577 0.9982 0.9936 0.9847 19.22 19.62 16.8

(0.042) (0.076) (0.079) (0.001) (0.003) (0.005) (0.702) (0.671) (0.571)

3 0.2614 0.5714 0.8832 0.9887 0.9893 0.9537 15.14 16.44 14.38

(0.045) (0.068) (0.066) (0.0024) (0.0026) (0.006) (0.582) (0.585) (0.495)

4 0.2314 0.6755 0.8645 0.9927 0.9583 0.9492 17.38 18.86 16.1

(0.043) (0.0712) (0.069) (0.0019) (0.0045) (0.009) (0.511) (0.572) (0.570)

The results for simulations. Sensitivity, specificity and PMSEs are based on 50 simulations. The standard errors are given in parentheses.
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breast cancer specimens recently profiled by the Cancer
Genome Atlas consortium. The tuning parameter for
each method was selected through 10-fold cross-valida-
tion using the training data. We observed the same clas-
sification accuracy in predicting TNBC tumors (95%)
when lasso, elastic net and Logit-Lapnet were applied to
the testing data. The similar efficacy of these 3 algo-
rithms is not surprising since TNBC tumors are drama-
tically different from the non-TNBCs in terms of their
gene expression profiles.
However, there were a number of significant differ-

ences observed between the results obtained with the 3
algorithms tested. For example, use of Logit-Lapnet
selected 262 genes, of which > 63% (166 genes)

interacted with one another (Figure 2A). In comparison,
use of the Lasso algorithm selected only 24 genes, most
of which (20 genes) were isolated and were not pre-
dicted to interact. Elastic net selected nearly half of the
input genes (393 genes) of which 59% (230 genes) were
interconnected (Additional File 2). Furthermore, neither
Lasso nor elastic net identified the progesterone recep-
tor as a key discriminator for TNBC, despite the fact
that this gene product is routinely used to clinically
categorize breast cancers. Only Logit-Lapnet successfully
identified each of the three markers used to define
TNBC subtype: ESR1, PGR and ERBB2. These results
suggest that Logit-Lapnet is more accurate than either
Lasso or elastic net for identifying biomarkers from

Figure 1 Receiver operator curves (ROCs) on the regularization path. ROCs were computed on the regularization path for Logit-Lapnet,
enet, and lasso for all four models (A)-(D). Logit-Lapnet has higher true positive rate and lower false positive rate compared to the other two
approaches.
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large multidimensional genomic datasets such as those
generated by the TCGA.

Use of logit-lapnet for inferring novel biologic
relationships
In addition to identifying each of the 3 key biomarkers
used to categorize breast cancer subtypes, we found that
our method identified multiple subnetworks of gene
expression in the breast cancer specimens profiled by
TCGA. These subnetworks potentially reflect relation-
ships with clinical or biologic significance. For example,
one of subnetworks we identified includes multiple
genes (AR, ESR1, MED1, MED24, RARA, PRAME, and
HMGA1) involved in steroid hormone signaling. As
demonstrated in Figure 2, Logit-Lapnet found that this
cluster is closely connected to a known breast cancer
gene, GATA3. This connection suggests a functional
relationship. Evidence to support this relationship could
not be found by directly searching the database of pro-
tein-protein interactions used to construct our algo-
rithm. However, at least one report published since our
initial analyses has now shown that GATA3 mediates

genomic ESR1-binding upstream of FOXA1 [35]. This
confirms that the integration of genomic and PPI data
by our method has the capacity to identify new and
otherwise unanticipated relationships with biologic
significance.

Enhanced network specificity provided by logit-lapnet
Another advantageous feature of Logit-Lapnet is the
potential functional specificity of the subnetworks deli-
neated by our algorithm. Subnetworks identified by
Logit-Lapnet allow investigators to more readily focus
on key genes for subsequent downstream functional
analyses. For example, the subnetwork connecting AR,
ESR1 and RARA identified by our algorithm in TNBC
represents a cluster of genes involved in hormone recep-
tor signaling (Figure 2). The subnetwork 2 identified by
our method contains the genes PLK1, BCL2, BNIPL,
and tumor suppressor p53 binding protein TP53BP2.
PLK1, BNIPL and BCL2 are well-known oncogenes and
part of TP53 pathway [36]. The expression of BCL2 has
been proposed as a prognostic marker for breast cancer
patients. This subnetwork is also interesting, as it

Figure 2 Application of the algorithm to identify TNBC-associated genes. Genes and subnetworks of PPI associated with TNBC using TCGA
breast cancer data and BioGRID PPI. Comparison of the selected genes from our proposed algorithm with those from lasso and elastic net (A).
Genes and their respective subnetworks of PPI recovered by lasso (B) and our proposed Laplacian net algorithm (C). In the networks, genes
having association to breast cancer reported in the literature are labeled with larger font.
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predicts a relationships between gene products that have
been previously shown to impact the G1-S (TP53BP)
and G2-M cell cycle checkpoints (PLK1). Dysregulation
of both G1-S and G2-M are key hallmarks of human
cancer as defined by Weinberg and others. Furthermore,
TP53 dysfunction has been previously shown to lead to
the overexpression of PLK1 and other gene products
important for driving cells with genomic instability
through the cell cycle. Thus, the ability of Logit-Lapnet
to detect this relationship underscores its capacity to
detect key events in breast and other human cancers.
These results convey a clear message that interactions
between genes in clusters might be biologically relevant.
In contrast, alternative algorithms such as elastic net

identify fewer subnetworks containing larger number of
genes. This means that subnetworks identified by Logit-
Lapnet allow investigators to more readily focus on key
targets for subsequent downstream functional validation.
Although network modularization methods can be used
to further dissemble networks defined by elastic net into
smaller modules, these smaller modules may not reflect
direct interactions between their individual components.
This is because elastic net defines groups of co-
expressed genes rather than networks of functionally
interacting gene products. Alternatively, use of Logit-
Lapnet can be considered to place gene correlations in
the context of biologic function. Thus, its use can be
reasonably anticipated to define relationships that are
more likely to be biologically and clinically relevant.
In summary, the proposed algorithm identified set of

genes associated with breast tumors. In addition, inte-
gration of PPI in the algorithm enables us to recover the
genes not only in association to the breast cancer sub-
types but also their interacting partners which are also
breast cancer related. Most importantly, from the com-
parison with elastic net and lasso, our method selected a
reasonable size of genes and is the only algorithm cap-
able of identified all three marker genes in defining
TNBC.

Conclusion
We have developed a graph Laplacian regularized logis-
tic regression model for selecting the genes or network
modules associated with clinical variables from gene
expression profiles. Through simulation studies, we have
demonstrated that our approach is much more sensitive
for identifying clinically relevant genes and network
modules. We have presented a case study on network
module identification for triple negative breast cancer
sub-type using mRNA-seq data. Our results indicate
that Logit-Lapnet is a superior algorithm compared to
Lasso and elastic net in disease gene and network mod-
ule selection. Further work to biologically validate our
predicted modules is needed to gain a more complete

picture of the regulatory process in the TNBC sub-type.
Beyond genomics, there are many potential applications
of Logit-Lapnet to utilize the rich information provided
by network structure, such as metabolomics and proe-
teomics studies. In conclusion, our work developing the
network structure regularized logistic regression model
has many implications and has provided a new tool for
research in genomic studies.

Additional material

Additional file 1: Proofs of lemma and theorem. This file includes the
mathematics proofs on lemma 1, 2 and theorem 1.

Additional file 2: Genes identified by elastic net. This file includes a
figure of genes and their respective subnetworks of PPI identified by
elastic net. Genes with larger font indicates its association to breast
cancer reported in the literature.
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