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Abstract

Background: It has been hypothesized that multivariate analysis and systematic detection of epistatic interactions
between explanatory genotyping variables may help resolve the problem of “missing heritability” currently
observed in genome-wide association studies (GWAS). However, even the simplest bivariate analysis is still held
back by significant statistical and computational challenges that are often addressed by reducing the set of
analysed markers. Theoretically, it has been shown that combinations of loci may exist that show weak or no
effects individually, but show significant (even complete) explanatory power over phenotype when combined.
Reducing the set of analysed SNPs before bivariate analysis could easily omit such critical loci.

Results: We have developed an exhaustive bivariate GWAS analysis methodology that yields a manageable subset
of candidate marker pairs for subsequent analysis using other, often more computationally expensive techniques.
Our model-free filtering approach is based on classification using ROC curve analysis, an alternative to much slower
regression-based modelling techniques. Exhaustive analysis of studies containing approximately 450,000 SNPs and
5,000 samples requires only 2 hours using a desktop CPU or 13 minutes using a GPU (Graphics Processing Unit).
We validate our methodology with analysis of simulated datasets as well as the seven Wellcome Trust Case-Control
Consortium datasets that represent a wide range of real life GWAS challenges. We have identified SNP pairs that
have considerably stronger association with disease than their individual component SNPs that often show
negligible effect univariately. When compared against previously reported results in the literature, our methods re-
detect most significant SNP-pairs and additionally detect many pairs absent from the literature that show strong
association with disease. The high overlap suggests that our fast analysis could substitute for some slower
alternatives.

Conclusions: We demonstrate that the proposed methodology is robust, fast and capable of exhaustive search for
epistatic interactions using a standard desktop computer. First, our implementation is significantly faster than
timings for comparable algorithms reported in the literature, especially as our method allows simultaneous use of
multiple statistical filters with low computing time overhead. Second, for some diseases, we have identified
hundreds of SNP pairs that pass formal multiple test (Bonferroni) correction and could form a rich source of
hypotheses for follow-up analysis.

Availability: A web-based version of the software used for this analysis is available at http://bioinformatics.research.
nicta.com.au/gwis.
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Background
Genome-wide association studies (GWAS) have discov-
ered many underlying genetic causes of disease, but have
also raised important questions about standard
approaches to modelling complex traits [1]. While com-
monly-used univariate analysis techniques have been able
to detect a number of significantly associated loci, for
many conditions these discovered variants do not
account for a majority of the theoretical estimates of
genetic heritability. Multivariate approaches may help to
alleviate this issue of “missing heritability” [2]. Theoreti-
cally, it has been shown that 2-way and 3-way single
nucleotide polymorphism (SNP) interactions can explain
up to ~ 50% and ~ 100% of trait variance while each SNP
involved explains none [3], indicating that critical SNP
pairs may be ignored by univariate analysis predomi-
nantly applied to GWAS so far. It is hypothesised that
systematic detection methods may assist discovery of
such potentially epistatic interactions between DNA loci.

Motivation
To date there exists little experimentally-validated evi-
dence of SNP interactions in humans, largely due to the
complexity of multivariate GWAS analysis. Even in only
bivariate analysis, the number of possible SNP interac-
tions that need to be searched is extremely large, as there
are 125 billion possible SNP pairs in a GWAS of 500,000
SNPs. The scale of the problem produces significant
computational and statistical challenges. Numerous
approaches proposed to address these challenges are
unable to scale to this large number of tests, due to both
performance and accuracy (a large number of false-posi-
tive results are expected from so many tests, generating
concerns about the effectiveness of multiple-test correc-
tion). This has led to claims that finding epistatic interac-
tions via exhaustive search is infeasible [4,5]. While these
pessimistic claims have recently been proven wrong (e.g.
[6-10]), techniques that do scale to exhaustive search cur-
rently require weeks or months to process GWAS of 5
million SNPs, which are becoming increasingly common.
As GWAS studies continue to grow in size, faster analysis
techniques will be needed. This paper aims to offer solu-
tions that meet these ever-increasing requirements.

Epistatic interactions
Our goal is to present a system capable of exhaustive
search through all SNP pairs in an entire GWAS, detect-
ing all significant epistatic interactions. As discussed in
[11], both the terms “significant” and “epistatic interac-
tion” have diverse definitions when used by biologists,
epidemiologists, statisticians and geneticists and are often
not made explicit. We specify the precise meanings of
these terms as used in this paper, presenting a verbal

description now and a more specific elaboration in the
Methods section. We say that two SNPs have an epistatic
interaction if using both of them allows discrimination
between Cases and Controls with significantly higher
sensitivity and specificity than is possible using any one
of them individually. The significance is quantified as a
p-value for rejection of a well specified null hypothesis
(see Methods for details). This rejection implies in parti-
cular, that the improvement cannot be explained by
biased sampling from a population pre-classified by any
one of the SNPs in the pair. In the Discussion section we
argue that our generic formal definition of epistasis cap-
tures some biological aspects of epistasis that Fisher’s
popular definition of interaction [12] misses.

GWIS approach
The definitions given above can be directly converted
into computational methods, suitable for scanning tril-
lions of SNP pairs in a modern GWAS and providing an
alternative to widely-used regression based approaches.
In this work, we present a platform called Genome Wide
Interaction Search (GWIS), that is based on classification,
and novel rigorous statistical tests based on receiver
operating characteristic (ROC) curve analysis [13]. Our
proposed method is genuinely “model free”, since we do
not assume any interaction model between SNP geno-
types. In this sense we are close to other model free
approaches, in particular Multifactor Dimensionality
Reduction (MDR) [14-16], although we rely on analytical
solutions to hypothesis-based testing rather than slower,
computationally-costly cross-validation and permutation
testing.
We demonstrate that exhaustive search of all possible

pairs in standard GWAS is feasible and fast on a desktop
computer and that our proposed technique is faster than
currently available exhaustive techniques. Aside from the
computational challenges mentioned above, there are a
number of statistical challenges that also need to be
resolved. Principled methods are needed that allow for sig-
nificance-correction of the billions of SNP-pair and geno-
type combinations, and that are able to cope with
characteristics of real-world data, e.g. confounding factors
due to strong univariate signals, examining significance in
the far tail of distributions where the central limit approxi-
mation does not hold, and SNPs with low minor allele fre-
quency giving rise to very low genotype counts.
We introduce a novel and theoretically well-founded,

model-free hypothesis test specifically designed for multi-
variate GWAS analysis. It is based on relating the sensitiv-
ity and specificity observed in the sampled data to the
sensitivity and specificity that could be achieved in the
‘true’ population. The test, named gain in sensitivity and
specificity (GSS), is designed to detect epistatic SNP
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interactions, and computes exact p-values, without using
large sample normal approximations. Each application of
the GSS test to a pair of SNPs involves solving a number
of min-max optimisations, which are pair specific and are
therefore impractical for scanning trillions of putative
SNP-pairs. Hence, we introduce two extra tests, referred
to as sensitivity and specificity (SS) and difference in sensi-
tivity and specificity (DSS), that act as practical fast proxies
for the GSS test.

Validation
Algorithms for detecting epistatic SNP interactions are
typically evaluated using simulated data, for reasons of
both scalability and interpretation [17-19]. However, the
creation of realistic structure in simulated data is pro-
blematic as much is unknown about the nature and
existence of epistasis in humans [20,21]. Therefore, we
primarily focus on seven GWAS datasets from the Well-
come Trust Case-Control Consortium (WTCCC) [22].
These data include various real GWAS challenges that
are not always represented in simulated data. Although
the set of true SNP interactions is not yet known for
WTCCC data, analysis of this data using multiple types
of analysis provides evidence on the properties of the
epistatic interactions that can be observed, reveals con-
founding factors not generally modelled in synthetic
data, and demonstrates the advantages and limitations
of different statistical filtering approaches. The efficiency
of our methods is demonstrated by comparing timings
of our methods on various size datasets to those
reported in several recent publications. The proposed
statistical filters are further benchmarked by confirming
their theoretically advantageous properties and valida-
tion of their power and false positive rates over an
extensive collection of synthetic datasets available from
[23]. We show the importance of exhaustive search
without which heuristics may miss significant SNP pairs.
We demonstrate that our GSS test is able to identify a
number of interesting SNP pairs that show significant
epistatic effects. Detected results are compared to those
from existing literature, showing that GWIS repeats
many known results, as well as suggesting many novel
interactions.

Contributions
This paper makes several contributions. First, we use an
operational definition of epistasis based on classification
of individuals into Cases or Controls to develop a set of
robust, principled methods for explicitly detecting signif-
icant epistatic interactions in GWAS data. Second, we
demonstrate that our proposed methods scale well and
are fast enough to permit exhaustive analysis of current
and near-future GWAS data. Third, we have applied
GWIS to a diverse range of both simulated and real life

benchmark data, and detected many significant associa-
tions in addition to confirming many associations pre-
viously reported. Finally, our analysis of real data
indicates the limitations of conventional statistical meth-
ods such as Pearson’s χ2 test for detecting epistatic
interactions in the presence of strong main effects.

Results
An exhaustive evaluation of all possible SNP pairings is
the most powerful strategy to detect epistatic interac-
tions [24] but to date remains a computationally chal-
lenging task. Most methods have been unable to scale
exhaustive methods to entire GWAS without perform-
ing some reduction in the number of pairs to be evalu-
ated [5], or requiring special hardware such as a
compute cluster [25-27].

Comparison of computation time
GWIS is able to exhaustively search whole GWAS on a
desktop PC with no special hardware, and can also take
advantage of available retail Graphics Processing Units
(GPUs) to further reduce execution time. The imple-
mentation of GWIS allows multiple filters to simulta-
neously evaluate SNP pairs with low impact on speed.
Table 1 shows runtime for GWIS using CPU and GPU
implementations, applying either 1 or 3 statistical filters.
For comparison, we show timing reported by other
recent SNP interaction detection methods, both CPU
and GPU, scaled to 450K and 5M SNP arrays using the
formulas reported in the Supplement Section 2, “Calcu-
lation of Timing”. Timing data for GWIS was acquired
using a 4-core, 64 bit, 3 GHz Intel CPU and an NVIDIA
GTX 470 graphics card (GPU). We converted the timing
results reported in literature to the above platform.
Exact comparison with other results is problematic
because different hardware was used, but the dramatic
improvements in runtime cannot be attributed to hard-
ware choice alone.
Table 1 demonstrates that exhaustive evaluation of all

possible SNP pairs is feasible on a standard desktop
machine with GWIS taking 2.7 hours for CPU and 13
minutes for GPU implementations. This represents an
approximate 9× and 6× speed up over other alternative
CPU and GPU exhaustive-search methods respectively,
and is faster than many methods that use heuristic
search strategies. The only faster method reported here
is a non-exhaustive search algorithm RAPID, whose tim-
ing reported here excludes parameter tuning that
increases the actual time dramatically and has profound
impact on performance (see the following Section).
For GWIS, we report runtime using one filter and

three filters, namely χ2 alone or in combination with
DSS and SS tests. The latter two tests are more compu-
tationally intensive than most existing statistical filters
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such as χ2, Difference of Odds (DoO) and the Fisher
Exact test (FE). Approximately 60% of the runtime for
χ2 alone is spent computing contingency tables, that
are subsequently used by all statistical tests. On the
reference machine used for CPU results in Table 1, χ2

alone runs in 2.7 hours. χ2, DoO and FE can be com-
pleted in 4.6 hours. χ2, DSS and SS requires 10.9 hours.
If we consider arrays of 5M SNPs, the estimated differ-

ence in times shows the necessity of faster exhaustive
methods. Many algorithms that had acceptable runtime
on current size GWAS will take weeks or months to com-
pute on the larger number of SNPs as the total number of
pairs to be evaluated grows quadratically. While the CPU
implementation of GWIS would require about 3 months,
the GPU implementation requires 3 days, a feasible wait
for research results. Both CPU and GPU implementations
could be deployed on a computing cluster to easily reduce
this runtime down to a few minutes.
We expected the runtime of our methods to increase

linearly with the number of samples and quadratically
with increasing SNPs (i.e. linear in terms of SNP-pairs).
To verify this, we examined program runtime on simu-
lated datasets varying both the number of samples and
the number of SNPs. These datasets contained between

125K and 1M SNPs and between 1250 and 10K samples.
Due to the independence of computations on each SNP-
pair, both CPU and GPU implementations show the
expected relationships between samples, SNPs and run-
time. Note that actual timings will be affected by machine
architecture; in addition to obvious factors such as clock
speed, we exploit low-level functions that are found in
most modern CPUs. Older CPUs without high perfor-
mance functions will not execute GWIS as quickly.

Summary and analysis of interactions detected using
different statistical filters
The efficiency of GWIS enables exhaustive pairwise ana-
lysis of multiple studies using multiple statistical filters.
We present an initial analysis of the seven WTCCC
datasets listed in Table 2 and explore the detected pairs
arising from two statistical tests, χ2 and DSS, imple-

mented in GWIS. χ2 is a standard hypothesis test for
association [28] that has been used in numerous interac-
tion detection methods [25,29,30] but its effectiveness
has been generally evaluated over simulated rather than
real data. DSS is a novel filter that explicitly searches for
pairs that show a more significant association with phe-
notype than either of the two SNPs individually (details
in the Methods section). For comparison, we also evalu-
ated GBOOST [7], a GPU method based on the earlier
BOOST method [10,31] and which represents the cur-
rent state of the art for epistasis detection [19]. Table 3
reports the number of SNP pairs detected using
each method that show significant association where
significance is defined by Bonferroni correction

(p - value =
(
459, 012

2

)−1

≈ 10−11). GBOOST was run using

default parameters. For some datasets, a univariate ana-
lysis using χ2 detected extremely strong associations.
These p-values reported here and for corresponding
plots in supplementary material are likely due to asso-
ciations driven by the HLA region which have been pre-
viously reported [22].

Table 1 Runtime required for GWIS compared to recent
CPU and GPU methods.

Method Time for nSNP × nsamples Exhaustive Search

0.45M × 5K 5M × 10K

CPU Implementation:

(4 cores, 64 bits, 3GHz Intel)

GWIS (1 filter) 2.7 hours* 28 days Yes

GWIS (3 filters) 10.9 hours* 113 days Yes

BOOST [31] 23 hours 8 months Yes

PLINK [53] 89 days 60 years Yes

RAPID [32] 15 mins NA No

SIXPAC [24] 8.0 hours NA No

GPU Implementation:

(448 CUDA cores, 1.215 GHz, NVIDIA GTX 470)

GWIS (1 filter) 13 mins* 2.2 days Yes

GWIS (3 Filters) 22 mins* 3.8 days Yes

GBOOST [7] 1.4 hours 15 days Yes

EpiGPU [8] 17 hours 6 months Yes

SHEsisEPI [9] 28 hours 10 months Yes

EPIBLASTER [6] 8.9 days 6 years Yes

Runtime required for GWIS compared to recent CPU and GPU methods. The
first column reports results for WTCCC-sized data (450K SNPs, 5K samples)
while the second column shows timings for larger recent GWAS (5M SNPs,
10K samples). The rightmost column denotes whether a method performs
exhaustive search of all pairs. Filters run by GWIS are χ2 alone or in
combination with DSS and SS tests. The times indicated by ‘*’ are actual run
times, and all other times are estimated by scaling (see Supplement Section 2
for exact calculations). Runtime for non-exhaustive methods has not been
estimated as it is difficult to judge how these methods scale with the number
of SNPs and samples.

Table 2 Abbreviations and number of Case samples for
each WTCCC dataset.

Abbreviation Num. of Cases Disease

BD 1868 Bipolar Disorder

CAD 1926 Coronary Artery Disease

CD 1748 Crohn’s Disease

HT 1952 Hypertension

RA 1860 Rheumatoid Arthritis

T1D 1963 Type 1 Diabetes

T2D 1924 Type 2 Diabetes

Abbreviations and number of Case samples for each WTCCC dataset [22]. All
datasets have 459,012 SNPs and share 2983 Control samples.
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We found that the evaluated methods varied greatly in
the number of interactions detected. χ2 reported many
interactions that passed Bonferroni correction, totalling
many hundreds of thousands of SNP pairs in some data-
sets. This suggests additional filtering is required.
GBOOST was also able to detect a number of SNP pairs
with significant association in all datasets, though this is
reduced compared with previously reported results and is
less than we report using our novel DSS test. We also
attempted to run RAPID [32], which is based on a geo-
metric approximation to χ2, but despite a lengthy para-
meter tuning stage, requiring multiple iterations over the
WTCCC data, we were unable to detect any significant
SNPs in real data. These differences in results with pre-
vious reports for GBOOST and RAPID may be caused by
varying quality control measures, or parameter settings.
The vast number of positive results that a conventional

χ2 statistic generates for some datasets appears to be
associated with the strength of univariate SNP associa-
tion seen in the data. We hypothesise that SNPs showing
strong univariate association may have a possible con-
founding effect. If a strongly associated SNP is paired
with a SNP showing no association, the resulting pair is
likely to have at least the same level of association
according to χ2 as the strongest of the two. Given the
vast number of pairs being examined, it is likely that such
“univariately-driven” pairs overwhelm the results and
reduce the ranking of SNP pairs with “genuine” epistatic
effects enough that they are impossible to recover using
post-processing techniques.
Figure 1 further investigates this effect in detail, show-

ing the strength of significant univariate and pairwise
association detected by χ2 in the RA dataset. Univariate
analysis reveals a strong signal coming from chromosome
6 within the HLA region, a known risk area for RA and
many other diseases. In Figure 1(a) we see two bands of
SNP pairs across the entire genome. The significance of

association for SNP pairs in the upper and lower bands
correspond closely to the association of the most and
second-most significant SNPs on chromosome 6 and 1
respectively.
In Figure 1(b) we plot the number of times that each

SNP occurs in the list of top pairs reported by χ2. While
most SNPs occur in fewer than 10 pairs, the two outliers
correspond to the two SNPs with strongest univariate
significance indicating they occur in 99% of the 500,000
top-ranked SNP pairs reported by χ2. The majority of
these SNP pairs are therefore unlikely to be evidence of
epistatic interactions as their perceived association is due
to univariate effects only. When used for the detection of
epistatic SNP pairs, the χ2 statistic tests only for an asso-
ciation with phenotype but, unfortunately, fails to ade-
quately take into account whether this association is due
to univariate effects only. In the search for epistatic inter-
actions, such pairs represent a source of noise that can
cause practical problems for many standard tests of
association.

Novel statistics to account for strong univariate effects
The confounding by strong univariate signals similar to
the results of χ2 filtering in Figure 1(a) has been seen
elsewhere [26,27,33], but previously proposed methods of
accounting for these effects are either heuristic (difficult
to interpret and lacking in statistical rigour), or are based
on regression (requiring slower iterative solutions and
assumptions about the way in which SNPs interact). Here
we present the results of our novel GSS test as an alter-
native solution for dealing with these effects.
In Table 3, we indicate the number of pairs detected by

χ2 that are significant according to the GSS test given
the conservative Bonferroni threshold of significance.
The number of significant pairs falls dramatically for dis-
eases with strong univariate signals, from hundreds of
thousands down to tens. These reductions support our

Table 3 Summary of the number of SNP pairs detected by different filtering methods.

Univariate Bivariate Filter Bivariate Filter + GSS

Dataset log10 Pχ2 χ2 DSS GBOOST χ2 DSS GBOOST

HT -9.8 128 429 51 41 107 24

BD -10.9 2445 556 34 44 179 27

CAD -13.1 210147 7807 43 42 116 39

T2D -13.3 56592 3105 52 79 134 41

CD -34.3 > 500000* 5591 25 29 57 22

RA -37.7 > 500000* 823 99 59 312 95

T1D -133.6 > 500000* 4993 37 2 107 33

Summary of the number of SNP pairs detected by χ2 , GBOOST and our introduced DSS heuristic over all WTCCC datasets before and after filtering with GSS.

The rows of the table are sorted in descending order of p-values for univariate χ2 test (Column 2). Columns 3-5 show results for the bivariate filters, and

columns 6-8 show the number of epistatic interactions discovered after further filtering with GSS. In some diseases, strong univariate SNPs likely cause

proliferation of non-epistatic but significant pairs according to χ2 . These pairs are largely removed by the proposed GSS filter. A ‘*’ indicates that an upper

bound on the number of recorded pairs was reached. The number of significant pairs may be much higher.
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Figure 1 Strength of SNPs individually and as pairs, and the frequency of SNPs appearing in pairs detected in RA by χ2 and DSS.

Manhattan plots for univariate and bivariate SNP and the frequency of SNPs occurrence in pairs detected in RA by χ2 and DSS. The Manhattan

plots (a, c) show location and p-values of univariately significant SNPs (blue) and bivariately significant SNP pairs (green). Additionally, we mark
the subset of SNP pairs that are also significant according to GSS (red circle). Each SNP pair generates two points. The frequency plots (b, d)

show the number of reported pairs that each SNP appears in. The Manhattan plot for χ2 (a) indicates almost all reported pairs appear in two

distinct bands across the genome. The frequency plot (b) indicates these pairs all involve one of the two most significant SNPs from univariate
analysis (highlighted) and therefore majority of them are unlikely to be epistatic. Manhattan plot (c) shows the DSS filter eliminates the banding

pattern seen for χ2 and the frequency plot (d) shows that a greater number of unique SNPs are present in detected pairs. Note in Manhattan

plot (c), the p-values for univariate association are from SS test as DSS only applies to pairs. There is also no pairwise Bonferroni line shown
because DSS is a heuristic rather than a calibrated p-value.
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hypothesis that most of the SNP pairs detected by the χ2

filter show very weak or no epistatic effect.
Interestingly, repeating the same approach over the

pairs detected by GBOOST removes very few pairs for
most datasets. This is likely because GBOOST looks for
significant interactions by examining the improvement of
fit in log-linear regression models with and without an
interaction term, in essence searching for SNP pairs with
no strong univariate effects. The downside of such a
technique is that a number of assumptions must be
made, in this case requiring that the epistatic SNP pair
must fall under an additive model. Such assumptions are
not made by the GSS test.
Current implementations of the GSS statistic are too

computationally expensive to use on all possible SNP
pairs but can easily be run over a few million candidate
pairs (our MATLAB implementation requires ≈ 90 min-
utes for evaluation of 1 million SNP pairs, see Additional
File 1 Section 1.6). We therefore take a two-stage filtering
approach similar to many other methods [6,10,29,32,34],
running a fast but lenient primary filter exhaustively over
all pairs, followed by the slower but more accurate GSS
test on the smaller subset of pairs selected by the initial
filter. As a primary filter, we could use χ2, though the
proliferation of strong univariate SNPs is often so large
that it is not feasible to store all significant pairs within a
ranked list. As an alternative primary filter, we introduce
the DSS, based on similar concepts to the GSS statistic.
The DSS test measures the log-p-value difference
between a pair of SNPs and the strongest individual SNP
in the pair. This approach is similar to that used in
[26,27], and is well correlated with the GSS test (see
Additional File Figures 3 and 4) but is much faster to
compute.
To demonstrate the effectiveness of the DSS heuristic

followed by the GSS filter, we repeat the same analysis as
performed for χ2 and GBOOST. Table 3 shows that
DSS detects hundreds or thousands of SNP pairs in all
datasets and after filtering using the GSS statistic, there
are more SNP pairs remaining than for either χ2 or
GBOOST, in every dataset, respectively.
In Figure 1(c), we plot the significance of SNP pairs

chosen by the DSS filter. The figure demonstrates that
the DSS heuristic largely addresses the proliferation of
SNP pairs caused by strong univariate SNPs, with the
chosen SNP pairs no longer showing the similar banding
effect seen in the corresponding plot for χ2 shown in
Figure 1(a). The frequency plot (Figure 1(d)) further
demonstrates this, indicating that while some SNPs
appear more frequently than others, no single SNP domi-
nates the entire list. The SNP pairs with high DSS show
an improved concordance with GSS compared to the
concordance seen for χ2 in Figure 1(a).

Comparison to previously reported interactions
The WTCCC datasets have been thoroughly examined by
a number of epistasis detection methods many of which
have reported significantly interacting SNP pairs, includ-
ing some with evidence of replication of association in
other datasets. We have conducted a comparison of these
previous results [26,35-37] with the SNP pairs reported
by GWIS using a combination of DSS and GSS filters.
Each study reported in the literature uses its own statis-

tics for determining a pair’s significance and while direct
comparison between p-values from these statistics is not
meaningful, we can instead evaluate the usefulness of a
SNP or SNP pair directly. Namely, we would like to find
a pair of SNPs which segregate a significant subset of
Cases with no or very few Controls, or conversely a sig-
nificant fraction of Controls with few Cases.
Odds Ratios (ORs) are commonly used to measure

effect size [28] and have the advantage that they can also
show whether the effect is protective or contributory. It
is well known that the OR can be meaningless if the
“odds” are close to zero. For contributory (deleterious)
alleles this occurs when the critical parameter sensitivity
≈ 0 while for protective alleles, this is reversed and the
odds ratio becomes uninformative when specificity ≈ 0.
As we are only interested in either sensitivity or specifi-
city depending on direction of association, we use the
term “critical sens/spec” to refer to sensitivity and specifi-
city depending on whether a given pair is contributory or
protective. By examining the OR and the critical sens/
spec we are able to summarise information on effect size,
association direction and the proportion of correctly clas-
sified samples.
In Figure 2, we plot log2 OR vs. critical sens/spec for

each of the SNP pairs reported as significantly interacting
by GWIS, reported in previous studies or reported by
both. SNP pairs identified by GBOOST when run using
default parameters have been separately marked.
Although a substantial number of pairs were detected

by both GWIS and literature methods, there are some
discrepancies. Many pairs detected by GWIS alone often
have greater odds ratios and critical sens/spec than pairs
detected by the literature only. This suggests that GWIS
can detect many potentially interacting pairs that are
missed by methods in the literature.
All diseases show some literature pairs that have not

been detected by GWIS (black and cyan diamond markers
in Figure 2). These can be split into two categories. The
first category, marked by black diamonds, consists of pairs
which are significant according to our GSS filter but have
not been reported due to shortcomings in our DSS filter-
ing stage. They account for the 9 discrepancies between
columns “Lit. after GSS’ and ‘Overlap” in Table 4 and are
discussed later in this section.
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The second category, marked by cyan diamonds, predo-
minantly consist of literature pairs where the level of
improvement of the pair over its individual SNPs is insuffi-
cient to be deemed epistatic according to our stringent
requirement of improvement above Bonferroni threshold,

i.e. fltGSS ≥ log10

(
459, 012

2

)
≈ 11 . In essence, these pair

are deemed to be driven by main effects alone. This cate-
gory also includes a few literature pairs that had insuffi-
cient critical sens/spec to be considered by GWIS (<2%,
see “Minimal sensitivity and specificity” in Methods

section). The supplementary Figures 22-24 show how this
category changes, and the overlap with literature improves,
once the Bonferroni threshold requirement is relaxed.
Recall that GWIS is intended to detect potential epi-

static interactions. It is very encouraging that although
GWIS’ epistasis definition does not explicitly maximize
odds-ratios or critical sens/spec, literature pairs with
high odds-ratios and critical sens/spec are reliably
detected by GWIS.
The analysis across datasets shows the expected trend

of lower critical sens/spec having increased |log2 OR|

Figure 2 Odds ratio (OR) vs. “critical sens/spec” of detected pairs in seven WTCCC datasets in our study and reported in literature to date.
Odds ratio (OR) vs. “critical sens/spec”, i.e. sensitivity for contributing genotypes (log2 OR>0) or vs. specificity for protective genotypes (log2 OR<0). We
show pairs from seven WTCCC datasets reported by GWIS or in previous literature. Results from GBOOST, an implementation of log-linear regression
method, have been indicated by circles. Here we show all pairs from the full set of previous literature results that we have compiled. Each pair is
represented by a point whose style indicates the methods it was reported by. There are nine pairs in the literature which pass the formal Bonferroni

threshold for the gain test, fltGSS > log10

(
459, 012

2

)
≈ 11 but were not detected by GWIS (black diamonds); the literature pairs which did

not pass this formal requirement are marked by cyan diamonds. There are few pairs that were only detected by GBOOST (empty green circles). There
is a substantial number of pairs with high odds ratios and coverage which were detected only by GWIS (red dots with no surrounding green circle)
while many more were detected both in the literature and by GWIS (blue dots). The left most vertical dotted line marks the formal minimum
requirement of critical sens/spec ≥ 2%, while such horizontal lines are for log2OR = ±1 corresponding to OR = 2 or OR = 1/2, respectively.
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and SNP pairs with low critical sens/spec (≤ 7%) often
having very large |log2 OR|. These pairs are often closely
located (≤ 1Mb) and a number have been detected by pre-
vious studies. Some exceptions do exist to these trends
with T1D showing a SNP pair detected only by GWIS that
has OR above 4 and critical sens/spec above 30%.
As discussed earlier, GBOOST results are largely signif-

icant according to the GSS filter. There were a few points
detected by GBOOST but not by GSS filtering. These
pairs tended to have relatively small OR and were only
just under the strict Bonferroni threshold being used.
We can also use the previous literature to provide evi-

dence that the DSS statistic is acting as a reasonable
proxy for the GSS filter. If pairs from previous literature
that are significant according to GSS but were not
detected by DSS, then the DSS filter has failed to
detected some relevant pairs. In Table 4, we show the
number of interactions reported by GWIS using the
combination of DSS and GSS filters, the number of
pairs reported only by previous literature after GSS filter

and the number of pairs that appear in both sets of
results.
The results indicate that the number of previously

reported pairs that remain significant under GSS varies
dramatically ranging from ≈ 4% to ≈ 66%. This large var-
iance is likely related to the fact that different methods
chose to focus on one or two WTCCC datasets rather
than all seven. Datasets that show a large reduction in the
number of reported pairs after GSS filtering have tended
to be driven by methods searching for strong phenotype
association rather than purely epistatic effects.
The “Overlap” column shows that aside from nine pairs

in four diseases, all previously reported pairs that are sig-
nificant under GSS were also detected by GWIS using
the combination of DSS and filters. This provides addi-
tional evidence that the DSS primary filter is sensitive
enough to detect pairs that are likely to be significant
under GSS.
We also note that many ‘novel’ SNP pairs were also

detected by GWIS. While re-iterating that further

Figure 3 Power of χ2 and the proposed DSS heuristic over simulated data. These charts compare the power of χ2 and the proposed
DSS heuristic to detect an epistatic pair. All DSS results are shown as solid lines; χ2 results are shown as dashed lines. Lines of same colour
represent results from different statistics on the same simulated data. The effects of varying heritability, sample size (200, 400, 800, 1600) and
minor allele frequency (0.2, 0.4) are shown here. Each data point shows the mean power over 500 randomly generated datasets. Across all
parameter configurations DSS demonstrated higher power to detect the interacting pair of SNPs than χ2 . False-positive rates for both tests
(not shown here) were very low and grew linearly with the number of samples (individuals).
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quality control and inspection would need to be per-
formed to validate such pairs, it is indicative that
exhaustive search combined with the statistics we pro-
pose here is likely able to detect a greater quantity of
novel epistatic interactions. Such further analysis may
also involve re-adjustment of the cutoff threshold to
values below Bonferroni threshold used in Figure 2.

Further validation over simulated data
To further validate our proposed statistic GSS and heur-
istic DSS, we evaluate their power and false positive
rates over a set of synthetic benchmark datasets. The
datasets chosen were generated for [23] and simulate 5
models of SNP interaction. The data shows association
with phenotype only when the “true” SNPs are consid-
ered as a pair, with no association univariately. For each

combination of heritability, minor allele frequency and
sample-size, 500 datasets were generated, creating a
total of 70 penetrance functions and 42,000 datasets.
These datasets have been used to evaluate the results of
several previous methods [10,23,38].
For each parameter combination, a single “epistatic”

interaction has been embedded into each of the data-
sets. This allows us to calculate power (i.e. the fraction
of times our method detects the “true” pair) and false
positive rate (the number of other pairs falsely
detected as interacting). These results are shown in
Figure 3. To “detect” a pair, the computed significance
has to pass a standard Bonferroni-corrected level

(p - value =
(
1000
2

)−1

≈ 2 × 10−6) .We only provide

Figure 4 Example of a pair of individually insignificant SNPs in HT data. Example of a pair of individually insignificant SNPs in HT data that
combined display both strong protective and contributing effects. Panel (a) shows prevalence mapping ROC curves for the pair (red) and
individual SNPs (blue, green). Panels (b) and (c) zoom into the protective (top-right 20%) and contributory (lower-left 20%) areas respectively.
Panel (d) shows selected statistics for the pair. The nine rows correspond to possible genotype calls for the pair of SNPs. Columns are: fltSS - the
sensitivity-specificity filter score; fltGSS - the gain filter score; OR - Odds-Ratio; p0 - percentage of Controls for the genotype call in this row; p1 -
percentage of Cases; spe% - specificity %; sen% - sensitivity %; RelRisk - relative risk for the genotype call := p1/p0; g1, g2 - genotype calls for the
pair of SNPs; prevPerm - prevalence permutation (see Additional File Section 1.2). The genotype call (1, 0) (row 1) segregates 5.79% of Cases with
only 0.24% of Controls resulting in an odds ratio of 25.73, fltSS = 37.81 and fltGSS = 33.83. Conversely, genotype calls {(1, 1), (2, 1)} (rows 8 and 9)
cover 7.39% of Controls with only 0.41% of Cases resulting in an odds ratio of 0.05. This combination is also highly significant with fltSS = 39.74
and fltGSS = 35.9. The two points corresponding to these calls are highlighted with stars.
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results comparing our DSS heuristic and the χ2 statis-
tic as it was not practical to execute GSS on the thou-
sands of simulated datasets.
Over all the parameter combinations, DSS provided

higher power than χ2, albeit with a slightly higher false-
positive rate. This matches our expectations for DSS as a
heuristic fast filter for epistasis (i.e. a manageable number
of false-positives are expected). The number of false-posi-
tives from χ2 was extremely low (0 or 1 per 500,000
SNP-pairs) suggesting that the Bonferroni-corrected sig-
nificance threshold was too strict for the χ2 test on this
data. With a different threshold, χ2 might have recov-
ered some false negative errors.
The number of false-positives from DSS was also very

low, and appeared to grow linearly with increases in the
number of samples. The maximum false-positive rate
observed for DSS on any dataset was 0.003 and the
average false positive rate over all parameter combina-
tions was 0.001.
Although with the Bonferroni-corrected p-value

threshold DSS performed better than χ2, these results
should be viewed with caution. Both methods could have
performed better with a different significance threshold.
Many of the DSS false-positives could have been filtered
with a stricter threshold and likewise, many of the χ2

false-negatives could have been detected with a weaker
threshold. However, generation of p-values is intrinsic to
the tests being evaluated, and in real datasets the set of
true interactions is unknown making it impossible to
tune the significance threshold. Our results on the
WTCCC datasets show that SNP-pair p-value assignment
by the DSS heuristic is of practical use for quickly finding
SNP-pairs with characteristics suggestive of phenotype
association. Although we could have adjusted the p-value
threshold to suit either algorithm, we felt the strict Bon-
ferroni level is the only meaningful threshold that could

be applied to real world data and therefore the only
threshold that is justifiable on simulated data.
While these figures validate our proposed DSS filter, it

is worth noting that the simple scenario of a single epi-
static interaction is unlikely to emulate that of real data-
sets, and as such, the conclusions that can be drawn from
current synthetic benchmarks, including that used here,
are limited. For instance, the QQ plots in Additional File
Figure 2 clearly indicate that in the real-life WTCCC
data used in previous sections the DSS filters yield sys-
tematically fewer false positives than χ2 filters, contrary
to the observations for simulated data above. We elabo-
rate on this in the Discussion section.

Discussion
Improved efficiency allows analysis on current and future
datasets
In recent years, there have been several proposals that
exploit the inherently parallelisable structure of GWAS
data to provide reasonably fast solutions capable of pro-
cessing a WTCCC dataset in several hours. However,
SNP arrays currently being used in GWAS studies are an
order of magnitude larger [39], resulting in two orders of
magnitude increase in the number of pairs and a pressing
need for ever more efficient processing of GWAS. More-
over, datasets are often processed repeatedly as data and
parameters are altered, quality control measures applied
or to correct for population and batch effects, meaning
that effective research demands rapid processing. The
analysis of higher-order interactions will also dramatically
increase the computational burden of epistasis detection.
Combined, these points indicate that multivariate GWAS
analysis is still a computational challenge.
Our method provides faster discovery of epistatic inter-

actions, which enables more effective, interactive usage.
The tool provides an efficient and fast screening capabil-
ities that can be run locally on researchers’ desktop com-
puters rather than expensive computing clusters. The
reported results can then be refined with more computa-
tionally expensive methods such as logistic regression or
permutation testing, or in combination with additional
biological reference material.

Feasibility of exhaustive search removes the need for ad-
hoc constraints
As indicated by several previous publications [21,24,40],
there is a need for exhaustive search over all bivariate asso-
ciations in Case-Control studies. While there are several
established heuristics that aim to reduce the number of
pairs considered, they all have corresponding weaknesses.
A popular strategy is to consider only pairs containing

univariately strong SNPs [38,40] or pairs that have been
ranked highly by feature selection techniques [14,41].
The obvious drawback with this approach is that some

Table 4 Overlap between SNP pairs found by GWIS using
the DSS filter and previous studies after GSS filtering.

Disease Lit. total Lit. after GSS Overlap GWIS only GWIS total

BD 134 57 (43%) 56 123 (69%) 179

CAD 117 37 (32%) 37 79 (68%) 116

CD 234 21 (9%) 21 36 (63%) 57

HT 93 53 (57%) 49 58 (54%) 107

RA 293 191 (65%) 190 122 (39%) 312

T1D 801 35 (4%) 35 72 (67%) 107

T2D 230 59 (26%) 56 78 (58%) 134

Overlap between SNP pairs found by GWIS and previous studies. “Lit. total”
refers to the number of SNP pairs previously reported. “Lit. after GSS” refers to
the number of pairs that remain significant after applying the GSS filter.
“Overlap” is the set of pairs detected by GWIS and reported in literature. GWIS
only and GWIS total refer to the number of pairs only detected by GWIS and
the total number of pairs detected by GWIS respectively. Significance for DSS

and GSS is defined by Bonferroni correction (p - value =
(
459, 012

2

)−1

≈ 10−11).
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SNPs with strong epistatic association in pairs may show
little association with phenotype individually, and there-
fore this constraint is likely to remove many of the pairs
we want to identify (see examples in Figure 4 and Addi-
tional File Figures 7-10 and 13).
An alternative strategy is the use of known biological

data. Here, the number of SNPs examined is reduced to
those with prior evidence of possible epistatic effects
[42] or that can be mapped to known biological net-
works [35]. These strategies are likely to be hindered by
a lack of epistasis understanding in complex organisms.
Distance constraints, in which SNP pairs are discarded

if they are too close together [10,24,32], are commonly
used with some evidence [26,43] indicating that such
pairs may be linked to genotyping errors. However, it is
not always clear that all closely located SNP pairs are
due to genotyping errors [26]. Moreover, some recent
methods [44] have been designed specifically to look for
pairs that were closely located, in order to find associa-
tions caused by non-typed SNPs.
The feasibility of exhaustive search as demonstrated in

this work removes the need for such constraints.
Exhaustive search can examine all possible SNP pairings
and, if a robust statistical filter is used, will greatly
reduce the set of epistatic interactions requiring follow-
up analysis. Further filtering can then be applied to
remove those SNP pairs that are not relevant for a given
experiment.

Comments on the definition of epistasis
Our prime goal in this paper is to present a practical
system capable of exhaustive search through all SNP
pairs in real, full scale GWAS, detecting all pairs eviden-
cing significant epistatic effects. This requires a robust
definition of epistasis which can be translated into an
actionable mathematical algorithm [11].
Operationally, epistatic interaction means in this paper

two things:
(i) that there exists a scoring function of genotype

calls for the pair of SNPs and a decision threshold such
that a substantial subset of subjects scoring above the
threshold is significantly enriched (biased) in either
Cases or Controls, and the split of the sample according
to this threshold results in OR significantly different
from 1;
(ii) for any scoring function depending on a single

SNP of the pair only, such an enrichment is highly unli-
kely to be achievable by re-sampling data from the
population.
In particular, our definition captures three examples of

penetrance tables for “non-standard” epistatically inter-
acting loci discussed by Cordell [11, Tables 1, 2, 3], and
moreover, this can be done with a suitable choice of
“purely additive” scoring functions and appropriate

decision thresholds (no need for any cross-terms). In
that respect our generic formal definition of epistasis is
closer to its biological counterpart than Fisher’s defini-
tion of interaction [12], which focuses on fitted models’
deviation from additivity. Note that even the original
review of Fisher’s paper pointed out that his definition
does not capture a number of biologically plausible
aspects of epistatic interaction, see [11]. However, Fish-
er’s definition is mathematically sound and thus widely
used in analysis of contingency tables in statistical litera-
ture [28], in quantitative genetics [21] and has been
applied in a number of GWAS analysis papers using
model based regression approaches [10,26,35,37,45-47].

Analysis of real datasets may improve simulated data
Despite advances in speed, the most common bench-
mark for epistasis remains simulated data, where a sin-
gle epistatic interaction embedded in a small number of
SNPs is used to judge a method’s power and false posi-
tive rate under various parameter settings. In this work,
we evaluate the power of a standard χ2 and our pro-
posed DSS filter over many such datasets. In conjunc-
tion, we also extensively and exhaustively examined
multiple real life GWAS, revealing complexities such as
confounding signals generated by highly associated uni-
variate SNPs and multiple epistatic signals of varying
strength. Such complexities are rarely modelled together
in a single epistasis simulation and indicates limitations
in the ability of simulated data to be indicative of true
power or false positive rates. We believe that further
analysis of real data may help better characterise the
complexities of GWAS which can be used to create
more realistic simulated data. Broader scenarios with
multiple epistatic, non-epistatic and univariate signals
may better emulate the complexities which we believe
are still hidden in real datasets.

Univariate associations can have a confounding effect on
standard tests for association
Using the χ2 statistic as a filter to detect epistatic SNP
pairs, we discovered that top-ranked SNP pairs were
almost always driven by univariately strong SNPs. If a
dataset contains a SNP with strong univariate associa-
tion its pairings with random SNPs will cause the χ2

filter to report many thousands of SNP pairs that show
an association with phenotype but do not show epi-
static-like effects according to our definition.
Studying pairwise associations in GWAS data is neces-

sarily a filtering process, reducing the billions of possible
interactions by several (5 or 6) orders of magnitude
down to a small number that can be analysed in detail.
In order to have any chance of discovering epistatic
interactions, the majority of pairs of SNPs that show lit-
tle improvement over their univariate associations must
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be explicitly discarded; in other words, we must specifi-
cally look for pairs of SNPs that together show improved
association with phenotype.
Empirical evidence showing the impact this confound-

ing has on the χ2 statistic provided in this paper is
intrinsically interesting. Indeed, χ2 filtering has been
used in bivariate analysis of GWAS in the past using the
standard χ2 test directly [25,29,30] or some variant of it
[27,32,48,49]. It is also likely that the same confounding
will affect other standard tests for association. Such con-
founding has been previously observed but has rarely
been dealt with in a rigorous manner that is not based
on regression. Our GSS/DSS test, explicitly searching
for gains in specificity and sensitivity, is a new, efficient
alternative in this regard.

Multivariate analysis increases the need for stringent
quality control and follow-up analysis
GWIS is a model-free method for detecting epistatic
SNPs, designed to be sensitive to any associations in the
data that separate Cases and Controls. However, this
separation may be due to signals other than that caused
by phenotype. It has been noted that pairwise SNP ana-
lysis may be more susceptible to noise caused by geno-
typing errors, population structure or batch effects
[26,43] compared to univariate analysis and reported
interactions may be a product of these sources of noise.
Given that these will vary between experiments follow-
up analysis of reported interactions, especially quality
control of genotype calls, remains critical for determin-
ing their validity.

Methods
In this section we outline various filtering procedures
used in this paper for detection of putative epistasis loci.
We shall focus particularly on the receiver operating
characteristic (ROC) analysis method, which is part of
the novelty of this paper. More details and formal
descriptions have been shifted to the Additional File 2
Materials and forthcoming papers will contain the full
details and formal proofs.

ROC analysis for GWAS
Here we outline three particular “model free” statistical
filtering methods implemented in GWIS and explicitly
used in this presentation.
Our filtering approach quantifies the ability of a pair

of SNP-probes to segregate Cases from Controls in
available data sample compared to the segregation abil-
ity of the two SNP-probes taken individually. There are
a number of methods in the literature that attempt to
measure this type of improvement for epistasis detec-
tion, e.g. BOOST uses the decrease in residual error

between additive and full interaction regression models
[10] while the “random chemistry” approach of Eppstein
et. al. [50] uses Euclidean distance between ROC curves.
The key distinct features of our method can be sum-

marised follows:
• It is based on ROC curve analysis, focussing on clas-

sification rather than regression;
• The filters use an exact quantification of underlying

probability distributions rather than relying on asympto-
tic normality;
• The approach permits a natural interpretation that

links the properties of the sample data back to popula-
tion data.
With each SNP-probe or pair of SNP-probes, we associ-

ate a sample prevalence mapping, allocating to each indivi-
dual the ratio of the number of Cases to the sum of Cases
and Controls in the dataset which carry exactly the same
genotype as this individual. For any pair of SNP-probes we
have three such prevalence mappings, one for the pair and
two for the individual probes. Each mapping can be used
to construct a ROC curve: the plot of the true positive rate
(TPR) versus the false positive rate (FPR). These are piece-
wise linear curves. Specifically, a 9-piece ROC curve for
the pair, ROC (g1, g2), which dominates both 3-piece
curves ROC(gi), i = 1, 2, for the individual SNP-probes.
This domination results from the increased number of
genotype calls for a pair of SNPs which allows for finer
stratification of the data. For most probe pairs, this stratifi-
cation will have little effect on the ability to separate Cases
from Controls but for some the difference will be
significant.
For any specific sensitivity and specificity value, say (se,

sp), achieved by the pair of SNP-probes, we have to
determine the probability of observing equal or higher
specificity and sensitivity due to biased sampling from
the population for which true specificity and sensitivity
falls in the region below either of the ROC curves for the
individual SNPs. When the ROC curve for the pair over-
laps any of the individual SNP curves, this probability
will be close to 1, hence not significant. However, as a
measure of potentially improved capability of the pair, it
is natural to use the most significant improvement, i.e.
the smallest such p-value, corresponding to the circled
dot in Figure 5. Here, in order to reduce computations
we use a slightly expanded region which is the convex
region encompassing both ROC(gi) curves for individual
probes. This expansion is conservative in the sense that it
produces less significant, i.e. increased p-values. We shall
refer to this smallest probability value as PGSS, the
p-value for gain in sensitivity and specificity, and intro-
duce the following notation for their negative log10:

fltGSS(g1, g2) := − log10 PGSS(g1, g2). (1)
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This will be referred to as the score or output of the
GSS-filter.
The crux for our approach is to compute PGSS by sol-

ving the following min-max optimization

PGSS(g1, g2) : = min
(x0,x1)

max
(π0,π1)∈H0

x0∑
i=0

(t0
i

)
π i
0(1 − π0)t0− i

t1∑
j=xi

(
t1
j

)
π
j
1(1 − π1)t1− i, (2)

where “min” is over all cumulative counts x0 and x1 of
Cases and Controls such that(

x0
t0
,
x1
t1

)
∈ ROC(g1, g2) (3)

while the “max” is over the smallest convex region H0

of the unit square I2 := [0, 1]2 containing ROC(g1) and
ROC(g2), see the shaded region in Figure 5; and t0, t1 are
the total numbers of Controls and Cases in the sample
dataset, respectively. In this case π0 and π1 represent the
(unknown) population proportion of deleterious alleles in
Controls and Cases respectively. For a given point on the
ROC curve (defined by x0 and x1), maximizing over the
unknown population probabilities corresponds to a worst
case scenario for rejection of the null hypothesis
(π0,π1) ∈ H0 , with the p-values quantifying the largest
probability of observing a sensitivity greater than x1/t1
and a specificity greater than 1 - x0/t0 by biased sampling.
The true p-value, for the actual (π0, π1) for the popula-
tion, must obviously be less than this. Minimizing over
the pairs of points of ROC(g1, g2) curve gives the set of
alleles with the “best” capability to discriminate Cases
from Controls.
The optimisation itself is relatively easily computable

on modern hardware with carefully crafted algorithms.
More details are given in the Supplement and [51].

The above optimisation PGSS has to be solved separately
for each pair of probes which will create a pair-specific
null hypothesis H0. It is convenient and meaningful to
consider the special case of (2) for H0 := {π1 ≤ π0} which
is the part of I2 below the main diagonal. It can be shown
that in such a case the whole optimisation (2) reduces to
optimisation against the diagonal H0 = {π0 = π1} itself.
This corresponds to the classical hypothesis test for a sim-
ple null hypothesis that probes have no segregation power
and the observed separation is purely due to biased sam-
pling. This form of the hypothesis test is close to the clas-
sical small-sample unconditional test of independence
[28]. The resulting probability will be referred to as the
p-value for sensitivity and specificity test, and can be
computed as

PSS(g1, g2) : = min(x0
t0

,
x1
t1

)
∈ROC(g1,g2)

max
0≤π0≤1

x0∑
i=0

(t0
i

)
π0

i(1 − π0)t0−i
t1∑
j=x1

(
t1
j

)
π0

j(1 − π0)t1−j. (4)

In this case π0 and π1 again represent the (unknown)
population proportions of deleterious alleles in Controls
and Cases, respectively, but since the null hypothesis is in
fact restricted to the main diagonal, the optimisation over
the population parameters reduces to maximisation over a
single variable π0. The interpretation is as before with the
“max” part corresponding to an upper limit on the true
p-value and minimisation over the pairs of points corre-
sponding to selection of the smallest such upper limit,
thereby giving the most significant improvement of the
pair is a classification of individuals into Controls and
Cases using the pair’s genotype calls over bias sampling
from hypothetically inseparable population.
The crucial, “max” part of this statistic can be easily

tabulated (as a function of counts (x1, x2)), and therefore

Figure 5 Illustration of the principles underlying the GSS and DSS filters. Illustration of the principles underlying the GSS (a) and DSS
(b) filters.
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PSS is relatively easy to implement in practice for
exhaustive scanning of probe-pairs as a primary filter.
The definition of PSS above is naturally extendable to

the case of single genotyping probe: namely, PSS(gi) is
defined by (4) if we replace ROC(g1, g2) by ROC(gi).
This brings us to the introduction of the following
proxy for fltGSS filter (c.f. Figure 5.b):

fltDSS(g1, g2) : = −log10
PSS(g1, g2)

min (PSS(g1),PSS(g2))
= fltSS(g1, g2)−max (fltSS(g1), fltSS(g2)), (5)

where

fltSS(g1, g2) := −log10PSS(g1, g2).

We shall call fltSS and fltDSS the filters for SS and DSS,
respectively. The fitDSS quantifies an improvement of a
pair over its individual constituents allowing it to act as
a computationally inexpensive proxy for fltGSS which is
suitable for scanning massive numbers of pairs (g1, g2);
see Additional File Figures 3 and 4.

Odds ratio
GWAS studies aim in particular at identification of
genomic rare variants in the population which are asso-
ciated with increased or decreased risk of developing a
disease. At data filtering stage, the main focus in this
paper, we would like to identify SNP-pairs and sets of
genotyping calls which allow us to identify subsets of
the dataset with an OR for developing disease signifi-
cantly different from 1. There are two possibilities illu-
strated by example in Figure 4. The first of them, the
contributing or high risk scenario, (cntr ≡ OR ≫ 1), is
illustrated in subplot (c). Here the red star corresponds
to set of genotype calls with the highest fltGSS for contri-
buting gain, which happen to be a singleton set {(1, 0)}.
The carriers of this genotype constitute ξ1:= x1/t1 =
5.79% of Cases and ξ0:= x0/t0 = 0.24% Controls, result-
ing in extremely high odds ratio OR = 25.73 and signifi-
cant fltGSS = 33.83. The opposite, protective scenario,
(prtv ≡ OR ≪ 1), illustrated in Figure 4(b). Here we
find that for the set two genotype calls, {(2, 1), (1, 1)},
we have very low number of Cases carrying these geno-
types, ξ1 = 0.42% and relatively high fraction of Controls
ξ0 = 7.39% resulting in OR ≈ 0.05. In the contributing
scenario we would like to increase ξ1 = SEN and
decrease ξ0 to ≈ 0; in the protective situation, we would
like to maximize ξ0 = SPE with simultaneous reduction
of ξ1 to ≈ 0.

Implementation of tests
The above section introduces principles on which our cus-
tom filtering algorithms are built. In this subsection we
describe some additional enhancements and heuristics
which were added to practical implementations used.

Protective and contributing capabilities
As we have discussed above, for any k-tuple of genotyp-
ing features we may find subsets of their values display-
ing different degree of protection or contribution to the
phenotype in question. One obvious modification to the
above GSS test is to extend it to two separate tests, one
for protective the other for contributing capabilities.
The heuristic which we have followed in this regard
consisted in restricting the “max” in computing PGSS

once to a subset ROCcntr(g1, g2) contributing alleles,
and another to a subset ROCprtv(g1, g2) of protective
alleles. The demarcation is defined as follows. Let(
x0(i)
t0

,
x1(i)
t1

)
, i = 0, 1, ..., 9 denote the (ordered)

sequence of 10 points of ROC(g1, g2). Then

ROCcntr(g1, g2) :=
{(

x0(i)
t0

,
x1(i)
t1

) ∣∣∣∣ x1(i) − x1(i − 1)
t1

/
x0(i) − x0(i − 1)

t0
≥ 1, i = 1, ..., 8

}
,

ROCprtv(g1, g2) :=
{(

x0(i)
t0

,
x1(i)
t1

) ∣∣∣∣ x1(i + 1) − x1(i)
t1

/
x0(i + 1) − x0(i)

t0
≤ 1, i = 1, ..., 8

}
.

Minimal sensitivity and specificity
Both SS and GSS tests are capable of identification of
genotype probes which allow for strong separation in
relatively small fractions of the population. This is a
desired property for detection of rare variants. However,
in practice the limited sample size imposes practical
limitations on minimal size which could be of practical
interest and is immune to noise or numerical instability
of the optimisation procedures used. In our analysis we
demanded that in computation of the outer minimum
in either (2) or (4) we disregarded all contributions from
x0, x1 such that min(1 - x0/t0, x1/t1) <0.02.
Limited precision implementation
The solution of this optimisation is not straightforward,
for an average GWAS, t0 and t1 have sizes measured in
thousands. This means in practice that in evaluating
(2) and (4) we need to deal with multiplications, divisions
and summations of thousands of numbers either so small
or so large that they cannot be represented directly in
computer hardware. For the description of the specific
procedures developed to deal with this task and presenta-
tion of related formal proofs of their correctness we refer
to a dedicated methods paper [51]. Here we only outline
the main steps of those derivations:

• First, we prove that the functions under “max” in
(2) and (4) have no local maxima;
• For (2) the maximum is achieved on the boundary
of H0 .
• Due to that uniqueness, we can efficiently use any
iterative procedure for finding the maximum. In par-
ticular we have used the bisection method, which
converges to the solution along the boundary.
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• Finally, for numerical efficiency we have developed
specific numerical simplifications which effectively
reduce computation of the sums in (2) and (4) down
to additions of small numbers of terms of order of
one, with provably negligible penalty errors.

With the simplifications outlined above, the computa-
tion of values for individual probes and probe-pairs
becomes a tractable numerical task. However when it
comes to an exhaustive tabulation of the whole 2-dimen-
sional distribution underpinning computation of PSS for
tens of thousands of possible values of counts x0 and x1,
hence for the multiple millions of pairs (x0, x1), the com-
puting burden could become significant, warranting addi-
tional simplifications and reductions. In the case of GSS
the computational burden is even harder, direct scan with
this statistical filter becomes impractical (see Additional
File Section 4), and so arises the need for developing more
efficient proxies such as DSS (5).

Other filters used
We have used a number of other techniques than those
described above for filtering putative interactions in
GWAS. We outline them here for completeness.
χ2 for independence
This is one of the most popular methods for interac-
tions detection in GWAS. It has two distinct compo-
nents:

• Computation of χ2statistics. This is a well defined
statistic which could be used directly for ranking of
hits;
• Computation of p-value for determination of signifi-
cance. This part is is more complex and the usual
solution is to apply a formula which is rigorously
derived for sampling from a normal distribution
[28].

We have used such formulae with 8 and 2 degrees of
freedom when dealing with bivariate or univariate analy-
sis, respectively. Additionally, we have applied the χ2

distribution with 4 degrees of freedom to scores derived
by the BOOST algorithm, following the original recom-
mendation of the authors of that method (see [7]). In all
those cases we have serious reservations regarding allo-
cation of such p-values (see Discussion for an elabora-
tion of this point).
We compute the following standard χ2 statistic for

the contingency Table 5, see [28,52]:

X2 =
1∑
i=0

∑
υ∈V

(niυ − Eiυ)
2

Eiυ

∣∣∣∣∣
Eiυ=

tin:υ
n

. (6)

This statistic is known to have approximately
χ2distribution with V - 1 degrees of freedom [28,52],
which is used to allocate the p-values. Note, if the null
hypothesis H0 : Niυ = Eiυ for all i, υ holds, then X2 = 0.
Fisher Exact test
Fisher Exact test is often used for evaluation of 2×2 con-
tingency tables [28] and as such can be applied for alloca-
tion of p-values to observed cumulated count (x0, x1).
Such p-values turn out to be in fact very close numeri-
cally to the Pss test, see Additional File Figure 21. For
that reason we did not scan data with Fisher Exact test
based filters, but the SS filter is a good indicator of its
performance.
BOOST
We have used BOOST and GPU version GBOOST algo-
rithms which we have downloaded from the web, and
for details we refer to [7,10]. These algorithms perform
exhaustive search though all pairs of probes, but they
use different methodology: they use log-linear regression
rather than classification and asymptotically justified
approximation for allocation of p-values to derived
scores, the 4-degree of freedom χ2 test (see [31]).

Additional material

Additional file 1: Supplementary Materials

Additional file 2: Lists of detected SNP pairs
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