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Background: RNA-Sequencing (RNA-Seq) experiments have been optimized for library preparation, mapping, and
gene expression estimation. These methods, however, have revealed weaknesses in the next stages of analysis of
differential expression, with results sensitive to systematic sample stratification or, in more extreme cases, to outliers.
Further, a method to assess normalization and adjustment measures imposed on the data is lacking.

Results: To address these issues, we utilize previously published eQTLs as a novel gold standard at the center of a
framework that integrates DNA genotypes and RNA-Seq data to optimize analysis and aid in the understanding of
genetic variation and gene expression. After detecting sample contamination and sequencing outliers in RNA-Seq
data, a set of previously published brain eQTLs was used to determine if sample outlier removal was appropriate.
Improved replication of known eQTLs supported removal of these samples in downstream analyses. eQTL replication
was further employed to assess normalization methods, covariate inclusion, and gene annotation. This method was
validated in an independent RNA-Seq blood data set from the GTEx project and a tissue-appropriate set of eQTLs. eQTL
replication in both data sets highlights the necessity of accounting for unknown covariates in RNA-Seq data analysis.

Conclusion: As each RNA-Seq experiment is unique with its own experiment-specific limitations, we offer an easily-
implementable method that uses the replication of known eQTLs to guide each step in one’s data analysis pipeline. In
the two data sets presented herein, we highlight not only the necessity of careful outlier detection but also the need
to account for unknown covariates in RNA-Seq experiments.

Background

The advent of RNA-Seq [1] and dramatic decrease in
next-generation sequencing costs have led to numerous
RNA-Seq studies in recent years. This revolutionary tech-
nique has enabled digital transcriptome profiling at unpre-
cedented resolution that avoids many of the limitations
inherent to the analog nature of microarray technology
[2,3]. However, despite numerous publications and the fact
that RNA-Seq studies have supplanted microarrays as the
gold standard for transcriptome analysis, it is not without
its own inherent limitations.

Early concerns regarding library preparation, sequencing
error, read mapping, and gene expression quantification
have been resolved by a number of studies; however, there
is no standardized approach for quality control and data
adjustment of RNA-Seq data after the generation of gene
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expression estimates. Without an appropriate approach to
data analysis, reproducibility of these studies remains lim-
ited [4]. Further, the unique designs of sequencing studies
suggest that a single black box approach is unlikely to be
uniformly optimal across all experiments. Thus, we propose
an approach to address data cleaning, normalization, and
adjustment in RNA-Seq data analysis (Figure 1). This pipe-
line is informed by best practices that we and others have
developed for genome-wide association studies (GWAS)
[5,6], which also suffered from similar sources of error prior
to the development of optimized methods.

We demonstrate the applicability of our approach in 64
autism-affected and control brain samples. Specifically,
our outlier detection method is based on utilizing the
RNA-Seq gene expression estimates as well as DNA and
RNA genotypes obtained from the same individual. Fur-
ther, expression quantitative trait loci (eQTLs) are bio-
logically meaningful loci at which gene expression is
modified by genotype. Accordingly, we utilize replication
of cis-eQTL data from two recently published brain stud-
ies [7,8] as a means to assess the integrity of sequencing
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Figure 1 Data analysis pipeline for analysis of RNA-Seq data. Blue boxes are data analyses carried out on RNA. Purple indicates DNA.

data and appropriateness of data handling procedures. We
replicate the findings from this eQTL analysis in an
independently-generated RNA-Seq data set of 162 blood
samples from the Genotype-Tissue Expression (GTEx)
project [9]. Within the context of eQTL replication, we
particularly highlight the need to identify and remove out-
lier samples in RNA-Seq experiments and further corrob-
orate the necessity of accounting for unknown sources of
variation in high-throughput data [10]. While a number of
publications have presented methods by which one can
analyze RNA-Seq data (many of which are reviewed in
[11]) and account for unknown covariates [12-15], the
steps we present herein ultimately provide a straightfor-
ward approach that allows for more accurate approxima-
tion of gene expression values that can be confidently
used in downstream disease-based comparisons.

Results

Data normalization in RNA-Seq

Brain RNA-Seq data were generated from post-mortem
cortical samples collected from Brodmann Area 19 (BA19)
in 39 control and 25 autism-affected cases (see Additional
file 1: Table S1). After estimating gene expression from
the sequencing reads, two methods for data normal-
ization were assessed: Exploratory Data Analysis and
Normalization for RNA-Seq (EDASeq) [16] and Condi-
tional Quantile Normalization (CQN) [17]. The normalized
gene expression values from each algorithm demonstrated
method-specific biases. Examining p-values from our co-
variate adjusted case—control analysis, we note that nor-
malization by CQN leads to a marked increase in the test

statistics for shorter and low GC content genes (gene
length < 1000 bp, GC content < 35%), a problem not ob-
served with EDASeq (see Additional file 1: Figure S1). On
the other hand, genes with both lower gene expression esti-
mates and the assignment of zero values by EDASeq led to
an increase in outliers on a per-gene basis in our eQTL
analyses (see Additional file 1: Figure S2A), whereas CQN
did a better job handling these genes (see Additional file 1:
Figure S2B). Further comparison by eQTL replication to
assess the biologic reproducibility (discussed below) of
these two normalization methods was performed with
CQN slightly outperforming EDASeq (Figure 2). While
one unified approach that directly addresses the limitations
of each approach more effectively would improve results,
we selected CQN for downstream analyses due to its slight
improvement in eQTL replication. Nonetheless, we recom-
mend that, until the presented issues are directly addressed,
both methods be considered as part of an analysis pipeline.

Identifying outliers in RNA-Seq data

In large sequencing studies, specific samples, for technical
or biological reasons, can be recognized as outliers and
should be removed from the study [18]. To identify outlier
samples, whose global gene expression pattern is not ex-
plained by known covariates, we used Principal Compo-
nent Analysis (PCA), investigating the first six principal
components, which together explain ~60% of the variance
in the brain data. Samples greater than three standard de-
viations (SD) from the mean in any of the first six princi-
pal components were deemed outliers and removed from
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analysis (N = 4 or 6.3% of all samples) (see Additional
file 1: Figure S3).

After sample-based outlier removal described above, it
was apparent that, on a gene-by-gene basis, there were
samples whose expression estimates differed greatly from
the rest of the samples for that particular gene (see
Additional file 1: Figure S2). Using a cut-off of three SD
from the mean, 20.2% [7,027/34,738] of genes tested for
differential expression between cases and controls had at
least one sample flagged as an outlier for gene expression
level. As these sample outliers are gene-specific, they sug-
gest a clear artifactual origin, as opposed to a problem
with the sample as a whole. Comparing the 50 most sig-
nificantly differentially expressed genes between cases and
controls before and after outlier removal, the lists differ at
60% [30/50] of the genes present (see Additional file 2),
demonstrating that inaccurate results would be reported if
gene-by gene outliers were not removed. To further en-
sure that this was indeed biologically sound, we assessed
the validity of this approach using our eQTL analysis
(discussed below).

After flagging outlier samples for removal in the brain
data set, we obtained genotypes from both DNA and
RNA. As a check on our data, we verified sample iden-
tity by comparing each RNA-Seq sample against all
DNA samples. Pair-wise Identity by State (IBS) distances
(DSTs) were calculated in PLINK with the expectation
that DNA and RNA genotypes generated from the same
individual should have a DST value approaching 1.0. In
all samples, DNA genotypes best matched their corre-
sponding RNA genotypes with a DST > 0.83, indicating
that our DNA and RNA samples were, in fact, from the
same individual.

Despite correct identification of sample identity by
IBS, three samples had borderline DST values (DSTs =
0.83-0.89), warranting further investigation. These samples

demonstrated an unexpected genotyping comparison pro-
file such that all three showed an increased number of
genotype calls deemed homozygous by DNA genotyping
but called heterozygous at the RNA level. As DNA geno-
typing by Affymetrix array has proven to be extremely ac-
curate [19], an excess of sites where the DNA genotype
indicates homozygosity but heterozygous calls are present
at the RNA level indicates possible contamination. We
quantify these occurrences in each sample using a metric
we refer to as the Discordance Ratio (DR). For the major-
ity of our samples, for which there is no suspected con-
tamination, the DR approaches zero, with a value less than
0.2 indicating RNA-Seq data of sufficient quality for fur-
ther analysis. The three samples in question had elevated
DRs (0.32, 041, and 0.47), suggestive of sample cross-
contamination (see Additional file 1: Figure S4).

To address the possibility of contamination, we con-
ducted a mixing experiment where we combined high
quality RNA-Seq samples (identified as having a DR < 0.1)
in controlled ratios. We carried out variant calling on
these intentionally contaminated samples as had been pre-
viously carried out in the RNA-Seq data and calculated
the DR for each. This ratio was then compared between
the RNA-Seq samples in question and those from which
mixing had been simulated. This comparison suggests
that, for the three sample libraries in question, 30-70% of
the RNA-Seq reads originated from a different sample
(Figure 3). As reads from a foreign sample would lead to
inaccurate gene expression estimates, we removed these
samples from downstream analysis, resulting in a final
data set of 57 samples, comprising 21 controls and 36
cases.

Reported brain eQTLs are reproducible in RNA-Seq data
Previously, surrogate measures of RNA quality (e.g., pH,
post-mortem intervals, RIN values, etc.) have been used
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in an attempt to predict biologic validity, but none has
been uniformly successful. Using published sets of brain
eQTLs — regulatory genomic loci at which gene expression
levels in the brain differ by genotype — we looked to recap-
itulate a number of the previously reported brain eQTLs
in our gene expression data. We postulated that if we
could replicate these eQTLs in our data, this would indi-
cate that the use of post-mortem brain tissue may be rep-
resentative of physiological conditions. We used a list of
909 cis-eQTLs generated from two recent studies that de-
tected brain eQTLs in multiple disease populations across
a number of brain regions [7,8] (see Additional file 3). Des-
pite a smaller sample size and only one brain region under
interrogation, we replicate 26.1% [237/909] of the tested
associations (inflation-adjusted p < 0.05) when age, sex,
site and principal components are included as covariates
(Figure 2 & see Additional file 1: Figure S5 & Table S2).

Monitoring eQTL replication to gauge quality control
measures

We posit that if we are appropriately handling our data,
known brain eQTLs should demonstrate improved associ-
ation after each data correction step as well as an overall
increase in the number of previously reported eQTLs that
replicate. We have measured the ability to replicate known
cis-eQTLs associations using three metrics: (1) the per-
centage of known eQTLs that replicate at p < 0.05 after
adjusting for genome-wide inflation (See Methods) (2) 1y,
a statistic that estimates of the proportion of significant

tests [20], and (3) the percentage of known eQTLs that
replicate at q < 0.05. When taken together, these three
metrics offer a profile of the validity of each data handling
step.

As part of the initial quality control, seven of the 64 sam-
ples (11% of total) were flagged as PCA outliers or con-
taminated samples, and removed. To assess the effect of
sample removal, we compared eQTL replication in three
data sets: (1) prior to outlier removal (N = 64), (2) after
dropping PC outliers (N = 60), and (3) after dropping likely
contaminated samples (N = 57). Sample outlier removal al-
lows for the detection of 7.4% more known eQTLs p <
0.05 and 3.5% more eQTLs q < 0.05. Similarly, m; esti-
mates a dramatic increase in the proportion of replicating
eQTLs from 0.000 to 0.209. These data indicate the neces-
sity of removing suspect samples in these data (Figure 2 &
see Additional file 1: Table S2).

We further utilized eQTL replication to determine the
most appropriate model for gene annotation. There is
evidence that suggests expression levels estimated from
RNA-Seq data at the coding sequence (CDS) alone corres-
pond better with qRT-PCR measurements than RNA-Seq
estimates that include both the CDS and its untranslated
regions (UTRs). However, recent RNA-Seq analyses have
generally included gene annotation from the whole gene —
that is the CDS and its UTRs — under the argument that
gene annotation gains accuracy upon UTR inclusion [21].
To address this discrepancy in the literature, we compared
these two gene annotation approaches by eQTL replication.
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The whole gene annotation clearly replicates known eQTLs
better than the CDS alone (Figure 2 & see Additional file 1:
Table S2) detecting 5% more known eQTLs at p < 0.05 and
1.9% more at q < 0.05. Replication, as measured by 11; dem-
onstrates an increase in this test statistic as well (0.114 in
CDS, 0.209 in whole gene annotation). This improvement
in eQTL detection offers support for the use of UTR inclu-
sion in gene annotation in these data.

Similarly, eQTL replication was used to compare nor-
malization methods. We note that when considering the
overall number of known eQTLs detected, CQN replicates
2.7% more eQTLs (p < 0.05) than does EDASeq (Figure 2
& see Additional file 1: Table S2), further supporting its
use in analyzing gene expression in this data set.

Disease-based comparisons are frequently adjusted for
known covariates (age, sex, etc.). However, comparative
studies are also frequently plagued by unknown covariates,
or confounders within the data that are not easily attribut-
able to any recorded measurement [10,18]. These un-
known covariates can be approximated through various
data decomposition methods. We initially considered using
PCA to accomplish this goal but observed that the first PC
was correlated with both collection site (see Methods) and
disease status, which often occurs whenever different sites
have differing fractions of cases and controls. As this could
be a likely issue in many case—control studies, limiting the
utility of PCs in downstream analyses, we also considered
Surrogate Variable Analysis (SVA) [14] and Independent
Surrogate Variable Analysis (ISVA) [15], as these ap-
proaches allow for disease status to be protected during
their generation. Lastly, we also considered utilizing PEER
[13,22] to account for unknown covariates, as this method
has been used and performed well in previous eQTL ana-
lyses [23]. In eQTL replication analyses, performance was
comparable with ISVs, SVs, PEER and PCs detecting
25.1, 26.2, 26.9 and 26.1 percent of the previously re-
ported eQTLs, respectively (p < 0.05) (see Additional
file 1: Table S2). Ultimately, however, to address the case—
control confounding issue, we had to decide between ISV
and SV usage. To do so, we tested both methods by asses-
sing Q-Q Plots generated for disease-based comparisons.
As the inclusion of SVs, but not ISVs, demonstrated
inflated p-values in these analyses (see Additional file 1:
Figure S6), we decided to move forward with ISVs to ac-
count for unknown covariates.

Finally, regarding covariate inclusion, we note that certain
metrics for technical artifacts of sequencing (percent coding
bases, percent intronic bases, percent mRNA bases, median
3" bias, percent UTR bases, and AT dropout) were corre-
lated with specific ISVs (see Additional file 1: Table S4),
suggesting that the unknown covariates detected by ISVA
may simply be accounting for known technical artifacts of
sequencing. We tested this possibility and demonstrate
that, while including technical artifacts as covariates does
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improve eQTL detection over known covariates alone
(2.4% increase at p < 0.05, increase in m; from 0.217 to
0.308), both PCs and ISVs perform even better, demon-
strating a 5.9% and 4.9% increase at p < 0.05, respectively,
when compared to no covariate inclusion (Figure 2 &
Additional file 1: Table S2). These data ultimately support
the inclusion of covariates, as captured by data decompos-
ition methods, in downstream analyses suggesting that
such methods are either (a) accounting for unknown co-
variates beyond technical sequencing artifacts or (b) ap-
propriately weighting the effects of the technical artifacts
amongst the ISVs/PCs generated.

As noted above, sample outliers were also identified on
a per-gene basis and removed from analysis. To ensure
that removing these outliers was biologically sound and
that these outliers did not represent true measures of
differential expression, we tested data sets where sample
outliers were removed at each gene using our eQTL repli-
cation approach. While per gene outlier removal did not
demonstrate a marked increase or decrease in eQTLs de-
tected (Figure 2 & Additional file 1: Table S2), the pres-
ence of outlier samples leads to a lack of robustness in the
case—control analysis where single samples dramatically
skewed the results (see Additional file 1, Figure 2). As per-
gene outlier removal helped to stabilize the case—control
analyses and did not hinder our ability to detect known
eQTLs, we support its inclusion in RNA-Seq data analysis.

Independent RNA-Seq data set supports use of eQTL gold
standards

To bolster the results of our brain RNA-Seq data set, we
set out to replicate the main findings of our initial analysis
in an independent RNA-Seq data set generated from a dis-
tinct tissue source. To do this, we used 162 blood samples
from the GTEx project [9], for whom we had DNA geno-
types as well as raw count data from RNA-Seq. In these
data, four samples (2.5% of total) were identified as PC
outliers, using the same criteria as was used in the brain
data. Sample outlier removal led to a slight decrease in the
number of eQTLs detected (29.6% versus 28.3% at p <
0.05); however, there was an increase in m; (0.374 to
0.387 after outlier removal) (Figure 4 & Additional file 1:
Table S3). Normalizing using CQN again led to an overall
increase in eQTLs detected (3.5% increase at p < 0.05)
(Figure 4 & Additional file 1: Table S3). In assessing covar-
iate addition, a pattern similar to what was seen in the
brain data was observed. While known covariates (age,
sex, and cohort) in the brain data did not improve the
eQTL detection, there was a similar improvement seen
upon the addition of PCs to account for unknown covari-
ates (9.3% increase when compared to the use of no covar-
iates) (Figure 4 & Additional file 1: Table S3). Again, per
gene outlier removal does not hamper the ability to detect
known eQTLs (Figure 4 & Additional file 1: Table S3).
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Discussion

Just as it took more than ten years for the field to reach a
consensus on the analysis of microarray data, RNA-Seq
analysis has been undergoing a similar struggle since the
first RNA-Seq publication. Since then, accurate library
preparation, appropriate mapping of short sequencing
reads, and correct estimation of gene expression values
have been the primary focus. While many of the original
experimental and data analysis hurdles have been ad-
dressed, a framework in which one can assess the quality
control and data adjustment measures taken after obtain-
ing accurate gene expression estimates was lacking. For
experiments with RNA-Seq data, DNA genotypes and a
list of tissue-appropriate eQTLs, we demonstrate that our
approach can be easily employed to generate a clean set of
expression estimates for downstream analyses (Figure 1).
Specifically, we propose using the ability to replicate
eQTLs as a biologically meaningful check on the integrity
of the data and to help ensure that the data is being han-
dled appropriately at each quality control and data adjust-
ment step.

We demonstrate that upon generating normalized gene
expression estimates, PCA can be utilized to identify glo-
bal gene expression sample outliers and that DNA and
RNA genotypes can be employed to verify sample identity
and check for sample contamination. Using the replication
of known eQTLs, we also demonstrate the importance of
including both known and unknown covariates in down-
stream analyses. This result is consistent with expectation
[18], illustrating the utility of eQTL replication as a simple
approach to assess data handling measures and offering
credence to its usage in additional comparisons. This
eQTL replication approach was further employed to dem-
onstrate that ISVs are not simply explaining known tech-
nical artifacts of next-generation sequencing, that gene
annotation best replicates known biology when UTRs are
included in gene annotation, and that we do not overtly

lose power to detect known eQTLs when reducing the
sample size by removing suspect samples.

Of the data cleaning steps employed, we highlight the
importance of removing individuals on a per-gene basis, as
this is not a standard quality control step. Indeed, either
due to low coverage (leading to zero counts) or undetected
PCR duplication (leading to an overabundance of counts),
a sample may exhibit gene expression values vastly differ-
ent than the rest of the samples, and as a result, should be
removed from analysis at that particular gene prior to ISV/
PC generation. We note that this process is more import-
ant when using EDASeq than when CQN is used for
normalization, as quantile normalization produces fewer
outlier values. In the brain data set, when EDASeq was
employed, 42.5% of genes had at least one sample flagged
as an outlier (see Additional file 1: Figure S2A), whereas
the nature of quantile normalization produced outliers in
only 20.2% of genes tested. Nevertheless, with both
methods, the differential gene expression analysis becomes
more robust upon the removal of individual samples
present in the data skewing the results (see Additional
file 1: Figure S2B). While these sample-specific outlier
genes could certainly reflect an insertion-deletion event or
another genetic variation in these individual samples, our
goal is to maximize one’s ability to find eQTLs and assess
overall data handling measures, and as such, these individ-
uals should be removed from analysis. Given that our abil-
ity to detect eQTLs is not hampered and that differential
gene expression analysis demonstrates improved robust-
ness upon per-gene outlier removal, we argue that this
novel outlier identification approach be incorporated in
future RNA-Seq expression studies.

The utilization of two distinct RNA-Seq data sets —
one generated from brain (N = 64) and another inde-
pendently generated from blood (N = 162) — helps
to demonstrate the main findings of this work. In
both brain and blood data sets, eQTL replication was
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improved with the use of CQN for data normalization
and further improved upon the addition of PCs as covar-
iates. Further, in both data sets, removing per-gene out-
liers did not hamper the ability to detect known eQTLs.
However, there are data handling measures imposed on
the data that were more important in the brain data set
than in the blood data set, likely reflecting the fact that
the brain data was plagued by a smaller sample size and
that the sequencing data was generally of overall lower
quality due to degradation of the starting material.
Reflecting the sample size difference, overall replication
was higher across the board in the blood data set. Fur-
ther, the degraded nature of the starting brain RNA-Seq
material was reflected in the need for extensive process-
ing of the sequencing reads due to poor library quality.
Accordingly, sample outlier removal proved essential in
the brain data set, but did not make a meaningful differ-
ence in the blood data. While the blood data set was less
sensitive to the presence of outliers, this work demon-
strates that despite the use of a degraded starting prod-
uct, biologically meaningful data was still generated
from the brain data and that careful data analysis can
augment the information garnered from a limited data
set. These distinctions between the two independent
data sets furthers the point that each RNA-Seq experi-
ment is unique and carries its own limitations, but eQTL
replication can be used to guide one’s analysis pipeline.

Finally, it is important to note that our eQTL approach
was more helpful in some comparisons than others. While
this approach can greatly help to guide one’s analysis, there
will be cases where the choice is not so obvious and further
steps will need to be taken to assess one’s data processing.
For example, when comparing the three data decom-
position methods (PCA, SVA, and ISVA) (see Additional
file 1: Tables S2 & S3), the answer was unclear, as all
methods do a similar job accounting for the unknown co-
variates. Thus, the choice between the methods was based
on additional criteria with PCs being excluded due to con-
founding within the first PC between sample collection
site and disease status and SVs due to their overinflated
p-values in differential gene expression analysis (see
Additional file 1: Figure S6). Additionally, we note that
there are several caveats to the use of data decomposition
methods. First, when dealing with small sample sizes, in-
cluding a large number of covariates can lead to overfitting
of the data. Second, data decomposition will minimize the
ability to detect global differences in gene expression,
which may be correlated with one or more of the eigen-
vectors (e.g. comparisons across tissues would, by neces-
sity, not incorporate PCs).

In addition to this approach not being applicable for
all comparisons, we note that RNA-Seq remains an im-
perfect measure of gene expression. Technical and ana-
lytical limitations remain. Cell type heterogeneity and
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the need for ¢cDNA generation currently result in un-
avoidable biases in data generation. While single cell
RNA-Seq and direct RNA sequencing methods will ad-
dress these issues, any improvement that further reduces
bias in library construction will lead to more accurate
gene estimate values, allowing for further protocol im-
provement. Additionally, improvements in mapping al-
gorithms, normalization procedures, and gene estimate
quantification will also aid in reproducibility.

Conclusion

In recent years, RNA-Sequencing (RNA-Seq) experiments
have moved to the forefront of the transcriptomics field
becoming the gold standard approach for the study of
genome-wide gene expression. While this period has led
to protocols that aim to optimize library preparation and
computational methods that aid in improved mapping
and accurate gene expression estimation, a method to as-
sess downstream data handling approaches was lacking.
Here, we offer a framework that utilizes DNA genotypes
and RNA-Seq data along with previously published eQTLs
to assess possible sample contamination and assess the
biologic validity of each data analysis step to ultimately en-
able confident downstream analyses.

Methods

Sample information

Brain

Post-mortem brain samples were acquired through the
Autism Tissue Program (http://www.atpportal.org), with
samples originating from two different sites: the Harvard
Brain Tissue Resource center and the NICHD Brain
and Tissue Bank at the University of Maryland. Cortical
tissue corresponding to Brodmann Area 19 (BA19) was
sequenced in 40 controls and 25 autism-affected cases.
Among this set of brains, the average age at time of death
is similar between cases and controls (22.2 and 21.3 years,
respectively), and there is no significant difference in cause
of death between the two groups. One sample had fewer
than 20,000 sequenced reads (average across all other
samples was 109 M reads) and was excluded. The result-
ant 64 samples were included for study. This study was
approved by the IRB of The Johns Hopkins Hospital and
conducted in accordance with institutional guidelines.

Blood

Sample data were acquired from the NHGRI GTEx pro-
ject (phs000424.v3.p1) [9]. Whole blood RNA-Seq and
genotyping data were available for 162 samples. This
data set comprised of 103 males and 59 females with an
average age of 49.7 years.
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Genotyping

Brain

Each sample was genotyped at ~900,000 SNPs using the
Affymetrix 6.0 array calling genotypes using the Birdsuite
software package [24]. High quality genotyping was com-
pleted for all samples with an average call rate of 99.63%
[range: 97.91 to 99.91].

Blood

The GTEx project used the Illumina Omni5 array for
direct sample genotyping and subsequently imputed
with IMPUTE2 [25] using the 1000 Genome phase 1 re-
lease reference panel.

RNA-sequencing

Brain

RNA-Seq libraries were prepared from 50 pg of total RNA
from postmortem brain obtaining a fraction of purified
polyadenylated (polyA) mRNA after two rounds of hy-
bridization with oligo(dT) dynabeads. Standard quality
control measures were employed using “no template con-
trols”, “no ligase controls”, and “no adapter controls” in
RNA-Seq library preparation. These samples did not dem-
onstrate detectable product by PCR prior to sequencing.
This process was followed by random fragmentation to
avoid bias at the 3’ end of the transcript. First-strand
c¢DNA synthesis was performed using random primers
(Mlumina) and SuperScriptll Reverse-Transcriptase (Invi-
trogen) followed by second strand ¢cDNA synthesis using
RNaseH and DNA Pol I (Illumina). Illumina adaptors were
ligated to the purified, end-repaired and 3’ adenylated
c¢DNA and 200 bp size-selection of the final product
was performed by gel-excision, following the Illumina-
recommended protocol. The 200 bp cDNA template mol-
ecules were amplified with the adaptor attached by PCR to
create the final library. Each library was sequenced on a
single lane of the Illumina’s Hiseq 2000 to produce 100
base pair (bp) single-end reads.

Blood

RNA-Seq read count data was obtained from the GTEx
project, which used a TruSeq library preparation proto-
col on poly-A selected mRNA to obtain 72 base paired-
end sequencing from the Illumina Hiseq 2000.

Mapping

Brain

The number of total reads per lane varied from 26 M to
202 M, with a mean of 109 M. We used in-house Python
scripts to map the sequence reads to the genome (hgl9)
using Bowtie [26] followed by TopHat [27]. To improve
mapping, reads were trimmed to remove stretches of
terminal As or Ts (N = 3-12) that occurred as a result
of the polyA pulldown step. In addition, we removed

Page 8 of 11

contaminating adaptor sequences using a Python script,
cutadapt (v0.09). Only uniquely mapped reads with a max-
imum of three mismatches were used to calculate gene ex-
pression values. Aligned reads were sorted, indexed and
compressed into the BAM format for easy storage and
usage in downstream analysis. The number of total
mapped reads per lane varied from 2.7 M to 84.2 M, with a
mean of 35 M for the 57 samples used in the final analysis.
The RNA-Seq reads were mapped to approximately 44,611
Ensembl genes (average 70% reads mapping per sample).
For all analyses (save the case where we analyzed CDS
only; see Additional file 1: Table S2), we summarized these
reads to all exons of genes based on the coordinates on the
hgl19/GRCh37 gene annotations provided from Ensembl
using the python script HTSeq-count (intersection strict).
For the CDS only analysis, HTSeq-count (intersection
strict) was again used; however, we excluded reads that
mapped to coordinates within the 5" and 3" UTRs for
summarization. In both cases, regardless of quantification
method, we then assessed summarized values on a gene-
by-gene basis, removing samples whose gene expression
values were more than three SD from the mean expression
at each gene. After sample outlier removal, the final gene
expression data set was pared down to include the 20,717
genes whose log2 gene expression estimates summed
across all 57 samples totaled at least 100.

Blood

Mapping was carried out by the GTEx consortium [9].
Our data analysis of these data began with the mapped
read count values.

Normalization

Subsequent to mapping, the gene count data was normal-
ized to minimize biases due to gene-length, GC content,
and sequencing depths. CQN normalization procedure was
carried out with the recommended default setting [17].
EDASeq normalization was completed using the full-
quantile, within-lane GC-content normalization procedure
as recommended [16].

Data decomposition

Data decomposition was performed on the log2 scale for
those genes with at least ten gene-level counts across all
samples. PCA was performed using the procedure im-
plemented in the R function ‘prcomp’. SVA was per-
formed on the matrix of the expression counts, after
controlling for case—control status, age, sex and site
using the ‘sva’ function implemented in the R package
‘sva’. ISVs were generated while protecting for case—
control status using ‘isvaFn’ function in the ‘isva’ pack-
age in R. We applied the unsupervised Bayesian factor
analysis method implemented in Probabilistic estima-
tion of expression residuals (PEER) on the count gene
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expression data [13,22]. PEER vyields residual expression
factors that can be used in downstream analysis.

Variant calling

Variant Calling was completed using two different genotyp-
ing methods: SAMtools v0.1.12 [28] and the Genome Ana-
lysis Toolkit v1.0 (GATK) [29]. SAMtools genotype calls
were made for each sample individually using the recom-
mended settings (http://samtools.sourceforge.net/mpileup.
shtml); however, we excluded indels from these analyses
and filtering was done in-house. Multi-sample GATK
calls were made according to the suggested Unified Geno-
typer generic command line (http://www.broadinstitute.
org/gatk/gatkdocs/org_broadinstitute_sting_gatk_walkers_
genotyper_UnifiedGenotyper.html). The default settings
were used except in the cases of standard minimum
Phred-scaled confidence, which was increased to 60 to in-
crease output of confident calls, and downsampling cover-
age, which was set to 250. We extracted genotypes from
each method from the output files and assigned rsIDs
(dbSNP build 132) using in-house scripts, keeping geno-
types for which there were greater than twenty reads in
downstream analyses. Genotypes both concordant across
the two variant calling methods and present on the Affy-
metrix Genome-Wide Array 6.0 were used for down-
stream analyses.

Simulated sample mixing experiment

SNPs present on the Affymetrix Genome-Wide Array
6.0 that were called concordantly by both SAMtools and
GATK were used in these analyses. The genome func-
tion in PLINK (v1.07) [30] was used for pair-wise com-
parisons to verify that, based on pair-wise IBS distance
values (DST), the closest sample match for each RNA
sample came from its corresponding DNA sample. Sam-
ples with low pair-wise concordance (IBS DST <0.89)
were assessed further, computing each sample’s Discord-
ance Ratio (DR). A sample’s DR can be calculated by
taking the number of SNPs called homozygous at the
DNA level but heterozygous at the RNA level divided by
the total number of heterozygous RNA calls. Utilizing
this metric, we simulated contamination at the RNA-Seq
level by choosing eighteen high-confidence BAM files
(DR < 0.1) at random. The Picard (http://picard.source-
forge.net, v1.64) command 'DownsampleSam' was then
used to randomly sample a subset or reads from these
BAM files. We combined RNA-Seq reads from these 18
samples in controlled ratios [10:90, 20:80, 30:70, 40:60,
and 50:50] using samtools’ [28] 'merge' command. After
controlled mixing of sequencing reads, we carried out
variant calling and comparison back to DNA genotypes
on these mixed samples as described above. The DR for
each intentionally contaminated sample was calculated
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and the three samples in question were then compared
to our intentionally contaminated subset to determine
the level of sample contamination present.

Assembling lists of previously identified eQTLs

Brain

We manually curated a list of brain SNPs and their associ-
ated genes from two recent publications [7,8]. These lists
were generated from Table S6 [8] and Tables S4 & S6 [7] in
the previous publications and included SNPs that had a
proxy SNP on the Affymetrix Array 6.0 (r* > 0.90) as deter-
mined in SNAP with 1000G CEU as a reference population
(http://www.broadinstitute.org/mpg/snap). Additionally, we
retained eQTLs whose associated SNPs passed default fil-
tering in PLINK, thus keeping SNPs with <10% missing
and SNPs with a minor allele frequency>0.01. We re-
moved eQTLs whose associated genes were not present in
our RNA-Seq data as well as duplicate SNP:gene pairs
across the studies (defined as SNP:gene pairs with SNPs w/
1 > 0.8). Combining the lists from the two publications and
performing the aforementioned filtering, resulted in a list of
909 eQTLs for study (see Additional file 3).

Blood

To test for known eQTLs in blood, we generated a list
of 538 cis-eQTLs initially identified from a lymphoblas-
toid cell line [31]. From this data set we started with
those cis-eQTLs with a g-value < 0.01 in the previously
published meta-analysis. Known eQTLs for which the
genotyped SNP was present in the imputed GTEx geno-
type data and the gene was present in the GTEx RNA-
Seq expression data were included. This resulted in 538
eQTLs for study (see Additional file 4).

Covariate inclusion in eQTL analyses

Covariates included in each analysis varied but included a
subset or combination of known, unknown, and technical
artifacts. The known covariates included were age, sex,
and either sample collection site (Harvard or Maryland) in
the brain data set or cohort (organ donor, postmortem, or
surgical) in the blood data set. We utilized four data de-
composition methods — independent surrogate variable
analysis (ISVA), surrogate variable analysis (SVA), prin-
cipal component analysis (PCA) and PEER [13,22] — to
account for unknown covariates. We included percent
coding bases, percent intronic bases, percent mRNA
bases, median 3" bias, percent UTR bases, and AT drop-
out as the technical sequencing artifacts in our analyses.
[See Picard documentation for further explanation of
these artifacts, http://picard.sourceforge.net.]

Detecting inflation in each data set
To assess inflation of p-values, a genome-wide cis-eQTL
analysis was carried out for each condition in the R
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package ‘MatrixEQTL (v1.6.1) [32]. eQTLs were de-
tected by looking for cis-associations among all directly-
genotyped SNPs and genome-wide RNA-Seq gene
expression data. cis-associations were defined as SNP-gene
associations in which the tested SNP was localized within
1 Mb of either the 5" or the 3" end of the gene. From the
p-value distribution of these analyses, the genome-wide
inflation factor in each data set (see Additional file 1:
Tables S2 & S3) was determined using the R package
‘GenABEL [33].

Replication of previously identified eQTLs

We utilized the curated list of 909 brain eQTLs and 538
LCL eQTLs to detect eQTLs in our brain and blood data
sets, respectively. MatrixEQTL (v1.6.1) [32] was used to
test for cis-associations between the previously-reported
SNP genotypes (or proxy SNPs) and corresponding gene
expression estimates from the RNA-Seq data. cis-associa-
tions were defined as above. In each analysis, p-values
were adjusted for inflation [34] using the inflation factor
estimated from the genome-wide cis-eQTL analysis (see
Additional file 1: Table S2 and S3). P-values from this ana-
lysis were used to obtain q-values using the R package
‘qvalue’ [20] keeping lambda constant at 0.50. Finally, as
used previously [23], in order to assess eQTL replication,
the 1, statistic was calculated from the inflation-adjusted
p-values using the ‘qvalue’ package. 1, an estimate of the
proportion of replicating eQTLs, is defined as 1-my, where
1o is the proportion of true null associations. These three
statistics (p-value, q-value, and ;) were used to assess the
need for and success of each quality control step.

Differential gene expression analyses

A linear regression framework was utilized to identify
differential gene expression between 36 controls and 21
cases with site, age, sex and ISVs as covariates.

Availability of supporting data

Genotyping and RNA-Sequencing data have been submit-
ted to the NIH’s National Database for Autism Research
(NDARCOL0002034). Additional scripts developed for
these analyses are available upon request from the authors.

Additional files

Additional file 1: Supplementary figures and tables.
Additional file 2: Table of differentially expressed genes.
Additional file 3: Table of known brain eQTLs.
Additional file 4: Table of known LCL eQTLs.
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