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Biased gene expression in early honeybee larval
development
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Abstract

Background: Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on
nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from
each other in physiology, behaviour and life span.

Results: To understand how these trajectories are established we have generated a comprehensive atlas of gene
expression throughout larval development. We found substantial differences in gene expression between worker
and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are
maintained throughout larval development, indicating that caste-specific developmental trajectories are established
much earlier than previously thought. Within our gene expression data we identified processes that potentially
underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription,
translation and protein folding early in development with a later switch to genes involved in energy generation.
Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste
differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that
have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a
given caste.

Conclusions: Our data, based on the biases in gene expression early in development together with published data,
supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of
development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a
particular developmental trajectory.
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Background
Caste development in honeybees (Apis mellifera) is a
remarkable example of, and model for, developmental
plasticity. In this species, two adult female phenotypes are
produced by one genome in response to diet [1]. Larvae
destined to become queens are fed royal jelly (RJ) which is
rich in carbohydrates and lipids [2]. RJ also contains major
royal jelly proteins, one of which, royalactin, is vital for
queen development [3]. As a result of a higher food intake
[4] and a more nutritious food, queen bees are larger,
longer-lived, have fully developed ovaries and differ in
their behaviour and morphology, when compared to
worker bees. Transferring larvae from worker cells to
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queen cells (thus manipulating their exposure to RJ)
during early larval development causes bees to develop
some queen-like phenotypes. Based on these experiments
it has been proposed that differentiation between the two
castes begins on the first day of larval development and is
progressive [5]. Manipulating larval diet in this way can
induce queen-like properties in worker bees up to 60 hours
of larval development [6] demonstrating, that at least
during early larval development, there is plasticity in the
developmental pathways that give rise to queen and
workers. The molecular mechanisms by which RJ triggers
queen development are only beginning to be understood,
but RJ intake causes differences in juvenile hormone (JH)
titre between worker and queen larvae [7]. These JH levels
regulate gene expression [8]. It seems likely, therefore, that
a complex set of molecular mechanisms link RJ exposure
to changes in JH titre. Such mechanisms should be
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reflected in differences in gene expression between devel-
oping larvae destined for different castes.
Differences in gene expression underlying queen and

worker developmental trajectories have been investigated
in a number of previous studies [8-16]. These studies
used a variety of techniques to profile gene expression,
but have focused on mid-to-late larval development as
few differences in gene expression have been identified
before this stage [15]. Mid to late larval development
includes the period (larval stage 3 and 4), when JH titres
differ between castes [7], and so if is difficult to deter-
mine if these gene expression changes are due to RJ
exposure, or the action of JH.
While a number of mechanisms that regulate gene

expression during caste development have been pro-
posed, DNA methylation is thought to be critical, as it
can link environmental exposure to changes in gene
expression [17]. RNA interference targeting the de-novo
DNA methyltransferase 3 (Dnmt3) biases development
towards the queen trajectory [18]. Honeybees, similar to
other invertebrates, have relatively low overall levels of
CpG methylation restricted to gene bodies [19,20].
Methylation within the gene body appears to influence
alternative splicing in the honeybee [19,21-23] and the
ant [24]. It is possible that the role of DNA methylation
in caste development may be via influencing alternative
splicing of transcripts. Evidence from mammalian models
indicates that gene body methylation may have other mo-
lecular functions, such as promoting RNA polymerase
pausing [21], modulating other epigenetic marks [25,26],
or affecting altering promoter usage [26]. It has been
proposed that plasticity, such as caste development in
eusocial insects and neuronal plasticity in invertebrates,
is associated with dynamic changes in DNA methylation
[27-29] and, by inference, alternative splicing. DNA
methylation is likely to be one of many molecular mecha-
nisms involved in caste development, but these mecha-
nisms as a whole will lead to changes in gene expression,
detectable using microarray techniques, or alternative
splice isoforms detectable using transcriptomics.
We have examined gene expression throughout larval

development, both before and after the wave of JH, in
queen and worker castes, carrying out the widest survey
of gene expression during caste development in this re-
markable animal. We used this to build a more complete
understanding of how a honeybee larva responds to RJ,
and how this biases them into an alternative developmen-
tal trajectory, culminating in a queen bee.

Results and discussion
Experiment design
There are five stages of larval development (L1-L5) in the
honeybee. Queen and worker samples were taken at the
following time points (the corresponding larval stages are
shown in brackets): 6 hours (L1), 12 hours (L1), 36 hours
(L2), 60 hours (L3), 84 hours (L4), 108 hours (L5) and
132 hours (L5). At each time point four replicate queen
and worker samples were collected. Each replicate sample
collected at 6 hours contained 20 larvae and samples
collected at all other time points contained 5 larvae.
Queen development was induced by grafting larvae

(transferring newly emerged larvae with a small paint-
brush) into artificial queen cells before returning them
to the hive. Grafting, which is a standard apicultural
technique, is carried out as soon as practical after the
larvae hatch (within ~1 hour). Larvae in these queen
cells are fed RJ and this triggers queen development.
When collecting 6-hour larvae it was noted that RJ was
present in these cells. Worker larvae were not grafted.
Gene expression data was generated from these samples
and using custom two colour long-oligonucleotide mi-
croarrays (13,440 double spotted oligos representing
13,135 sequences). At 60 hours, two additional biological
replicates, each consisting of either 20 queen or worker
larvae, were taken and transcriptome data was generated
using high throughput sequencing (HTS). The 60 hours
time point was selected for HTS as this time point has
been highlighted as the earliest difference in gene ex-
pression seen a previous study [15]. HTS sequencing
also gave us the opportunity to assess gene expression in
greater depth, as well as analyse the effect of caste devel-
opment on alternative splicing.
Differential gene expression during caste development
Microarray analysis indicates that queens and workers
have relatively equal numbers of differentially expressed
genes (DEGs) throughout larval development (Table 1).
HTS of RNA, however, found that 83 % of DEGs had
higher expression in queens, similar to previous results
[13]. Many studies have reported finding more differen-
tially expressed genes using HTS than using microarrays
[30-33]. This is at least partly because HTS analysis is not
hindered by the acquisition bias that can affect microarray
analysis. Microarrays are sensitive to saturation effects and
are also not able to detect transcripts that are expressed at
a relatively low level due to high amounts of background
fluorescence obscuring low hybridization signal to the
probes. We believe the latter phenomena accounts for the
relatively high number of DEGs detected in queens by
HTS compared to microarray, as these genes had a
median RPKM of 51.25 compared with a median RPKM
of 150.65 for genes that are more highly expressed in
worker larvae. We believe the relatively low expression of
these genes precluded them from being detected as differ-
entially expressed by microarray analysis. We have carried
out extensive validation of these data sets using RT-qPCR
(Additional file 1: Figure S1) which indicates that both the



Table 1 Number of differentially expressed genes
between queen and worker larvae

6 hr 12 hr 36 hr 60 hr 84 hr 108 hr 132 hr 60 hr
HTS

Queens 442 76 154 327 330 250 115 2311

Workers 556 99 156 304 362 197 160 457

Total 998 175 310 631 692 447 275 2768
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microarray and HTS experiments are producing high-
quality, biologically relevant information.
Genes we identified as being differentially expressed

during caste development were assigned Drosophila
orthologs using BlastX [34]. Approximately 90 % of the
genes with higher expression in queen larvae have ortho-
logs in Drosophila as compared with 77 % of the genes with
higher expression in workers, a statistically significant
difference (P < 2.2 × 10-16, Fisher’s exact test) (Additional
file 1: Table S2). Barchuk et al. (2007) also found a tendency
for worker larvae to have higher expression of genes that
lack orthologs in Drosophila [8]. These data imply that
genes more highly expressed by queen larvae have been
conserved across ~350 million years of evolution. In con-
trast, genes more highly expressed in worker larvae are not
as well conserved in Drosophila and may be rapidly
evolving.
Differences in gene expression between queen and

worker larvae are observed as early as 6 hours (L1) post-
grafting (Table 1). Indeed, the largest numbers of DEGs
identified by microarray analysis are detected at this time
point (Table 1). While it is possible that the large number
of differentially expressed genes at this time point are due
to perturbation of the larvae during grafting, the appear-
ance of genes that are differentially expressed at 6 hours
and that retain higher expression in one caste during larval
development implies that at least some of this differential
gene expression represents an early response to RJ. We
also do not observe gene ontology categories associated
with stress response or physiological perturbation in the
genes that are differentially expressed at 6 hours, indicating
that differences we observe in expression at this early time-
point are likely an early response to RJ.
In queen larvae, several genes with increased expression

early in larval development are maintained at high
levels throughout larval development. These genes
are mitochondrial cytochrome C, phosphoenolpyruvate
carboxykinase (PEPCK), phytanoyl-CoA dioxygenase
domain-containing protein 1 homolog and glycine N-
methyltransferase-like (GNMT). Worker larvae, in con-
trast, have higher levels of the apoptosis regulator
Bcl-2 throughout development. These genes have func-
tions that are difficult to interpret in terms of caste
development, but are consistent markers of either worker
or queen development.
Given that queen development can be triggered in
larvae by grafting until larval day three, well after the
6 hour time point by which we see substantial differences
in gene expression, these early differences in gene expres-
sion must not commit the larvae to either a queen or
worker fate. We therefore propose these early changes in
gene expression, in response to RJ, may bias development
toward one caste or the other, but that later gene expres-
sion can reverse that bias. These early differences in gene
expression may be attributable to the larval diets which
differ, with the queen diet initially containing more sugar
[35] and less protein [36] than worker jelly [reviewed in
4] though it is not clear if these differences occur at or
before 6 hours after grafting. These dietary differences
have also been linked to morphological differences
between the castes that are apparent as early as 2 days into
larval development [5]. The idea of an early, biased, phase
of caste development is consistent with early larval graft-
ing experiments which showed that worker larvae shifted
into queen cells at ~12 hours of larval development result
in bees that are queen-like, but retain some worker char-
acteristics [5]. A two-stage process of caste development
has been previously proposed based on grafting, nutrition
and physiological data [5], but our data provides the first
molecular evidence to support an early biased phase of
gene expression and development followed by a commit-
ment phase.

Differential expression of hormone biosynthesis genes.
One key event during larval development is the wave of
JH synthesis in queen larvae, during L3 and L4 stages [7].
Juvenile hormone (JH) is implicated in caste develop-
ment in honeybees [37]. Our data indicates that several
genes involved in JH and ecdysteroid biosynthesis are dif-
ferentially expressed during larval development between
castes (Additional file 1: Table S3) at, or around this JH
wave. Queen destined larvae, have higher expression of
eight CYP genes, many with roles in hormone biosyn-
thesis. CYP315A1, acts in ecdysteroid biosynthesis [38],
and has higher expression at six hours of larval develop-
ment. CYP15A1, which has higher expression in queens
throughout larval development but peaking at 84 hours,
acts as a JH epoxidase, catalysing the final step of JH bio-
synthesis [39].
Queens also have higher expression of JH methyltrans-

ferase, involved in the final steps of JH synthesis, with
differential expression peaking at 84 hours after grafting
(Additional file 1: Table S3). In contrast, during mid larval
development, workers have higher expression of JH
esterase, which degrades JH in honeybees [40]. Seven
genes induced in Drosophila by JH titre [41] are dynamic-
ally regulated, with three having higher expression in
workers early in development and five having higher
expression in queens during mid to late development,
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temporally correlating with the peak of JH titre during
development [7].
The trends in hormone-related gene expression in

queen larvae, peaking as they do during mid-late larval
development, are consistent with these genes either be-
ing involved in the synthesis of JH associated with the
wave between the third and fourth larval instars, or with
responding to the JH wave. At this point we also observe
the appearance of differential expression of a number of
genes in both queen and worker larvae that remain sta-
bly differentially expressed throughout the remainder of
larval development (Figure 1). This change to a commit-
ted developmental trajectory, however, does not alter or
reprogram the expression of genes we find differentially
expressed at early stages. Our data is consistent with an
initial bias towards one caste or the other induced quite
early (by 6 hours) by RJ consumption, followed by a
consolidation of that fate and final specification through
circulating hormones.

Differential expression of Cytochrome P450 genes
Cytochrome P450 (CYP) genes (Figure 2) which act in
hormone and pheromone biosynthesis [42] and the detoxi-
fication of foreign compounds [38] show differential regula-
tion between castes. Insect CYP genes are divided into four
Figure 1 Model depicting the major findings from this study. In this stud
be detected as early as 6 hours after exposure to RJ. As indicated by the arrow
throughout larval development in either the queen caste (red arrow, mitocho
phytanoyl-CoA dioxygenase domain-containing protein 1 homolog and glycine
differences in gene expression occur earlier in larval development than previo
become committed to a particular caste [6]. These early, and sustained, differe
development represents a biased developmental trajectory. During this phase
biasing towards queen development (red line), or worker development (blue
peak JH levels in queens, we observe unique sets of genes induced in queen
arrow, translocator protein, shep-like, lethal(2) essential for life and LOC10058039
larval development. We propose that these changes in gene expression at 84
committed developmental trajectory.
major clans based on sequence similarity [43]. Worker lar-
vae have higher expression of 18 CYP genes at time points
throughout larval development, the majority belonging to
clan three, in particular sub-families six and nine. There is
evidence for rapid expansion of these two sub-families in
the honeybee through recent gene duplication events [44].
Genes in CYP clan three are loosely classified as environ-
mental response genes [38].
The differential expression of CYP clan three genes is

most marked at 60 hours of larval development, where
worker larvae have higher expression of 13 genes of this
clan. This period coincides with a change in the worker
larval diet which results in the introduction of pollen
grains, whereas RJ only contains trace levels of pollen [4].
The introduction of pollen exposes worker larvae to a
number of foreign compounds. One example of this is the
addition of quercetin, a flavinoid compound found in
honey and pollen [45]. Four CYP genes are known to me-
tabolise quercetin in the honeybee (CYP6AS1, CYP6AS3,
CYP6AS4 and CYP6AS10) [45] and all four have higher
expression in workers during mid-larval development.
Some CYP genes are involved in pheromone production
[44] and possibly caste specific synthesis of mandibular
acids [46]. CYP genes have also been linked to termite
caste development [47,48].
y we have identified substantial differences in gene expression that can
s, a small number of these genes maintain higher expression
ndrial cytochrome C, phosphoenolpyruvate carboxykinase (PEPCK),
N-methyltransferase-like (GNMT)) or worker caste (blue arrow, Bcl-2). The
usly reported [8,15] and before the point at which we know larvae
nces in gene expression have led us to propose that this phase of early
of early larval development gene expression is altered in response to RJ,
line) but not irreversibly so. Following this period, corresponding with
(red arrow, juvenile hormone-inducible (Jhl-26)) and worker castes (blue
) that remain stably more highly expressed throughout the remainder of
hours of larval development are associated with the induction of a



Figure 2 The CYP gene family is extensively differentially regulated during caste development. CYP genes are listed below the caste and
time-point where they are differentially expressed. For clarity only CYP genes that are differentially expressed are shown. Genes are colour coded
according to the clan they are assigned to based on based on sequence similarity [38]. The total number of CYP genes identified in the honeybee
genome for each of the four clans [38] is indicated beside the colour key.
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Functional classes of genes differentially regulated
between queen and worker larvae
Two other families of genes were differentially expressed
during caste development (Additional file 1: Table S3).
Queens have higher expression of five genes involved in
the response to reactive oxygen species (ROS), especially
during mid larval development. These genes include
catalase, several thioredoxins and a peroxiredoxin. The
generation of ROS by the mitochondria has been pro-
posed to be a key mechanism in the aging process [49].
This may reflect an increased respiration rate previously
observed in queen larvae [50]. The differential regulation
of these genes may influence expression of vitellogenin,
important in protecting honeybees from oxidative stress
[51]. In contrast workers have higher expression
of three glutathione-s-transferase genes. Glutathione-
s-transferases are important for detoxification of both
endogenous (ROS) and exogenous (xenobiotic) compounds
[52].
Programmed cell death has a role in reducing ovariole

numbers in larval worker ovaries during fourth and fifth
larval instars [53,54]. Consistent with this we see higher
expression of eleven genes involved in programmed cell
death in worker larvae. These belong to two major pro-
grammed cell death pathways - apoptosis and autopha-
gic cell death.

Hexamerin70b and caste development
Hexamerin genes were differentially regulated between
castes at several larval time-points. RT-qPCR [55], which
is generally considered to be the gold-standard method
to measure gene expression [56], was used to confirm
that, at 60 hours of larval development, workers have be-
tween 20 and 125 fold higher expression of the four hex-
amerin genes when compared to queens (Figure 3A).
Hexamerins are a family of insect amino acid storage
proteins that have evolved from the copper-containing
hemocyanins of ancestral aquatic insects and
crustaceans [57]. A role for the hexamerins has been
suggested in caste development in termites, where two
hexamerin genes have been shown to facilitate the JH
dependent worker to soldier differentiation [58]. Several
previous studies have found differences in expression of
hexamerin genes between queens and workers implying
a possible role for these proteins in caste development
[11,15,59].
Hexamerin 70b (hex 70b) is expressed in the fat body

and gonads during larval development and its expres-
sion, which is regulated by juvenile hormone [59,60],
peaks prior to the expression of other hexamerins during
larval development [59]. Thus far no biological function
has been attributed to hex 70b; it is found in the
cytoplasm, nucleus, and in punctate dots in the cytoplasm
of cells within the fat body [61], implying that this protein
has multiple biological roles, as reported for hex 70a [62].

Hexamerin70b knock-down
Of the four hexamerins assayed by RT-qPCR (Figure 3A)
hex 70b showed the smallest fold change between queen
and worker larvae (25-fold, Figure 3A). This comparatively
small fold-change provides us with the best opportunity,
amongst the hexamerins, to knock-down expression of
this gene to queen larvae-like levels, even if RNAi treat-
ment is inefficient and knock-down is weak. Given the
technical challenge of RNAi in honeybee larvae, and the
high expression levels of all the hexamerin genes, we
targeted hex 70b because moderate knockdown of this
gene was more likely to produce queen-like expression
levels, and give a clear, measurable, phenotype. RNAi
knockdown of hex 70b resulted in significant changes
(P = 0.04) in the proportion of queen-like individuals
produced when compared to control injected larvae
(Figure 3C). Emerging individuals were classified as
queen-like based on the morphology of several key
structures (see Additional file 1). While hex 70b RNAi
produced a statistically significant change in phenotype,
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Figure 3 Hexamerin 70b expression biases caste determination
towards worker fate. A. Relative expression of the four hexamerin
genes in 60 hour queen and worker larvae as determined by
RT-qPCR. Error bars represent the standard error of the mean. Statis-
tical significance was assessed using a one-way ANOVA, *** indicates
P < 0.001. B. Relative expression of hex70b was determined 12 – 18
hours following injection of either hex70b or eGFP (control) dsRNA
using RT-qPCR. Error bars represent the standard error of the mean.
Statistical significance was assessed using a one tailed t-test. C. The
phenotype of emerging bees was assessed using a suite of
morphological characteristics (refer to Additional file 1 for more
detail). Graph shows the percentage of individuals that developed as
queen-like after RNAi against hex 70b or eGFP (control). Statistical
significance was assessed using a t-test, * indicates P < 0.05.
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we did not see a significant difference in the expression of
hex 70b between target and control larvae as determined
by RT-qPCR (Figure 3B), although we did observe a trend
towards lower hex 70b expression in the hex 70b RNAi
injected group relative to controls. The lack of statistical
significance likely reflects the small sample sizes used for
RT-qPCR, and large variation in expression of this gene in
injected individuals. Samples were taken 12 – 18 hours
post-injection for this analysis and it is possible that
sampling too early, or too late, may explain why the
difference in expression between the target and control
groups was not significant.
Knockdown of hex 70b biases individuals towards a

queen fate (Figure 3C), consistent with the high expression
of these genes in worker larvae (Figure 3A). We propose
that hex 70b has a key role in caste development at a time
when we propose a commitment to worker or queen fate is
set (Figure 1). This implies that early biases in gene expres-
sion between worker and queen larvae can be overcome to
change the developmental trajectory of a larva. The possi-
bility that hexamerins are acting to regulate JH activity [63]
raises the possibility that we are disrupting the final com-
mitment phase of caste development by reducing hex 70b
expression, rather than changing the bias in commitment.

Gene ontology and pathway analysis
DEGs involved in caste development were categorized
by proposed gene function by examining enriched Gene
Ontology (GO) terms, (Additional file 1: Table S4) and
pathways (Additional file 1: Table S5) taking advantage
of well annotated Drosophila orthologs of these genes.
This analysis further reinforces the idea of unique caste-
specific developmental trajectories in female honeybees;
queen and worker larvae show different trends in terms
of the pathways and processes that are more highly
expressed during development. Differential activation of
these pathways and processes are likely to reflect the
different requirements of the adult phenotypes.
During early development queen larvae have higher

expression of genes in pathways involved in cellular main-
tenance and growth. Genes involved in DNA replication
and amino acid metabolism pathways are enriched at
6 hours, and GO terms include nucleotide binding, protein
folding and ATPase activity. During mid larval development
queen larvae have higher expression of genes involved in
energy generation pathways, including the tricarboxylic acid
cycle (TCA) and oxidative phosphorylation. This switch to
energy generating processes at 84 and 108 hours may re-
flect in the increased growth rate seen in queen larvae.
Worker larvae are heavier than queen larvae up until
84 hours, when queens begin to gain weight faster than
workers [64]. In late larval development, queens have
higher expression of genes with GO terms associated with
proteolysis.
Workers have higher expression of genes involved in

amino acid, xenobiotic and general metabolism from
early through to mid development. Workers also have
higher expression of genes involved in muscle develop-
ment early in larval development. The higher expression
in workers of genes involved in muscle development was
also noted by Barchuk et al. (2007) [8]. Barchuk et al.
(2007) suggest that this may represent worker larvae
preparing for their adult life as foragers. As the thoracic
muscles disappear entirely during metamorphosis [65],
this investment must be able to be carried through to
adult muscle development to be beneficial to flight
muscle strength.
Similar to queens, workers have higher expression of

genes involved in proteolysis during late larval develop-
ment; however, in workers these genes have higher
expression at 108 hours in contrast to 132 hours in
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queens. This temporal shift in gene expression was not
a common phenomenon in our data sets (data not
shown). The difference in expression of these proteoly-
sis genes may reflect preparation for pupation in queen
larvae. In workers, at 108 hours, the expression of these
genes is unlikely to be related to pupation but instead
may have a role in mediating PCD in the worker ovary
[66]. Consistent with this hypothesis we see higher
expression of genes involved in apoptotic (cathepsins)
and autophagic cell death (thread and Ice) in workers
during mid to late larval development (Additional file 1:
Table S3).

Alternative splicing of mRNA transcripts and caste
development
One set of genes with consistently higher expression
in queens were those associated with the spliceosome
(Figure 4). This is particularly interesting as spliceosome
encoding genes are differentially methylated between
castes [22], and a link has been proposed between gene-
body methylation and control of alternative splicing in the
honeybee [19,21-23] and the ant [24].
DNA methylation is believed to be crucial to caste

development [18,67] as RNA interference targeting the
de-novo DNA methyltransferase 3 (Dnmt3) biases devel-
opment towards the queen trajectory [18]. Honeybees,
similar to other invertebrates, have relatively low overall
levels of CpG methylation restricted to gene bodies
[19,20]. Over evolutionary time methylated cytosines are
more often deaminated to thymines than non-methylated
cytosines [68], leaving a signature of low CpG content in
methylated gene bodies (which are preferentially methyl-
ated in invertebrates [20]). The CpG content of a gene
(as measured by the observed versus expected ratio of
CpG dinucleotides in a coding sequence or CpG[o/e]) can
be used to infer the ancestral germ-line methylation state
of a gene [69]. While CpG[o/e] ratio does not indicate the
current methylation state of a gene, several studies have
found good correlation between low CpG[o/e] values
and high DNA methylation in the honeybee [19,70,71].
Analysis of the CpG[o/e] ratios for the DEGs implies a
dynamic pattern of switching between historically
methylated and historically un-methylated transcripts
as development proceeds (Additional file 1: Figure
S6H). If current DNA methylation is related to CpG[o/e]

measurements, as suggested by previous studies, then
our data implies a complex and changing relationship
between methylation and gene expression during caste
development.
DNA methylation of introns and exons has been asso-

ciated with alternative splicing of mRNA transcripts in
diverse species [22,23,72,73]. Differences in DNA methy-
lation have been detected during larval development [74]
and knockdown of Dnmt3 has been shown to cause
aberrant splicing in honeybee larvae [75]. Given the pro-
posed link between alternative splicing and methylation
in the honeybee [19,21-23], and our evidence implying
queens have higher expression of spliceosome related
genes (Figure 4) we used our HTS dataset to investigate
alternative splicing.
Discovery of alternative transcripts in our datasets

indicates that ~50 % of genes expressed in larvae have
alternative transcripts. For DEGs both queens and workers
have higher expression of more genes than expected that
encode multiple splice variants in larvae (P = 0.02 and
0.002) (Figure 5A). However, both queens and workers
tend to show higher expression of a single variant only
rather than multiple variants of the same gene (Figure 5B).
Thus in the majority of cases a single transcript is differen-
tially regulated, while the other transcript(s) for these genes
remain constitutively expressed. There are, of course,
exceptions to this; in queens 11 % of DEGs and 16 % in
workers have multiple transcripts that are differentially
regulated. In all cases, bar three, these genes are regulated
co-ordinately. For three DEGs, splice variants are regulated
independently, i.e. one transcript of the gene is more highly
expressed in queens, another in workers. These genes
encode a DNAJ-type chaperone (LOC408966), a RNA
exonuclease (LOC413245) and a TLD-domain containing
protein (LOC100576519). While queens and workers both
have higher expression of genes that have the capacity to
encode multiple splice variants, usually the transcription of
only a single variant is affected.
Our analysis indicates that while alternative splicing is

abundant in both queen-destined and worker-destined
larvae, we find little evidence for alternative splicing
contributing to the queen and worker developmental
trajectories. That we find specific transcripts of genes
that are differentially expressed, against a background of
invariant expression of other splice variants, implies that
alternative splicing may play a role in caste development,
but that this role is neither a simple one nor limited to a
specific caste. The increase in spliceosome gene expres-
sion may reflect an increase in general transcription,
with queens expressing more genes than workers, as
shown in our HTS data.
Alternative splicing has recently been linked to DNA

methylation in the honeybee [19,21-23,75] and the ant
[24]. Until recently most of the evidence for a link
between alternative splicing and methylation in the
honeybee implies that methylation promotes exon
skipping [19,22], although evidence exists for promo-
tion of exon inclusion [23,75]. In general, however,
alternative transcripts occur more often in methylated
genes as compared with unmethylated genes [23]. We
know that DNA methylation is integral for worker
development [18] and our data, that alternative spli-
cing does not correlate with a particular developmental
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Figure 5 Association of differentially expressed genes with alternative splicing. (A) Percentage of genes encoding single (dark bars) and
multiple transcripts (light bars) as determined by HTS at 60 hours of larval development. Statistical significance was assessed using a Chi-squared
test, * P < 0.05, ** P < 0.01. The number of genes in each category is indicated on the graph. (B). Percentage of DEGs where a single transcript
(dark bars) or multiple transcripts (light bars) are differentially regulated. The number of genes in each category is indicated on the graph.

Figure 4 Annotation of genes involved in the spliceosome showing genes that are more highly expressed in queen larvae. The left
hand side of the figure depicts the assembly of the spliceosome on a primary mRNA. Genes encoding proteins involved in the spliceosome are
depicted as oblong boxes, with those more highly expressed in queen larvae shown in red and the remaining genes in grey (no genes were
more highly expressed in worker larvae). The five small nuclear ribonucleoproteins that make up the spliceosome are depicted as circles (U1-U5).
The spliceosome associated complexes Prp19 and EJC/TREX and are also shown.
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trajectory, hints at a role for DNA methylation in caste
development outside the regulation of alternative
splicing.

Conclusions
Caste development in honeybees is a complex process in-
volving coordinated changes in gene expression triggered
by larval diet. Our study indicates that these changes
occur earlier than previously thought, implying an early
biasing of gene expression in each developing caste,
followed by a commitment phase which may be triggered
by circulating JH (Figure 1).
Both castes are likely to have changed from the non-

social ancestor of honeybees, however we propose that
the gene expression profile accompanying the queen
developmental trajectory, based on the evolutionary
history of the genes expressed, is more similar to that
seen in the ancestral non-social bee. The gene expression
profile accompanying the worker developmental trajec-
tory represents genes, and gene networks, that are more
diverged from this ancestor implying that novel genes
and pathways have been co-opted in worker development
into regulating this complex polyphenism.

Methods
Sample collection
A. mellifera larvae were collected from single-drone
inseminated queen bees from a closed population of
bees (Betta Bees Research Ltd). A subset of newly
hatched larvae were grafted (moved with a paintbrush)
into queen rearing cells and placed in a queen-less hive.
The remainder of larvae were placed in a queen-right
hive and raised as workers. Larval samples were col-
lected at 6 hours, 12 hours, 36 hours, 60 hours, 84 hours,
108 hours and 132 hours of larval development. At each
time-point four replicate queen and worker samples
were collected. Each of the four samples collected at
6 hours contained 20 larvae. At later time-points each
sample contained 5 larvae. Samples were snap frozen in
liquid nitrogen and stored at −80 °C.

RNA extraction
Total RNA was extracted from larval samples using
TRIZOL® (Invitrogen), and purified using RNeasy
columns (Qiagen). RNA integrity was confirmed by gel
electrophoresis.

Microarray detection of differential gene expression
The honeybee microarrays used for this experiment were
custom spotted long oligonucleotide microarrays available
from the University of Illinois (NCBI GEO Platform
GPL15631 (13,440 double spotted oligos representing
13,135 sequences)). At each of the seven time-points four
replicate microarrays were performed with dye swaps for
two of the four microarrays. 10 μg of total RNA from each
sample was amplified and labelled using the Ambion
Amino Allyl MessageAmp™ II aRNA Amplification kit.
The aRNA was labelled with Alexa Fluor dyes 647 or 555,
fragmented (Ambion fragmentation buffer) and hybridised
to microarray slides (Ambion slide hybe buffer). Post
hybridisation, microarray slides were washed in four
wash solutions with increasing stringency before being
scanned. Microarrays were scanned with a GenePix
4000B Microarray Scanner (Molecular devices) and
images processed, to determine intensity values for
each gene in each condition, with the GenePix Pro 4
software (Molecular devices). GenePix results files
were analysed with GeneSpring GX 10 (Agilent) using
the advanced analysis pathway for analysing generic
two-colour microarray data. Lowess normalisation was
performed on the data with no baseline transform-
ation. Probes were filtered by flags that were assigned
in GenePix Pro 4.0. Any spots flagged as marginal or
absent were removed from the analysis. Probes were
then filtered by expression with a cut-off of 1000. The
statistical significance of differential gene expression
was assessed with an unpaired t-test and a P-value of
less than 0.05 was considered significant.

High throughput sequencing (HTS) detection of
differential gene expression
Two biologically independent replicate samples of 10 μg
of queen and worker RNA from 60-hour larvae were
subjected to RNA-seq analysis on a Illumina HiSeq 2000
(service provided by Beijing Genomics Institute). Each of
the four samples yielded between 6.97 and 7.37 million
50 bp reads. The reads were filtered and high quality
sequence reads were assessed for differentially expressed
genes using CLC Genomics Workbench platform software
(CLC bio). The RNA-seq tool and Ab Initio transcript
discovery plug in were used to identify all differentially
expressed and alternatively spliced transcripts. Sequence
reads were mapped back to the honeybee genome
(Amel_4.5, NCBI) with 85 % of reads mapping to 9578
genes (of the 11156 annotated genes in the honeybee
genome). The RPKM (Reads Per Kilobase of exon model
per Million mapped reads) was calculated for each
transcript. RPKMs were normalized between biological
replicates using scaling normalization [76]. Differentially
expressed genes (DEGs) were identified using the Baggerly
test, which is similar to a two sample t-test but the test
statistic is weighted according to the number of reads in
each sample [77], as implemented by CLC Genomics
Workbench. Genes that had a false discovery rate
corrected P values of less than 0.05 were considered to be
differentially expressed. The data discussed in this publica-
tion have been deposited in NCBI’s Gene Expression
Omnibus [78] and are accessible through GEO Series
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accession number GSE52291 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE52291). Drosophila orthologs of
the DEGs were obtained using blastx within Blast2GO
using default parameters (E value cut-off of 1 x 10-3) [79]
(Additional file 2). To determine if the microarray and HTS
data was of a standard useful for large scale analyses, such
as Pathway or Gene Ontology (GO) analysis, several quality
control assessments, including extensive quantitative RT-
PCR, were performed (Additional file 1: Figure S1).

Pathway and GO analysis
The enrichment of potential functions of Drosophila
orthologs of candidate genes identified in the microarray
and HTS was identified using the Database for Annotation,
Visualisation and Integrated Discovery (DAVID). The
background list used for the analysis of the DEGs from the
microarrays consisted of the Drosophila orthologs of all
genes present on the microarray. The HTS background list
consisted of the Drosophila orthologs of all the genes
expressed in larvae at 60 hours. For pathway analysis a
P-value cut off of 0.05 was used. The GO cluster analysis
was used and any clusters with enrichment scores below
1.0 were discarded.

Quantitative RT-qPCR
One μg of RNA from independent biological replicate sam-
ples of the 12-hour, 60-hour, 84-hour and 108-hour time-
points was used to make cDNA using Superscript® VILO™
according to manufacturer’s instructions. Superscript®
VILO™ uses random primers to prime first stranded cDNA
synthesis, which is recommended for RT-qPCR as it allows
for more representative sampling of the mRNA [80].
Oligonucleotide primers were designed using Primer3 [81]
and Amplify [82]. Quantitative RT-PCR, normalization and
data analysis was performed as previously described [55].

RNAi
dsRNA was synthesised for hex 70b and eGFP (control)
using the Ambion MEGA®script RNA kit. The dsRNA
probe spanned exons six and seven of the hex70b
transcript. RNAi and larval rearing methods were based
on those described in Beye et al. 2002 and Kucharski
et al. 2008 [18,83]. To ensure that results were
consistent the RNAi experiment was repeated on three
independent occasions (total number of individuals = 43
for Hex70b RNAi and 48 for eGFP injected controls).
For more information see Additional file 1 section.

Availability of supporting data
The data discussed in this publication have been deposited
in NCBI’s Gene Expression Omnibus and are accessible
through GEO Series accession number GSE52291 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52291).
Additional files

Additional file 1: This file contains additional information regarding
the validation of the microarrays and high-throughput sequencing
by RT-qPCR, the phenotypes generated by larval RNAi, analyses of
historical DNA methylation and alternative splicing and GC content
of differentially expressed genes. This file also contains additional
materials and methods, oligonucleotide primer sequences, and
detailed tables of gene ontology categories.

Additional file 2: This file contains lists of differentially expressed
genes, and associated information, based on microarray analysis.
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