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Abstract

been reported hitherto.

transport and RNA processing.

Background: The phenomenon of sexual reproduction characterizes nearly all eukaryotes, with anisogamy being
the most prevalent form of gamete discrimination. Since dimorphic gametes most likely descend from equal-sized
specialized germ cells, identifying the genetic bases of the early functional diversification in isogametes can provide
better understanding of the evolution of sexual dimorphism. However, despite the potential importance to the
evolutionary biology field, no comprehensive survey of the transcriptome profiling in isomorphic gametes has

Results: Gamete differentiation on the genomic level was investigated using Ectocarpus siliculosus, a model
organism for brown algal lineage which displays an isogamous sexual reproduction cycle. Transcriptome libraries
of male and female gametes were generated using Next Generation Sequencing technology (SOLID) and analyzed
to identify differentially regulated genes and pathways with potential roles in fertilization and gamete
specialization. Gamete transcriptomes showed a high level of complexity with a large portion of gender specific
gene expression. Our results indicate that over 4,000 of expressed genes are differentially requlated between male
and female, including sequences related to cell movement, carbohydrate and lipid metabolism, signaling,

Conclusions: This first comprehensive transcriptomic study of protist isogametes describes considerable
adaptation to distinct sexual roles, suggesting that functional anisogamy precedes morphological differentiation.
Several sex-biased genes and pathways with a putative role in reproduction were identified, providing the basis for
more detailed investigations of the mechanisms underlying evolution of mating types and sexual dimorphism.
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Background

Sexual reproduction encompasses the fusion of two spe-
cialized haploid cells to form a zygote. Phylogenetic ana-
lyses suggest that sexual reproduction arose already in
the common ancestor of all eukaryotes [1,2], implying
the existence of selective forces that gave an advantage
to sexuality. Despite the costs and major challenges pre-
sented to the reproductive cells, over 99.9% of eukaryotes
engage in sex [3,4], which inspired generations of biolo-
gists to study this widespread phenomenon from physio-
logical, molecular and evolutionary perspectives.
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The existence of two gamete types and the tendency
for gamete dimorphism remains an intriguing puzzle as
anisogamy characterizes nearly all plants and animals.
Oogamy (large eggs and small sperm) seemed to be the
course of evolution from isogamy (equally-sized gametes)
and arose independently in many groups of eukaryotes;
however numerous species continue to reproduce with
isomorphic germ cells [5,6]. Although substantial research
addressed gene expression profiles in reproductive cells of
flowering plants and animals [7-12], and studies of the
mating locus in Volvocine algae shed light on the transi-
tion towards oogamy [13,14], not much is known about
how the global patterns of sex-biased gene expression were
shaped throughout the evolution of mating types and tran-
sition towards anisogamy. Such studies are important,

© 2013 Lipinska et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:ap.lipinska@gmail.com
http://creativecommons.org/licenses/by/2.0

Lipinska et al. BMIC Genomics 2013, 14:909
http://www.biomedcentral.com/1471-2164/14/909

because most of the evolutionary models accept the
existence of two specialized mating types upon which
the evolution of gamete size was superimposed [15].
Therefore, a detailed characterization of transcriptional
adaptation in equally-sized gametes would bring a better
understanding to the mechanisms underlying evolution
of sexual dimorphism. In this respect, brown algae
(Phaeophyceae) with their broad spectrum of gamete
copulation forms are suitable subjects to test various
hypotheses [16].

Brown algae are a large group of multicellular, photo-
synthetic organisms, which evolved 150-200 million years
ago. Distant to land plants and animals, they developed
complex multicellularity independently from other major
clades [17,18]. This polymorphic group hosts seaweeds
of a vast range of sizes, ecological niches and with an
unmatched diversity of life cycles and fertilization strat-
egies ranging from isogamy over anisogamy to oogamy
[16,19]. Despite the evolutionary distance, brown algae
share many common features with land plants, which
first brought much attention to eggs and zygotes of
brown macroalgae, due to their large size and abundance,
as a material to study the regulation of early development
in plants [20-22]. Other studies on reproduction have
focused mainly on networks of signals that are associated
with gamete attraction, recognition and fertilization
success [23-26]. Although a large amount of research
concerns brown algal biology, many aspects remain
poorly explored, providing excellent opportunities for
new discoveries.

In recent years, following the selection of Ectocarpus
as a model for the brown algae, a considerable effort was
invested in the development of genomic and genetic
tools for this organism, among which was the assembly
and analysis of the complete genome sequence [18,27].
Ectocarpus is a small filamentous alga, characterized
by a haploid-diploid life cycle with isogamous sexual
reproduction where flagellated gametes are still morpho-
logically, but no longer physiologically, identical. Female
gametes are distinguished by a short swimming period
preceding settlement, flagella digestion and pheromone
release [28]. Fertilization takes place immediately after
recognition by gender specific sex-receptors present on
the egg surface and the male anterior flagellum [29,30].
However, the dynamics and regulation of the mechan-
ism driving male and female gamete differentiation and
adaptation to fulfill their specific functions remain largely
unexplored.

Here we describe transcripts specific to the gametes
of both sexes. Using AB SOLiD 3 Next Generation Se-
quencing technology we generated whole RNA profiles
of reproductive cells of E. siliculosus and determined
the gender-specific regulation of the major metabolic
pathways. The results present a first comparative gamete
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transcriptome analysis of any protist and provide an over-
view of the genes that contribute to the gametes’ cellular
identity and function.

Results and discussion

Next Generation Sequencing and mapping of the
Ectocarpus transcriptome

Sequencing of rRNA-depleted total RNA of Ectocarpus
gametes yielded more than 36 million 50 bp reads for
the male and 28 million 50 bp reads for the female sam-
ple. An overview of the results is shown in (Table 1). We
were able to map on the genome 45 and 62% of male
and female reads, respectively. Reads that had no match
are likely to be PCR artifacts, were of low quality or have
origins outside the reference genome. Since the Ectocarpus
strain used in this study was different from the strain that
was used for genome sequencing [31] it is also plausible
that part of the unmatched sequences is derived from
genomic variation between the two strains.

After the alignment quality assessment, 16.74% of all
aligned reads for male and 14.01% of the reads for female
were chosen as unique and high quality mappings to the
nuclear genome. At this sequencing depth we found at
least five non-clonal reads uniquely aligned to 8,029 and
7,777 of 16,239 annotated nuclear genes (male and female
respectively). Summarized expression data is presented
in Additional file 1: Table S1. Despite the high level of
detection, more than 80% of the alignments fell outside
the coding sequences. It is plausible that some of these
come from intronic regions and are presumably des-
cended from pre-mRNA present in the ribo-depleted
total RNA sample or might represent intron retention
events [18] since a large portion of these reads did not
match annotated genes, indicating other transcription-
ally active sites. These findings are in line with the whole
genome tiling array, which identified 8,741 expressed
regions longer than 200 bp outside of predicted genes as
potential novel protein-coding regions or non-coding
RNA genes [18].

The relative abundance of each gene in the mRNA
pool was deduced by determining the Trimmed Mean of
M-values (TMM) normalized number of reads mapped
in the exon region and classified into four expression

Table 1 Transcriptome mapping results of Ectocarpus
siliculosus male and female gametes

Male Female

gametes gametes
Total number of reads 36751768 28591 842
Total number of mapped reads 16 580 350 17 697 894
High quality mappings (normodds > =0.7) 2 775 695 2478 987
Mapped to known genes 899 347 1386 445
Mapped outside of known genes 1876 348 1092 542
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categories: Very highly expressed (read count > = 1000),
Highly expressed (1000 >read count>= 100), Medium
expressed (100 >read count>= 15) and Low expressed
(15 > read count > 5). As shown in Figure 1 the sequencing
data is enriched in medium and low expressed transcripts,
confirming the sensitivity of our RNA-Seq approach to
detect lowly expressed genes [32].

Gametes have unique transcriptional profiles

A Venn diagram (Figure 2) displays common gene expres-
sion between gametes and representative EST libraries
[31] of vegetative gametophyte and sporophyte tissues
(corresponding to 9,163 annotated genes). Approximately
70% of the EST sequences were shared by gametes and
vegetative tissues. This is not surprising, since non-
fertilized Ectocarpus gametes are capable of parthenogen-
esis and development into functional parthenosporophytes
[28]. However, almost one-third of the gamete-expressed
transcripts were found exclusively in the reproductive
cells. Gene ontology (GO) analysis of this subset indi-
cated that sequences related to signal transduction, RNA
modification and localization and microtubule based
movement were significantly enriched (p < 0.01). The high
contribution of gamete-specific mRNAs within the whole
transcriptome pool highlights the potential significance
and regulatory specialization of this subset.

We also looked at the top 100 most expressed genes in
gametes and manually grouped them into functional cat-
egories based on gene annotation information (Additional
file 1: Table S2). The two largest functional clusters were
composed of genes related to carbohydrate metabolism
including cell wall biosynthesis (11 Female; 11 Male) and
protein turnover (7 Female; 8 Male). However, the majority

Page 3 of 15

of the most abundant transcripts were of unknown
function (60 Female; 55 Male).

Functional classification of gamete-expressed genes
Around 62% of the gametes’ transcripts could be assigned
with a Gene Ontology category using Blast2GO (E-value <
le-05). Statistical analysis marked translation and gene
expression, auxin biosynthesis, proteolysis, transport,
localization and regulation of signal transduction signifi-
cantly overrepresented in both gamete types (FDR < 10%).
Additionally, we found that transcripts related to vesicle-
mediated transport, lipid metabolism and iron/sulfur
cluster assembly were significantly overrepresented in the
female library, whereas sequences related to pigment bio-
synthesis were enriched in the male library. In the “cellular
component” category, differences were observed in
mitochondrion, nucleus, vesicle membrane and Golgi re-
lated components (overrepresented in female library) and
chloroplast stroma (overrepresented in male library) (see
Figure 3 for enrichment in Molecular Function and
Additional file 1: Table S3 for full overview). In general,
genes related to photosynthesis were underrepresented
in the transcriptome of both gametes. Female gametes
were also deficient in sequences related to DNA meta-
bolic processes (e.g., protein-DNA complex assembly,
nucleosome organization) as well as microtubule-based
movement and male gametes had underrepresented genes
in the cellulose binding group.

Based on significant similarity (E-value < le-05) we
also assigned 2,418 and 2,243 Kegg orthology terms to
gamete’s expressed proteins (male and female respectively)
using the KOBAS server [34]. A significant proportion of
the transcripts in females (FDR < 10%) were associated

Very highly expressed

Low expressed

Figure 1 Overview of gene classification into expression categories based on mapped reads number. Genes were grouped into four
categories: Very highly expressed’ (read count > = 1000), ‘Highly expressed’ (1000 > read count > = 100), ‘Medium expressed’ (100 > read count > = 15)
and 'Low expressed’ (15 > read count > 5); male gametes (purple circle) and female gametes (blue circle).

Highly expressed

Medium expressed




Lipinska et al. BMC Genomics 2013, 14:909
http://www.biomedcentral.com/1471-2164/14/909

Ectocarpus female

gametes Ectocarpus vegetative tissue

EST data

- 563
1527

\ 967

Ectocarpus male
gametes

Figure 2 Comparison of gene expression in gametes and
vegetative tissue. Venn diagram showing the overlapping genes
that were found expressed in male gametes (8,029), female gametes
(7,777) and Ectocarpus vegetative tissue EST represented genes
(9,163) [33].
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with ribosome, spliceosome and endocytosis. Ribosome
was the only valid pathway overrepresented in male
gametes with the given threshold (FDR < 10%).

Analysis of differentially expressed genes

The preferential expression of genes belonging to a spe-
cific functional category became more evident when dif-
ferentially expressed genes were considered. Using the
edgeR package for R (FDR of 5% and a fold change > = 2)
4,117 genes were identified as differentially expressed
between male and female gametes (Figure 4, Additional
file 1: Table S4). Apparent enrichment could be seen in
particular with the categories microtubule based move-
ment, vesicle trafficking, ion dynamics, cell wall biosyn-
thesis, transcription and translation regulation, and signaling
related genes, which are described below (Figures 5 and 6,
Additional file 1: Table S5; for details about involved genes
see Additional file 1: Table S6).

Microtubule based movement
The terms overrepresented in male gametes are assigned
primarily to microtubule based movement (GO:0007018),

not annotated

@ ATP binding

@ structural constituent of ribosome

B phosphatidylinositol binding

FDR<10%

not annotated

FDR<10%

not significant

O endopeptidase activity
O ATPase activity
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Figure 3 Significantly enriched (FDR < 10%) Gene Ontology groups of gametes expressed genes according to molecular function.
a) Male gametes expressed genes; b) Female gametes expressed genes.
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Figure 4 Differential gene expression between male and female gametes of Ectocarpus. a) Venn diagram showing the distribution of 4117
differentially expressed genes between gametes (Fold Change > = 2; FDR < 5%), with 935 and 1148 genes being found expressed only in female
and male gametes respectively. Out of the 2034 genes expressed in both gamete types, 54% are upregulated in females. b) Scatter plot showing
distribution of fold-change in expression in male versus female gametes (y-axis) against expression level (x-axis). Differentially expressed genes at
significance level of FDR < 5% are colored red; blue line indicates 2-fold difference in expression.
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which can be associated with the sperm active swimming
behavior. Besides the canonical role in locomotion,
Ectocarpus flagella are also important sensory organs in-
volved in chemosensation and gamete recognition [25,30].
Several genes belonging to the intraflagellar transport (IFT)
and motor protein families were overexpressed in male
gametes. [FT proteins are macromolecular rafts responsible
for the assembly and maintenance of the flagella [35]
and the deposition of mastigonemes on the flagella sur-
face after their assembly in the ER [36]. Growing evidence
suggests IFT plays a more direct role in cilia-mediated
signaling [37]. Among other genes linked to the gamete
flagella, we found members of the Sexualy Induced Gene
family — Sigl and Sig2-like gene, with Sigl among the

highly overexpressed genes in male gametes. This family
of proteins was first described during the onset of sexual
reproduction in the diatom Thalassiosira [38)] and later
also in other Stramenopiles [39]. Sig proteins are located
to the mastigonemes [40], but their function remains
unresolved. However, striking diversification of Sigl
between closely related species of Thalassiosira [41] and
some evidence of positive selection acting on this gene [42],
may suggest a role in gamete recognition.

lon dynamics

Potassium channel activity (GO:0005267) and calcium-
activated potassium channel activity (GO:0015269) were
significantly overrepresented in male gametes. These
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might be related to the sperm chemotaxis in analogy to
the gene network triggering motility response to stimuli
in sea urchin sperm (see [43,44] for a review). It has
been shown that cyclic nucleotide messengers and changes
in K" ion dynamics lead to hyperpolarisation of the cell
membrane and activation of the Na* and Ca** influx in
sperm [45-50]. Recently, a transient increase in Ca®" in the
flagellum was directly visualized during chemotactic
orientation in ascidian sperm using a fast Ca®* imaging
system [51]. Previous studies on Ectocarpus pheromone
response confirm participation of free Ca>* in sperm navi-
gation, since concentrations below 107 M caused male
gamete immobilization despite the presence of the attract-
ant [52]. Highly upregulated male genes, with a homology
to the Strongylocentrotus sperm pathway, included three
cyclic nucleotide binding K* channels with similarity to the
TetraKCNG channel (BLAST E value >1e-20), a Na+/H +
exchanger, an adenylate cyclase, a sperm hyperpolarization-
activated and cyclic nucleotide-gated channel (BLAST E
value >1le-15) and a similar voltage gated-calcium channel
(BLAST E value >1e-33).

Cell wall/polysaccharide biosynthesis
Members of different carbohydrate biosynthesis pathways
were predominantly upregulated in female gametes, which

relates probably to primary cell wall biogenesis minutes
after fertilization [23]. All enzymes involved in alginate
synthesis [53] and three Ectocarpus cellulose synthases
(CESAs) are highly overexpressed in female gametes,
which is apparent with the brown algal cell walls being
composed of alginate with a minor fraction of cellulose
[54]. Apart from alginate and cellulose, sulfated fucans
and phenolic biomolecules (phlorotannins) are secreted
into the expanding cell wall [55]. We can assume that
these compounds are also synthesized in gametes, since
all fucosyltransferases (except from family GT24) and
sulfotransferases (STs) (except Clade B) [53] were tran-
scribed with some gender specificity. It is worth noting
that one sulfotransferase (Esi0032_0064), related to meta-
zoan STs involved in the biosynthesis of glycosphingoli-
pids, was characterized by a much higher expression
comparing to other STs in both gametes. Associated
with lipid rafts, glycosphingolipids may act as interme-
diates in signaling the flow from outside to inside the
cell [56]. Sulfated fucans and galactans are also reported
to be involved in sea urchin fertilization. They act as
inducers of the sperm acrosome reaction [57,58] by
binding to the sperm receptor RE] (Receptor for Egg
Jelly), a homolog of the human polycystin protein [59].
Interestingly, five of the expressed sulfotransferases
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were specific only to female gametes and five polycystin/
REJ-like proteins (IPR002859) were expressed exclusively
in males.

Vesicle trafficking
Gametes and spores of Ectocarpus can be characterized
by the presence of several active Golgi bodies [60,61].
Similar observations were made with early electron scan-
ning photographs of Fucus unfertilized eggs, which show
a characteristic, rough surface due to protrusion of the
cytoplasmic vesicles beneath the plasma membrane [23].
These findings are reflected in the upregulated genes of
female gametes, since clathrin coat proteins (GO:0030118)
constituting vesicles travelling from the Golgi apparatus to
the plasma membrane [62] are highly abundant. The same
is observed with the retromer complexes (GO:0030904),
which assemble on early endosomes and are involved in
transport back to the Golgi apparatus. Additionally, the
Rab protein signal transduction pathway (GO:0032483),
including the Arf family, which are coat-recruitment
GTPases (for a recent review, see [63,64]) and dyna-
mins, which are necessary for pinching the vesicles [62],
are upregulated in female gametes.

The Golgi complex is the major site for polysaccharide
synthesis including alginates, sulfated fucans and phloro-
tannins of the algal cell wall, which are transported in

vesicles to the plasma membrane [55,65]. Thus, the up-
regulated pathways of cellulose biosynthesis and vesicu-
lar transport can support primary cell wall biogenesis. It
is also possible that this secretory activity may be im-
portant for biosynthesis of the adhesive substance re-
quired for gamete attachment to a substrate [66].

Translation and transcription regulation
Gene expression in gametes is developmentally regulated
and stage specific, and thus requires a precise and well-
coordinated program of transcription regulation. Gametes
express transcription factors across most of the described
TFs families in Ectocarpus [67]. In particular, we find mem-
bers of Heat shock (HS) factors, fungal TR and CCAAT-
binding overrepresented in females and most MYB genes
overexpressed in males. Interestingly several MYB factors
were also relatively high expressed in Arabidopsis sperm
cells [9]. Among the highest expressed TFs we find two
MYB factors (Esi0038_0132, Esi0212_0014), Zinc-finger
C2H2-type factor (Esi0226_0040) and two fungal TRFs
(Esi0008_0230, Esi0348_0008). Esi0212_0014 shares 53%
identity (8e-37) with Arabidopsis MYB98 which controls
the formation of specific features within the synergid cell
during female gametophyte development [68,69].

Another interesting transcription factors family de-
scribed by [18] is the NIN-like proteins, coded by nine
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genes in Ectocarpus. NIN-proteins are required for sym-
biosis between legumes and nitrate assimilating bacteria,
and a subfamily of NIN, the minus dominance proteins
(MID), are expressed during gametogenesis in volvocine
algae and determine the minus mating type [70]. It was
suggested, that the NIN-like family might have a role in
life cycle or in mating type determination in Ectocarpus
gametes [18]. Indeed eight members of this family are
found in our data, with two of them being specific for
female gametes. It is also worth noting, that the most
highly expressed NIN factor in both gametes (Esi0013_0140)
was significantly downregulated in the immediate upright
mutant, which is defective in sporophyte development [18].

Protein metabolic processes, in particular biosynthetic
pathways (ribosome and translation related) are signifi-
cantly enriched (p < 0.01) in female differentially expressed
genes. Additionally, Ectocarpus was shown to have a micro
RNA post-transcriptional regulation system, where most
of the mature miRNA bare a signature preferred by the
plant Argonaute-1 protein (AGO1) [18]. The genome
contains one AGO1 protein which is expressed at mod-
erate level in both types of gametes. The Argonaute-
miRNA are known to silence transcription, trigger target
destruction, or inhibit translation, and growing evidence
supports their role in germline development [11,71].
Moreover, several potential target sequences including
members of the ROCO family GTPases and other pro-
teins containing leucine-rich repeat (LRR) domains [18]
are expressed in gametes. Since gametes are vulnerable
targets for pathogen attack [72,73], these proteins might
be involved in algal immune response to disease [74].

Signaling pathways

Gamete transcripts are enriched in Ras GTPase super-
family genes (Ran, Ras, Rab, Rho and Arf). These signal-
ing molecules are binary switches in crucial cellular
processes including growth, differentiation and survival
[75]. Rab and Arf are particularly important in mem-
brane trafficking and are enriched in female gametes
(see Vesicular transport). The Rho family is involved in
signaling networks that regulate actin, cell cycle progres-
sion, and gene expression. Noteworthy RAC, a Rho family
GTPase, and its positive effector RhoGEF are upregulated
in females, whereas RhoGAP, a negative regulator, is
highly expressed in male gametes. Rho genes, RhoGDI
(guanine nucleotide dissociation inhibitor of Rho) and a
RhoGAP were also expressed in Arabidopsis sperm, where
no RhoGEFs were found [9]. The precise function of Rho
signaling in sperm and egg remains to be revealed, but
substantial work has been done by Kumakiri et al. [76],
showing a role in initial sperm-egg fusion in mouse. In
the study, Clostridium difficile toxin B inhibited sperm
incorporation probably by disturbing actin filament
reorganization regulated by Rho GTPases. Racl seemed
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to be strongly expressed in mouse eggs and located in
the cortical ooplasm. The process of sperm—egg fusion
in mouse would be initiated immediately after sperm
binding by membrane receptors that in turn would acti-
vate Rho proteins by RhoGEFs. Membrane receptors ac-
tivating RhoGEFs include G protein-coupled receptors,
such as the lysophosphatidic acid (LPA) receptor, the
growth factor receptors with a tyrosine kinase domain,
such as EGF receptors, and surface proteins such as
integrins [77]. Members of all these receptor families
could be identified in Ectocarpus gametes, but the spe-
cific recognition protein involved remains unknown.

Other regulators of Rho GTPase activity (GO:0032319)
are expressed in male gametes, including two Target Of
Rapamycin (TOR) kinases (TOR1 and TOR2). TOR is a
nutrient-sensitive, central controller of cell growth and
aging, which was linked to the actin cytoskeleton via a
signaling pathway containing a Rho GTPase [78]. Raptor
and FKBP12, TOR associated proteins, are also expressed,
but no RAG GTPases that promote intracellular local-
ization of TOR were present. In yeast TOR kinases
(TOR1 and TOR2) were shown to act in two different
pathways (for a recent review see [79]). One pathway in-
volved in cell growth in response to nutrient availability
is shared between TOR1 and TOR2; however, TOR2 has
additional, unique functions in sphingolipid synthesis,
endocytosis and polarized organization of the actin
cytoskeleton. Ectocarpus has two TOR kinases, both of
which are expressed in gametes. Fold change expression
analysis shows TOR2 to be upregulated in male gam-
etes (FC = 8) compared to TOR1 (FC = 1.2), which
could point to the importance of the second branch of
TOR2-signaling in males, especially with high expres-
sion of glycosphingolipid-related ST (see Polysaccharide
biosynthesis).

Ras GTPases influence transcription of genes involved
in cell growth and division by activating protein kinases,
such as the mitogen-activated protein (MAP) kinase.
Several members of the family were detected in Arabi-
dopsis sperm cells and some are sperm specific, implicat-
ing the existence of unique signaling pathways [9]. Out
of five MAPKs expressed in gametes, two were upregu-
lated in males. We found also one MAPK related serine/
threonine protein kinase specific to male gametes, with
homology to the LF4 gene (MAPK) localized in Chlamy-
domonas flagella [80]. This protein is involved in a signal
transduction cascade controlling flagellar length.

Another effector activated by Ras is phosphoinositide-
3-kinase (PI3K). There are two putative PI3Ks in Ecto-
carpus, one highly expressed in both types of gametes
and one upregulated in males. The product of PI3K,
phosphatidylinositol 3-phosphate, plays an important
role in regulating membrane trafficking. Additionally, we
identified two enzymes necessary for phosphoinositide-
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mediated signaling which were enriched in male gametes,
phosphatidylinositol 4-kinase and 1-phosphatidylinositol-
4-phosphate 5-kinase, involved in synthesis of phos-
phatidylinositol 4,5-bisphosphate (PIP2). PIP2 is a minor
constituent of the plasma membrane, where it functions
as an intermediate in a number of signaling pathways,
including G protein-coupled receptor (GPCR) signaling.
The sperm-induced breakdown of the PIP2 via activa-
tion of phospholipase C is considered to be the major
reaction of fertilization [81,82]. The importance of the
PIP2 secondary messenger system in sexual reproduction
was shown in echinoderms eggs, where it regulates Ca**
release at fertilization and controls the slow polyspermy
block [83-85]. PIP2 was also abundant in the plasma
membrane and the flagellar membrane of Chlamydo-
monas eugametos gametes, indicating involvement of
phosphatidylinositol-calcium signaling system during
mating, which could be activated by binding of cell-cell
recognition receptors [86]. Additionally, alternative Ca**
gates like ryanodine receptors may be involved following
the propagation of a calcium wave [83,87]. One member
of inositol triphosphate/ryanodine-type receptors is repre-
sented in Ectocarpus and found highly expressed in both
types of gametes. Existence of inositol 1,4,5-trisphosphate-
induced Ca®* waves has been reported in Fucus embryos,
emphasizing the importance of calcium signaling in re-
sponse to a physiological stimulus [88,89]. One of the
current hypotheses about sperm induced oocyte activation
assumes stimulation of a membrane receptor that involves
G protein signaling [90]. G-protein coupled receptors
(GPCRs) are transmembrane proteins that utilize interac-
tions with heterotrimeric G proteins (Ga, Gp and Gy) for
downstream signaling and the pathway depends on the
isoform of the a-subunit to which the receptor is coupled
[91,92]. Six paralogs of the Ga subunits (GPA) are found
in the Ectocarpus genome and are all expressed in gam-
etes. GPA4 and GPA6 are among the highly transcribed
genes whereas the GPA3 and GPA4 are overexpressed in
male gametes. Moreover, three putative GPCR receptors
are specific to male gametes and three partial GPCRs
are upregulated in females. Substantial evidence sup-
ports a role of GPCRs in egg-sperm interactions during
fertilization. For example, a G-protein coupled receptor
located on the spermatozoa plasma membrane activates
a signaling pathway responsible for the zona pellucida
induced acrosomal exocytosis [93]. A G-protein coupled
cAMP transduction pathway is also involved in chemo-
taxis in human sperm [94] and Ga proteins together
with adenylyl cyclase were shown to be enriched in sea
urchin sperm [95].

The GPCR receptor family is a host to many pheromone
receptors [96]. It was shown that Ectocarpus sperm chemo-
taxis is stimulated in a similar manner as for pheromones
by trifluoperazine (TFP) [52], which is an antagonist of
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dopamine/adrenergic G-protein coupled receptors. Thus,
it might be possible that TFP activates the ectocarpene
receptor which could belong to GPCR family.

Male and female gametes express genes related to
Hedgehog and Notch signaling pathways involved in
animal development (for a review see [97,98]). Although
these pathways do not exist in a canonical form in non-
metazoans, it has been shown that components such as
the y-secretase complex, Notchless and Hog/Hint domain
proteins are of ancient origin [99,100] and new receptors
seem to evolve by shuffling of pre-existing domains. The
presence of Notch receptor building blocks is revealed in
the Ectocarpus genome, however no homologues of the
Notch receptor or its ligands sensu stricto have been
found. A KEGG orthology analysis of gamete transcripts
identified Deltex, a Notchless homolog, Presenilin and
Nicastrin from the y-secretase complex, two histone dea-
cetylase co-repressors and three co-activators of the DNA
binding protein with one highly expressed putative histone
acetyltransferase. Additionally, 16 genes with a Notch
domain (IPR000800) including Esi0061_0098, described
by Le Bail et al. [101] as downregulated in the Ectocarpus
developmental mutant — etoile, were present. Regarding
the Hedgehog pathway, nine genes with similarity to
Patched receptor (Ptc) of Hedgehog (containing both
Patched (IPR003392) and SSD (IPR00731) domains) were
abundant in gametes and one gene with Hint (Hedgehog/
Intein N-terminal domain (SMARTO00306)) was low
expressed only in females. Ptc and hint-domain proteins
as well as Nicastrin and Notch-domain containing pro-
teins were present during sexual reproduction in pen-
nate diatom Seminavis robusta [102], although their
involvement in cell-cell interaction is unknown and
awaits further research.

Pheromone biosynthesis

Brown algal pheromones are C-11 hydrocarbon com-
pounds derived from fatty acids [103]. Female gametes
of Ectocarpus use arachidonic acid as a precursor of
ectocarpene [104] and accumulate large reserves of
phosphoglyceride PX, rich in arachidonic and eicosa-
pentaenoic acid, in their plasma membrane [105]. The
hypothesized synthesis pathway involves lipoxygenase to
form a peroxidised lipid and hydroperoxide lyase (LOX)
for cleavage at the peroxidized site to C-11 hydrocarbon
and conjugated oxoacid as a by-product [103]. GO and
KEGG analyses revealed few lipoxygenases upregulated
in female gametes, but no homologues of hydroperoxide
lyases (HPL). Two Allene Oxide Synthases (AOS) indi-
cated as putative hydroperoxide-lyases in pheromone
pathway by Cock et al. [18] were also not expressed.
Nevertheless, it could be possible that Ectocarpus LOX
exhibits a double activity, like PpLOX1 from the moss
Physcomitrella patens. Lipooxygenase form Physcomitrella
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combines the function of hydroperoxidase liase and acts
on 18-22 carbon chains substrates [106]. It is also sig-
nificantly similar to Esi0424_0006 LOX from Ectocarpus
(E = 6€e-29 (43%)).

Ectocarpus eggs are significantly enriched in genes
related to glutathione (GSH), namely glutathione synthases
and glutathione S-transferase. Glutathione as a radical scav-
enger prevents damage of cellular components caused by
reactive oxygen species (ROS), such as peroxides [107].
Thus glutathione synthesis might be female’s cytoprotective
strategy against oxidative damage in the presence of peroxi-
dized lipids during pheromone synthesis. Additionally, the
presence of particularly arachidonic acid, which is accumu-
lated as a pheromone precursor in Ectocarpus, induced
glutathione synthesis in human fibroblasts [108].

RT-PCR validation

Ten genes that were identified with a high level of sig-
nificance were selected to confirm the RNA-Seq results
via qRT-PCR. To find the best normalization genes for
gamete libraries, we investigated the expression of house-
keeping genes reported by Le Bail [109] for microarray
experiments. After analysis with geNorm [110] dynein
and ribosomal protein 26S showed the smallest relative
stability M-value (M = 0.27) across male and female
gamete samples and were selected for normalization.
Real-time PCR results were in general consistent with
the direction of relative expression changes obtained by
RNA-Seq, with a Pearson coefficient R of log, (Fold Change)
equal to 0.53, indicating a positive correlation between
qPCR and RNA-Seq data. However, differences in the
exact fold change values were observed (Table 2). Fur-
thermore, the most stable 'housekeeping genes' as iden-
tified by qPCR in a previous report [109] including
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ubiquitin conjugating enzyme (UBCE), alpha tubulin
(TUA), actin related protein (ARP2.1) and translation
elongation factor 1 alpha (EFIa), showed only statisti-
cally non-significant relative changes of <1.5-fold (log2-
ratio <0.58) in expression.

Conclusions

Here we provide the first to our knowledge, comparative
analysis of protist gametes’ transcriptomes. One of the
key findings of this study is that Ectocarpus gametes
equal the intricate transcriptomes of oogamous species
[9,11,111-113]. Most of the transcribed genes may not
have an evident role before fertilization, nor are they ne-
cessarily translated, but they may be crucial during post-
fertilization development as in plant and animal systems
[114-116]. A large set of the expressed genes is common
to somatic tissues, which implies their core metabolic
functions and presumably also a role in the parthenos-
porophyte development. However, 4,117 genes in the
Ectocarpus gametes’ transcriptome are differentially reg-
ulated and one-third of the identified transcripts seem to
be gamete specific, with primary functions in signal
transduction and RNA processing. It is remarkable that
within the morphologically identical isogametes, the
transcriptome profile is substantially divergent, reflecting
the early establishment of distinct sexual roles. Both
males and females are able to regulate levels of mRNA
engaged in many cellular processes. The female tran-
scriptome is depleted in genes related to chromatin
organization and enriched in genes with function in cell
wall biogenesis, vesicular transport, lipid metabolism
with pheromone synthesis, gene expression and signal-
ing. In male gametes a significant part of the upregulated
genes relates to microtubule based movement and ion

Table 2 Validation of SOLID based gene expression profiles by Real-Time PCR

Log, (Average relative expression)®

Gene name Gene function RT-PCR SOLiD Validation (yes/no)
Esi0102_0070 Arf1, ARF family GTPase -193 -2.05 Y
Esi0067_0029 long chain acyl-coA synthetase -4.19 049 N
Esi0069_0059 Mannuronan C-5-epimerase -2.98 0.06 N
Esi0101_0018 Tubular mastigoneme-related protein 6.16 472 Y
Esi0104_0023 GPCR-like protein 472 2.22 Y
Esi0130_0068 PKD/REJ-like protein 062 222 Y
Esi0418_0017 MORN motif precursor 495 32.19 Y
Esi0123_0020 hypothetical protein =715 —3161 Y
Esi0161_0002 Metal ion transporter-like protein 350 -32.10 N
Esi0098_0063 hypothetical protein -4.92 -3161 Y

“Relative expression is calculated as a ratio of expression levels in male/female gametes to indicate genes up- or downregulated in male gametes. A gene is

considered differentially expressed if its relative expression is twofold or greater.
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flux as well as signal transduction. These results can be
linked to previously described gamete characteristics in
Ectocarpus and sister species, like active swimming in
males with a tight relation to ion dynamics [52], vesicle
protrusions in settled females [23] pheromone produc-
tion [25] and DNA dispersion in egg nuclei [23,117]. In
addition, our data confirm that transcripts related to cell
wall biogenesis are deposited in female gametes before
fertilization. We also revise the proposed pheromone
pathway and imply the potential role of glutathione in
maintaining the cell oxidative balance. The comparative
RNA-Seq analysis presented here revealed a number of
signaling pathways potentially involved in gamete recog-
nition and fertilization. In particular, genes related to
phosphatidylinositol signaling, GPCR receptors, RE]J-like
proteins and sulphonyltransferases were found, provid-
ing new insight into the mechanism of gamete coupling.
Similar results, with female-biased genes related to
carbohydrate metabolism and male-specific transcripts
with role in signaling were obtained when reproductive
tissues from an oogamous brown alga Fucus vesiculosus
were investigated [118]. Furthermore, the identification
of differentially expressed transcription factors (like MYB
or NIN-proteins) brings potential for discovery of sex spe-
cific gene expression regulators.

Taken together, we demonstrated a highly functional
specialization in morphologically identical isogametes
of Ectocarpus. Further insights into activated genes and
pathways regulating gamete differentiation will result
not only in better understanding of these reproductive
cells and their interactions during fertilization but may
also link sex determination to the formation of func-
tional male and female gametes and shed light on the
forces shaping the evolution of different sexes.

Methods

Culture conditions and gamete harvesting

Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) unial-
gal strain NZKU 1-3 male gametophyte (CCAP 1310/56)
and NZKU 32-22-21 female gametophyte obtained from
a meiospore of NZKU z32 (CCAP 1318/85) were culti-
vated at 12°C in natural sea water enriched with modi-
fied Provasoli ES [119] with 14 h light/10 h darkness
cycles (30 umol x m™ x s' flux density). Both gameto-
phytes descend from a single diploid sporophyte collected
in Kaikoura, New Zealand representing ‘Ectocarpus lineage
4’ according to [120]. To induce gamete release fertile ga-
metophytes were transferred to Petri dishes with residual
water only and kept overnight at 4°C in the dark. Gamete
release was induced by immersing cultures in PES in direct
light at room temperature. Gametes were collected using a
micropipette, transferred into 1.5 ml Eppendorf tubes and
pelleted at 5,000 x g for 5 minutes. Gamete pellets were
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flash-frozen in liquid nitrogen and stored at -80°C before
RNA extraction.

RNA extraction and sequencing

Total RNA was isolated using an XS RNA extraction kit
(Machery-Nagel) or RNeasy Plant Mini kit (Qiagen) ac-
cording to manufacturer’s instructions. An additional
DNase digestion step was performed in solution with
RNase Free Turbo DNase (Ambion). The concentration
and purity of all samples was measured with a Nano-Drop
spectrophotometer (ND-1000, Thermo) and the sample
integrity was checked on a 1% agarose gel. Approximately
20 pg of total RNA from each type of gamete was rRNA
depleted and shredded prior to cDNA synthesis using the
SOLiD™ Total RNA-Seq Kit. Male and female samples
were barcoded and prepared cDNA libraries were pooled
and sequenced with a SOLIiD 3 System (Applied Biosys-
tems) at Cofactor Genomics (Missouri, USA).

Mapping reads to the reference genome

SOLID sequence reads were trimmed from adaptors and
filtered for full 50 bp length. Reads were mapped to the
reference genome [121] using SHRIMP2 [122] with a
threshold score for full Smith-Waterman alignment set
to 60%. Raw sequence data were first aligned against the
Ectocarpus siliculosus rDNA sequences to check for de-
pletion efficiency (rRNA contamination was estimated
approximately 0.55% for female and 0.12% for male li-
brary) and then to the Ectocarpus genome. With the ob-
served base quality drop towards the read’s end and
considering that the sequencing data were obtained from
a different strain then the sequenced one, we used less
stringent conditions for alignment scores and filtered
reads based on mapping quality parameters. The statis-
tical significance of top scoring hits was calculated using
the Probcalc module of SHRiMP2 and only unique map-
pings with ‘normodds’ value > =0.7 were selected. The
same filtering parameters were used to align raw data
against the mitochondrial and chloroplast genome of
Ectocarpus. Additionally Tophat software [123] was used
to identify reads mapped in exon-exon splice junctions,
allowing 1 mismatch and an intron length of maximum
5000 bp.

Estimation of transcript abundance and differential gene
expression analysis

We used HTSeq-count [124] to locate and count aligned
reads within annotated genes, based on the available
Ectocarpus siliculosus gene set at the OrcAE platform
(http://bioinformatics.psb.ugent.be/orcae/overview/Ectsi).
We also determined the number of reads mapped in exon,
intron, 3 UTR and 5 UTR regions. Only exon mapped
reads were considered in further analysis. Read processing
involved filtering based on the number of reads per CDS,
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Table 3 PCR primers used in this study for Real-Time PCR experiments

Oligonucleotides

Gene name Forward Reverse PCR product length [bp]
Esi0102_0070 CTCAGCACTGCAGTCGTTAC CGCGATCCAAGTGTACAAGG 166
Esi0067_0029 GCTGAAGTATCTCGACGGGA TCTCATCGTACGGTCAACCC 220
Esi0069_0059 GAGATGCAACAACGTCGAGA TCGAACGTGTTGTTGGTGAT 249
Esi0101_0018 AGATCAAGCTGGACAGGC TGTGTATCGCAGTTCTCATT 253
Esi0104_0023 CCAACGCTCAGGTTCGCA CCGTCCATGGCTCTCTCT 220
Esi0130_0068 ATCGGGGCCTTTCTCTCC TGAAGGGAAGATCGCGATTC 147
Esi0418_0017 TTTGAGGGTGGCAAATAACC CGTGTTTCTCTCCCTTCTCG 212
Esi0123_0020 CCTCCCTACGTCACCAAGAA CACATCTTGTCGTCGTGCTT 239
Esi0161_0002 ACACAAGCCATTCCGATCAT AGCGGGTACAACCATAAACG 182
Esi0098_0063 ATTGGCGTCGGGTTGTACT TACCTTTCCGCATTGTGAGC 163
Esi0298_0008 ATGTCCGAAGACATGCAACA TGGGTAACGTAGGACCCAAA 167
Esi0072_0068 GAACCACGGAAGGAACAAGA GGAGGGCGTAGTTGTCGAAC 176

the covered length, and those with less than 5 reads
mapped or covering less than 51 bp were discarded. These
data were compiled into the gene expression table that
served as input into the edgeR package for R [125]. Li-
brary normalization was done using the trimmed mean of
M-values method (TMM) [126] and Exact-Test was used
to determine differentially expressed genes with P = <0.01
and FDR = <0.05.

GO and KEGG enrichment analysis

To classify expressed genes, all sequences were anno-
tated with KEGG orthology using KOBAS [34] and Gene
Ontology (GO) categories using Blast2GO [127]. These
automatic annotations were used to investigate overrep-
resented pathways and GOs by comparison of individual
libraries to all annotated genes in Ectocarpus. Over-
expressed KEGG pathways were identified using the
KOBAS web-platform [34] and a hypergeometric test
with Multiple Testing Correction of FDR [128]. Over-
represented GO terms were identified with Blast2GO
and Fisher's Exact Test with Multiple Testing Correction
of EDR [128].

Validation of RNA-Seq data by qRT-PCR

Quantitative real-time PCR was used to validate differ-
ential expression of ten selected genes (Table 2) and
primers were designed using Primer3 software [129] with
default settings (Table 3). cDNA synthesis was carried out
on 1 pg of total RNA samples using oligo(dT);, 15 primer
(Invitrogen) and GOScript reverse transcriptase (Promega)
according to the manufacturer’s instructions. The qPCR
reactions were performed in a 384-well thermocycler
(LightCycler 480, Roche) with SYBR green chemistry
(LightCycler 480 SYBR Green I Master mix, Roche)
using listed conditions: 15 min at 95°C, followed by 40

cycles of 15 sec at 95°C, 20 sec at 50°C, and 30 sec at
72°C. Two biological replicates were run for both male
and female ¢cDNA samples and each sample was tech-
nically duplicated. Amplification specificity was mea-
sured with a melting curve by heating the sample from
65 to 97°C and the product size was checked on 1%
agarose gel with GeneRuler” 1 kb DNA Ladder (Fermen-
tas). Absence of contaminating genomic DNA was checked
with No-RT control PCR prior to cDNA synthesis.
Normalization genes were selected using geNorm [110]
and the relative gene expression values were calculated
in gBASE v.1.3.5. [130].
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