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Abstract

Background: Systems biology enables the identification of gene networks that modulate complex traits.
Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator
of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental
effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without
prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth
at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore
distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known
modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting
differential body weight.

Results: Our study successfully established gene networks and interacting partners affecting growth at the onset
of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly
created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with
divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the
network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene
interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning
the functional role of NCAPG in divergent growth.

Conclusions: Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights
into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation
in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition,
the benefit of our innovative concept without prior functional hypothesis was demonstrated by data suggesting
that NCAPG might contribute to vascular smooth muscle contraction by indirect effects on the NO pathway via
modulation of arginine metabolism. Our study shows for the first time in cattle that integration of genetic,
physiological and metabolomics data in a systems biology approach will enable (or contribute to) an improved
understanding of metabolic and gene networks and genotype-phenotype relationships.
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Background
Body growth is a key trait in livestock production, and
growth rate is an important predictor for the improve-
ment of meat production efficiency in cattle. Recent
studies successfully identified polymorphisms with major
impact on growth related phenotypes in many species
including cattle. For example, polymorphisms in pleio-
morphic adenoma gene 1 (PLAG1) [1-3], non-SMC
condensin I complex, subunit G (NCAPG) [4-6], and
myostatin (GDF8, also known as MSTN) [7,8] were
found to exert major effects on stature, postnatal growth
and muscle development, respectively. Interestingly,
several of these loci seem to be conserved modulators
of mammalian growth, because concordant growth
associated polymorphisms were detected in several
species [7,9-18]. However, it is unclear which genes
and pathways interact to regulate differential growth.
One main reason for this is that growth as a complex
phenotype is controlled by a large number of genes
and environmental factors. Additionally, epigenetic
and pleiotropic mechanisms as well as a multitude of
small-effect genes make the detection of contributing
polymorphisms challenging [19].
Recently, studies combining genetic with metabolo-

mic data were very successful in detecting genes and
pathways that are implicated in the manifestation of
complex traits [20-22]. Instead of restricting genome-wide
association studies (GWAS) on the complex target trait
itself, GWAS in those studies also considered quantitatively
measured metabolites from a comprehensive metabolomic
analysis. This approach yielded novel insights in the
physiological pathways that are important for the mani-
festation of the complex trait of interest. Metabolites are
often intermediate phenotypes that represent genetically
determined links between the genome and an animals’
physiological status or a complex trait. Thus, GWAS
on metabolites are often more powerful for identifying
associations between genes involved in metabolite
conversions and complex traits due to the larger effect
sizes obtained after regression of polymorphisms in
those genes on metabolites than on a complex trait
[20]. In conclusion, quantitatively determined metabolites
turned out to be highly valuable in detecting genes
and pathways that are involved in the manifestation of
complex traits.
In addition to the use of metabolomics data, the appli-

cation of systems biology methods is another approach
for improving the analysis of the background of complex
traits. Studies conducted by Fortes et al. [23,24] recently
showed that systems biology approaches are powerful
tools for the dissection of complex traits. Systems biology
aims at obtaining a comprehensive view about the
structures and dynamics within a system by using data
from different levels of knowledge (e.g., genomics,
transcriptomics, metabolomics, proteomics) [25]. Fortes
et al. [23,24] applied a novel systems biology approach in
order to infer a network, based on additive gene effects,
which assembles interactions between functionally rele-
vant genes for the trait of interest. Their approach
turned out to be easily accessible, because it used data
from common GWAS and merged data from different
levels of information to describe the complex trait of
interest in a comprehensive way.
Both concepts, exploiting metabolomic data or ap-

plying systems biology, contributed individually to the
dissection of complex traits. The present study now
combined both approaches for examining the physio-
logical background of genetically determined divergent
growth at the onset of puberty in cattle. For this purpose,
we used a unique resource population (SEGFAM)
which had been established for the examination of the
background for divergent muscle protein accretion in
cattle [26]. In this resource population, the onset of
puberty was the main interval for differential growth
[6]. Weikard et al. [6] identified mutations in the
NCAPG and GDF8 gene associated with divergent
growth at puberty and revealed interacting metabolites
and physiological pathways at this time point. Based
on these results, the present study aims to generate a
gene-gene interaction network for genetically divergent
growth at the onset of puberty and to dissect the resulting
network regarding physiological pathways. A further
target of the study was the analysis of regulatory effects
of NCAPG and GDF8 on growth at the onset of puberty.
To our knowledge, this is the first study combining
metabolomic data with a systems biology approach in
order to examine cattle growth.

Methods
Animals and sample collection
This study included 152 male F2 individuals from a
Charolais x German Holstein resource population (SEG-
FAM) [26]. The animals were generated by multiple
ovulation and embryo transfer and were kept under
standardized feeding and husbandry conditions in the
experimental unit of the Leibniz Institute for Farm Animal
Biology (FBN) in Dummerstorf, Germany. Feeding and
housing conditions were as described earlier [6]. Essen-
tially, immediately after birth, the calves were removed
from the mother and fed a milk replacer diet. After
weaning at day 121, the animals were fed a diet consisting
of hay and concentrate ad libitum. The hay to concentrate
ratio was 1:3, and the energy content of the concentrate
was 11.3 MJ ME/kg dry matter. At the age of 574 days,
the animals were slaughtered in the slaughter house of
the FBN. For the metabolomic analyses, blood samples
were collected at 240 days of age with a standardized
protocol. All samples were taken at 7:30 AM after a fasting
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period of 12 hours. The blood samples were collected in
EDTA containing tubes (Sarstedt AG & Co, Nümbrecht,
Germany) and immediately stored on ice to interrupt
further processing of metabolites and enzyme activities.
Within 30 min, blood samples were taken into the
laboratory of the FBN where plasma was obtained
after blood centrifugation. Plasma samples were stored
at −80°C until they were used for the metabolomic
analyses. For DNA genotyping, blood samples were
obtained at slaughter and leucocytes were extracted
and stored at −20°C until DNA isolation.
All experimental procedures were carried out according

to the German animal care guidelines and were approved
and supervised by the relevant authorities of the State
Mecklenburg-Vorpommern, Germany.

Phenotypes
Total body weights (tw) and daily weight gains (dwg)
were determined from monthly weight recording of the
animals. In our analyses, total weights were investigated
for the following time points: 0 (birth), 4, 6, 9, 12, 15
and 18 months of age. Based on these measurements,
average daily gains for the following time spans were
calculated: 0–18, 4–18, 4–6, 6–9, 9–12, 12–15, and
15–18 months.
A total of 221 known metabolites were quantified

from serum samples of 152 individuals with the help of
electrospray ionization tandem mass spectrometry (ESI-
MS/MS), using the Biocrates targeted metabolomics
technology [6,27]. This procedure led to a target-oriented
quantification of metabolites from the following substance
classes: acylcarnitines, amino acids, hexoses, glyceropho-
spho- and sphingolipids. Internal standards guaranteed
standardized measurements. In summary, 48 acylcarni-
tines [free carnitine (C0), acylcarnitines (Cx:y), hydroxya-
cylcarnitines [C(OH)x:y] and dicarboxyacylcarnitines
(Cx:yDC)], 18 amino acids, 9 lysophosphatidylcholines
(lyso_PC_Cx:y), 70 phosphatidylcholines [diacylglyce-
rophosphatidylcholines (PC_aa_Cx:y), acyletylglycero-
phosphatidylcholines (PC_ae_Cx:y), 16 sphingomyelins
[sphingomyelins (SM_Cx:y), N-hydroxyldicarboacylacy-
loylsphingosyl-phosphocholines [SM(OHCOOH)x:y] and
N-hydroxylacyloylsphingosyl-phosphocholines [SM(OH)x:
y], 8 biogenic amines and 52 sugars were quantified.

Genotyping and quality control
The 152 F2 animals were genotyped with Illumina® Bovine
SNP50 v2 chips. The chips were processed according to
the Illumina® Infinium HD Assay Ultra guidelines and
read out on an Illumina® iScan system. Quality control
was carried out using Illumina® Genome Studio v2011. In
order to increase data quality, clusters for all SNPs with
either a call frequency < 0.98, a GenTrain Score < 0.68
or a Chi2-test for deviation from Hardy-Weinberg
equilibrium< 0.005 were checked and manually re-clustered,
if possible. After manual re-clustering, only autosomal
SNPs with a call frequency > 0.85 and a minor allele
frequency > 0.01 as well as all samples with a call rate >
0.98 were included in further analyses.

Data analysis
GWAS
In a first step, GWAS were carried out for total body
weight traits (n = 7), daily weight gain traits (n = 7) and
all metabolomic traits (n = 221). The additive effects for
each SNP on each trait were calculated using Qxpak
v5.05 software [28] fitting the following mixed model:

yi ¼ Xiβþ Zikgk þ ui þ eik ð1Þ
where yi contains the phenotypic records of animal i, Xi

is the ith row of an incidence matrix, β contains the
fixed effects to be estimated, Zik represents the genotype
of animal i at locus k and takes on the values of 1, 0,
or −1, gk contains the additive effect of locus k, ui is
the infinitesimal polygenic effect of animal i as estimated
by Qxpak via a pedigree based additive animal model,
and eik is the residual variance, with random effects
distributed as multivariate normal with mean equal to
0 and covariance equal to:
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Different fixed effects for the metabolomic traits and
the weight traits were fitted in model (1): for the
metabolomic traits, the year of sampling and day of
the metabolomic measurements were included; whereas
for the weight traits the year of birth was considered.
Statistical significance (p-values) for each SNP-trait
combination was determined by Qxpak via a likeli-
hood ratio test.

Association weight matrix and partial correlation
information theory
In order to exploit the resulting GWAS data beyond
single-trait-single-SNP analyses, the Qxpak output was
processed using a network approach already described
by Fortes et al. [23,24]. This approach assumes that genes
with strongly correlated additive effects on a complex
trait are likely to share genetic regulation acting on the
expression of the respective trait. Developing the gene-
gene interaction network requires a set of genes with
an initial experimental indication of effects on the complex
target trait (in this study the results from the GWAS for
growth at onset of puberty) and the significant interactions
between these genes. Merging GWAS results and positional
genomic information of SNPs, we assembled the respective



Figure 1 Heat map of metabolites. Each square in the heat map
represents the spearman correlation coefficient between two
metabolites (each column or row, respectively, represents a distinct
metabolite). The strength of correlation is visualized with a color
gradient ranging from white (no correlation) over yellow (little
correlation) to red (high correlation). (A) 18 amino acids, (B) 46
acylcarnitines (including carnitine), (C) 8 lysophosphatidylcholines,
66 phosphatidylcholines and 16 sphingomyelins.
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set of potentially effective genes applying an association
weight matrix (AWM) approach [23,29]. Phenotypes in
the AWM approach are subdivided into key phenotypes
and supportive phenotypes. Key phenotypes (e.g., total
weight and daily weight gain) are the primary focus
when assembling the AWM, because they are of highest
physiological relevance for the complex trait (e.g.,
growth at onset of puberty). Supportive phenotypes (e.g.,
metabolites) are parameters that can be assumed to have
some functional relationship with the key phenotypes.
Adding the supportive phenotypes enriches the AWM
with further biological information about the complex
trait. As AWM works best with data from 10–20 different
(as independent as possible) phenotypes [29], the initial
data set had to be reduced. For the present study focusing
on divergent growth at the onset puberty, total weight at
month 9 (tw273) and daily weight gain from month 6
to 9 (dwg273) were selected as key phenotypes for
three reasons: (i) the targeted time interval specifically
corresponds to the onset of puberty in cattle [6], (ii) in
the targeted time interval, the NCPAG and GDF8 genes
that influence growth and muscle traits in a variety of
species [6,7,17,30] displayed two major loci with strong
divergent effects on postnatal growth in our resource
population [6], and (iii) the metabolomic data obtained
at d240 was relevant because this time point for meas-
urement matched the growth period of most interest.
The selection of supportive phenotypes from the total

set of metabolites aimed at low data redundancy in order
to add extensive and diverse information to the AWM.
From a correlation analysis, it was evident that the amino
acids as well as the lysophosphatidylcholines, phos-
phatidylcholines and sphingomyelins form two highly
homogenous groups, in which serum metabolite levels
are strongly correlated (Figure 1). Thus, there is a high
degree of redundancy within these two metabolite groups,
and serum metabolite levels are highly predictive within
these groups. On the other hand, the acylcarnitines
form a very heterogeneous sub-group (according to their
correlations) containing less redundant information
(Figure 1). As the AWM greatly benefits from a set of
supportive phenotypes with little redundancy (highly
correlated data would only contribute redundant informa-
tion to the AWM) [29], we preferentially selected metabo-
lites from the heterogeneous group of acylcarnitines for
the final set of supportive phenotypes in the AWM.
Prioritizing low redundancy and high potential biological
relevance of the metabolites for the complex trait, the final
supportive phenotype set comprised the amino acids
arginine and lysine, the acylcarnitines C0, C2 C5, C8:1,
C14 and C18, the phosphatidylcholines PC_aa_C32:0 and
PC_ae_C36:1 and the sphingomyeline SMC_20:2. These
metabolites are involved in growth related processes
like energy metabolism (amino acids, acylcarnitines), fatty
acid trafficking and lipid metabolism (acylcarnitines,
phosphatidylcholines, sphingomyelins) as well as signal
transduction (phosphatidylcholines, sphingomyelins) and
are therefore biologically relevant for the complex trait
growth.
After generating the GWAS and the selection of key

and supportive phenotypes, the AWM was built essentially
as described [23,29]. Briefly, the AWM approach requires
two tables as input. Both tables contain row wise the
SNPs that passed the quality control and column wise
the examined phenotypes. The cells of the first table
are filled with the association significance (p-values)
between SNPs and each phenotype, whereas cells in the
second table contain the additive effects of each SNP
on each phenotype. The p-values and additive effects of
SNPs in the NCAPG and GDF8 genes (NCAPG I442M
and GDF8 Q204X), which are known for their substantial
effects on postnatal growth in the SEGFAM population
[4,6], had to be manually added to these tables, because
the bovine 50k SNP chip did not harbor any SNP within a
2500 bp distance to NCAPG and GDF8. For this purpose
the p-values and additive genetic effects for NCAPG
I442M and GDF8 Q204X were calculated separately for
each phenotype with Qxpak v5.05 applying model (1).
Subsequently, all additive effects were normalized column
wise in order to allow comparisons across traits. SNPs
that were associated to any of the two key phenotypes
at a threshold of p ≤ 0.05 were added to the AWM. In
the next step, the average number of supportive pheno-
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types to which these SNPs were associated at p ≤ 0.05 was
determined. This average was set to AP. Subsequently,
all SNPs that were associated to at least Ap supportive
phenotypes were added to the AWM. From the resulting
set of SNPs, all SNPs that were more than 2500 bp away
from the closest gene were then discarded ensuring that
the final AWM only contains SNPs that are either located
in a gene, a promoter or near a promoter region. For
this purpose, all SNPs were mapped against the UMD3.1
assembly (ftp://ftp.cbcb.umd.edu/pub/data/assembly/Bos_
taurus/Bos_taurus_UMD_3.1/, accessed: 06/20/2013). Fi-
nally, in case of multiple SNPs per gene, only the SNP
with the highest number of associations to phenotypes
and the lowest average p-value was kept to obtain a “one
gene – one SNP” relationship. After SNP/gene selection,
the AWM was built up by assigning the standardized
additive effect of the ith SNP on the jth phenotype to each
{i,j} cell of the AWM matrix, whereas the SNP symbols
were replaced by the official gene symbols determined as
indicated above.
Correlations among phenotypes (columns) and gene/

SNP effects (rows) in the AWM were visualized and
analyzed with the PermutMatrix 1.9.3 software [31].
The AWM contains SNPs representing genes, which
were selected at a quite relaxed statistical threshold of
p ≤ 0.05 without any correction for multiple testing.
To account for this, the Partial Correlation coefficient
Information Theory (PCIT) approach [32] was applied to
determine data driven statistical significance thresholds
for gene-gene interactions within the AWM. PCIT
combines partial correlations (PC) with information
theory (IT) and creates the gene-gene interaction net-
work. In the first step, PCIT determines PCs for all
possible trios of genes in the AWM, with the PC
between genes A and B given gene C indicating the
strength of the linear relationship between A and B
that is independent of C. In the second step, PCIT
compares the PCs between two genes relative to the
PCs between each of these two genes and any other
gene in the AWM in order to determine thresholds for
significant gene-gene interactions. This step makes PCIT
appealing for threshold determinations in co-association
networks, because thresholds for significant gene-gene
interactions are determined from the data itself. Since
PCIT creates a very complex dataset of gene-gene interac-
tions, the present study focuses on significant connections
(according to PCIT) with a |PC| ≥ 0.80. This subset of data
represents an acceptable balance between the number
of significant interactions and the amount of data that
could efficiently be analyzed with the visualization soft-
ware Cytoscape [33].
It has to be pointed out that, although PCIT gives

information about the direction of the partial corre-
lations (positive or negative) between two genes, this
information was ignored when constructing the gene-
gene interaction network.

Network analysis
Cytoscape [33] was applied for the analysis and vis-
ualization of the resulting network from PCIT in which
nodes represent genes presumably relevant for growth
at onset of puberty and edges represent significant partial
correlations between additive gene effects, as determined
by PCIT. In order to test if this network did not just
represent a random accumulation of gene-gene interac-
tions, 10 random networks were built and compared with
the original growth network. Each of the random networks
was created independently by applying the following
procedure: At first, the standardized additive effects in
the previously established AWM were column wise
randomized. This procedure generated a random AWM,
comprising SNP-trait associations completely independent
from the associations obtained by the original GWAS
results. The randomized AWM was then used as input
for the PCIT approach in order to identify genes with
significant partial correlations of additive effects. Due to
the random nature of the AWM, these partial correlations
could only arise by chance. The PCIT output was sub-
sequently used as input for Cytoscape [33] in order to
visualize the topology of the random network and to
determine the number of connections per gene in the
network. Finally, the average number of connections
per gene across all 10 independent random networks
was calculated. If the growth network indeed displayed
gene-gene interactions relevant for growth, then the
random networks were expected to include fewer genes
and a lower number of significant gene-gene interactions
than the growth network.
In order to evaluate how much of the information in

the growth network was contributed by including meta-
bolomic data, we created a network that solely based
on the metabolomic trait data. We then analyzed the
amount of overlap of this network with the full growth
network generated from physiological and metabolomic
data. The metabolic network was created as follows:
After removing the columns containing the p-values
and additive effects of the two weight traits (total
weight at month 9 and the daily weight gain from
month 6 to 9) from the two previously described AWM
input tables, an AWM was generated by normalizing
the additive SNP effects and by selecting all SNPs that
were associated to more than AP metabolites (AP value
taken from the initial analysis, see above). The subsequent
steps for AWM and PCIT network generation and
visualization were conducted as described above. Applying
the Cytoscape option “Network merge”, the genes and
interactions that overlapped between the full growth
network and the metabolomic data network were

ftp://ftp.cbcb.umd.edu/pub/data/assembly/Bos_taurus/Bos_taurus_UMD_3.1/
ftp://ftp.cbcb.umd.edu/pub/data/assembly/Bos_taurus/Bos_taurus_UMD_3.1/
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determined. This overlap was considered as the amount
of information that was at least contributed by the
metabolomic trait data.
In order to test if certain Gene Ontology terms [34]

(http://www.geneontology.org/, accessed: 04/12/2013) were
significantly overrepresented in the growth network, GO
term enrichment analyses for 241 biological processes,
51 cellular components and 206 molecular functions
were carried out on the network using PANTHER 8.0
[35,36]. To this end, GO term enrichment was determined
comparing all genes from the growth network with the
reference list containing all genes from the UMD3.1
assembly that were represented via a SNP from the
Illumina® Bovine SNP50 v2 within 2500 bp. For both
lists, the H. sapiens functional annotation was used
due to the higher quality of the human genome anno-
tation compared to bovine. P-values in PANTHER were
calculated by a binomial statistical test and a Bonferroni
correction was applied to account for multiple testing.
Additionally, pathway analyses were carried out with the
functional annotation tool in DAVID 6.7 [37] (http://da-
vid.abcc.ncifcrf.gov/home.jsp, accessed: 06/20/2013). The
same reference list as for GO analysis using PANTHER
was applied as background, and H. sapiens was again
used for functional annotation.
In a last step, the roles of the NCAPG and GDF8 genes

within the growth network were further elucidated by
building separate gene-gene interaction sub-networks
for both genes. For this purpose, initially all genes were
determined that had a significant partial correlation of
additive gene effect with NCAPG effects in the PCIT
growth network. NCAPG, these genes and their con-
nections then formed a NCAPG-network, which was
further analyzed with the Cytoscape plugin MCODE [38].
MCODE determines highly connected regions within
networks using measurements of clustering coefficients
and is suitable to detect gene-gene interaction complexes
of high density. MCODE was run with default settings.
For the analysis of GDF8 and its connectivity in the
growth network, an analogous procedure as for the
NCAPG-network was applied.
Results and discussion
Genotyping & GWAS
In the present study, 152 male SEGFAM cattle were
genotyped for 54,609 SNPs. Quality control with Illumina®
Genome Studio excluded 2 animals due to call rates less
than 0.98. Of the remaining 150 animals, weight mea-
surements were available for 144 animals and metabolite
measurements were available for 147 animals. After
filtering for call rates and minor allele frequencies, the
final SNP dataset for subsequent analyses comprised
44,505 high quality SNPs.
Single-trait-single-SNP GWAS were run for all 14
weight traits and 221 metabolites. Descriptive data and
the results of the GWAS for the 13 phenotypes that
were chosen for the AWM are presented in Table 1 and
Additional file 1. The sample size in the present study
was relatively small compared to other studies that
performed GWAS on several hundreds or thousands
of animals. Nevertheless, strong associations up to a
significance level of 2.95 × 10-7 could be observed in
the present GWAS, probably because the study took
advantage of the specific design of the resource popu-
lation. Namely, the application of embryo transfer
techniques in establishing the population enabled the
separation of systematic effects of maternal alleles on
the intrauterine development from specific fetal allele
effects on growth [6]. Furthermore, very uniform housing,
feeding and sampling conditions within an experimental
animal unit reduced the influence of environmental effects
on the phenotypes. In addition, genotyping of sires and
dams was helpful in detecting and reducing genotyping
errors. Finally, the problem of population stratification,
which might result in associations between phenotypes
and unlinked candidate loci [39,40], could be controlled
due to the populations’ F2 family pedigree. In sum, all
these points controlled for systematic variability across
the samples by standardizing for known effects and at
least in part, might have compensated for the relatively
small number of animals. The associations of anonymous
SNPs from the 50k SNP chip are in agreement with recent
association studies in the same population: trait-associated
SNPs on BTA6 in the region of 30-40 Mb for tw273
and arginine (Additional file 1) are in accordance with
previous studies where a polymorphism in NCAPG was
found to be associated with growth and arginine metabol-
ism in cattle [4-6]. For the metabolites PC_aa_C32:0,
PC_ae_C36:1 and SM_C20:2, the SNP associations in the
centromeric region of BTA2 (Additional file 1) might
reflect the decreasing effects of GDF8 Q204 on glycero-
phosphatidylcholines and sphingomyelins, which had
been reported by Weikard and colleagues [6]. An overview
of the most significant SNP for each of the 13 phenotypes
that were chosen for the AWM is given in Table 2.

AWM and PCIT
Given the direct or indirect relevance of the key and
supportive traits for mammalian growth, the AWM
approach identified genes critical for growth at the onset
of puberty from GWAS results. A main advantage of this
approach over single-trait-single-SNP analyzes is the
simultaneous information captured from a collection of
phenotypes. This approach ends up with a set of genes
and interactions potentially affecting the complex trait
that would be overlooked in single-SNP-single-trait
analyzes (as demonstrated in [23]). Based on standardized

http://www.geneontology.org/
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Table 1 Overview of phenotypic and genetic data

Category Trait Acronym N Mean* Std. Dev.* p < 0.05§ p < 0.01§ p < 0.001§

Weight Total weight day 273 tw273 144 358.7 30.7 2744 697 90

Weight Average daily gain day 183 - 273 dwg273 144 1.48 0.19 2504 674 98

Amino acid Arginine arg 146 93.0 23.0 2392 539 64

Amino acid Lysine lys 147 175.1 31.8 1935 400 48

Carnitine & Acylcarnitines Free Carnitine C0 147 6.1 0.84 1869 375 30

Carnitine & Acylcarnitines Acetylcarnitine C2 147 0.965 0.362 2049 393 38

Carnitine & Acylcarnitines Valerylcarnitine C5 147 0.064 0.018 2120 404 40

Carnitine & Acylcarnitines Suberylcarnitine C81 146 0.006 0.011 2360 514 74

Carnitine & Acylcarnitines Myristylcarnitine C14 147 0.011 0.004 2424 499 50

Carnitine & Acylcarnitines Stearoylcarnitine C18 147 0.021 0.011 2610 675 103

Glycerophosphatidylcholine Diacylphosphatidylcholine C32:0 PC_aa_C32:0 146 4.72 1.65 5127 1221 79

Glycerophosphatidylcholine Acylethylphoshatidylcholine C36:1 PC_ae_C36:1 146 13.4 5.07 2043 416 27

Sphingomyelin Sphingomyelin C20:2 SM_C20:2 146 3.44 1.52 5487 1389 89

*Means and standard deviations for weight traits are given in [kg] and for metabolic traits in [μM].
§Number of SNPs in the GWAS with nominal p-values for association smaller than the indicated threshold as used for assembling the association weight matrix
(AWM), total number of SNPs = 44505.
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additive SNP effects, the AWM explores column wise
and row wise the relationships among phenotypes and
additive gene effects, respectively. In accordance with
the four different classes of traits (weights, amino acids,
acylcarnitines, phospho- & sphingolipids), the traits split
in four distinct clusters in our AWM (Figure 2). The first
cluster comprises the two weight traits, the second the
amino acids, carnitine and a short chain acylcarnitine,
the third the medium to long chain acylcarnitines and
acetylcarnitine, and the fourth cluster contains the
phospho- & sphingolipids. This result from standardized
SNP-associated effects is in line with data from the heat
map analysis of raw phenotypic correlations (Figure 1),
where the amino acids and phospho- & sphingolipids
Table 2 The most significant SNP for each of the 13 growth n

Trait SNP Chromo

tw273 ARS-BFGL-NGS-66862

dwg273 ARS-BFGL-NGS-10175

Arginine BTB-01456615

Lysine BTB-01602960

C0 ARS-BFGL-NGS-41589

C2 ARS-BFGL-NGS-46431

C5 Hapmap51905-BTA-54176

C81 ARS-BFGL-NGS-117137

C14 BTA-121233-no-rs

C18 ARS-BFGL-BAC-4411

PC_aa_C32:0 Hapmap41889-BTA-49622

PC_ae_C36:1 Hapmap45612-BTA-28859

SM_C20:2 BTB-00081518
formed two distinct clusters, whereas the acylcarnitines
have been found to be a more heterogeneous group.
The AWM served as input for the PCIT algorithm
which identified significant gene-gene interactions with
impact on weight traits and metabolomic traits. PCIT
therefore determined nodes and edges for the growth
network (Figure 3A) where each node is a putatively
relevant gene for growth at onset of puberty and each
edge displays a significant interaction between two genes.
Based on the partial correlations of standardized additive
gene effects, PCIT determined 964 genes out of 985
AWM-genes to be significantly partially correlated with
at least one other gene. In total, PCIT detected 11,894
undirected interactions between these 964 genes.
etwork phenotypes

some [UMD 3.1] Position [bp] p-value

6 30585871 6.61 × 10-6

8 57714648 3.39 × 10-6

5 76659850 1.32 × 10-5

5 88626757 2.45 × 10-5

7 63843833 6.92 × 10-5

28 36183465 2.82 × 10-5

22 35328236 1.26 × 10-6

17 60340222 3.31 × 10-7

1 94239208 5.75 × 10-7

23 36070248 1.62 × 10-6

2 18108323 2.09 × 10-5

9 79191994 1.32 × 10-5

2 18408562 2.95 × 10-7



Figure 2 Subset of the association weight matrix for growth at
the onset of puberty. Column wise, the AWM (association weight
matrix) compares correlations between phenotypes, and row wise
AWM compares gene-gene interactions. Cells within the matrix
correspond to normalized additive effects of gene-associated SNPs as
obtained from GWAS (genome-wide association studies). Squares of
blue and yellow color gradients visualize the strength of standardized
additive gene (SNP) effects. tw273: total body weight at month 9,
dwg273: daily weight gain from month 6 to 9, C0: free carnitine,
C2: acetylcarnitine, C5: valerylcarnitine, C81: suberylcarnitine, C14:
myristylcarnitine, C18: stearoylcarnitine, PCaaC320: diacylphosphati-
dylcholine C32:0, PCaeC361: acylethylphoshatidylcholine C36:1,
SMC202: sphingomyelin C20:2.
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Growth network
The present study examined the genetic and metabolic
background for divergent growth in the SEGFAM resource
population. The interval comprising the onset of puberty
was chosen as an observation period, because this is
the key interval for differential growth in cattle [41]. A
data set comprising metabolic, physiological and genetic
data was analyzed using a systems biology approach. With
the help of this approach, a gene interaction network
was constructed and subsequently analyzed with data
mining tools in order to reveal genes and pathways that
are presumably involved in physiological processes that
lead to differential growth. The derived growth network
comprised of 964 genes (or nodes) connected by 11,894
edges (Figure 3A). To test if the numbers of genes and
interactions in this network were higher than expected
by chance, random gene-gene interaction networks were
built and compared with the growth network. On average,
the random networks comprised 771 genes that were
connected by only 1,010 edges (Additional file 2). This
massive decrease in the number of edges in the random
networks is in agreement with recent literature [23].
Random or “non-biological” networks are characterized

by nodes, which all possess nearly the same small number
of edges [42]. In contrast to this, “real” or biological
networks typically display a scale-free structure, which
is characterized by many lowly and only a few highly
connected nodes [43]. This criterion is fulfilled by the
growth network, as the majority of nodes is only weakly
connected with other nodes, whereas a few nodes are
highly connected (Figure 4, for highly connected nodes
see Table 3). Comparing the number of connections
per node between the growth network and the random
networks underpins the growth network’s non-random
nature: nodes in the growth network are connected to
up to 105 other nodes, whereas nodes in the random
networks are connected to a maximum of only 18 other
nodes (Figure 4, Additional file 3). Thus, the topology
of the growth network and the random networks sub-
stantially differ due to the following reasons: (i) Genes
in the growth network display a much higher variability
concerning their number of connections to other genes
than genes in the random networks, and (ii) genes in
the growth network are connected up to more than 100
other genes, whereas genes in the random networks
usually show no more than 5 connections to other
genes on average.
Taken together, these results suggest that the growth

network is a non-random network and that our approach
was able to predict gene-gene interactions with a fre-
quency higher than could be achieved by chance alone.
In order to explore how much of the information in the

growth network was due to including metabolomic data in
the analysis, a network containing solely metabolomic data
was created. The resulting network comprised 116 genes
(or nodes) which were connected by 1767 edges. Further
analyses revealed that 104 of these genes and 301 of
these edges were also present in the growth network.
These numbers are substantially smaller than the total
number of genes and edges in the full growth network.



Figure 3 Gene networks for growth at the onset of puberty. Each node in the networks represents a gene with at least one significant
partial correlation of additive effects to another gene in the network as identified by Partial correlation information theory (PCIT) from the
Association weight matrix (AWM). Edges represent significant interactions between genes. Node colors provide gradual information about the
number of connections of a specific node in the respective network. The color scale ranges from green (few connections) over yellow (some
connections) to red (many connections). (A) Growth at onset of puberty network. (B) NCAPG sub-network established from the full growth
network after identifying the densest subcluster using MCODE software. (C) GDF8 sub-network established analogous to the NCAPG sub-network.
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Thus, we can conclude that only a minor part of the
growth network is due to metabolomic traits only and
has no correlations to the key traits. The remaining
genes and gene-gene interactions in the network should
be due to data from physiological traits only or from
the combined information from physiological traits and
metabolomic traits. An equivalent analysis restricted to
the physiological growth data, however, was not possible,
because the correlation-based inference as performed
by PCIT cannot be implemented with only 2 traits (all
correlations would be either +1 or −1). As a consequence,
the proportion of contribution from those two sources to
the full growth network cannot be quantified.
Subsequently, the growth network was tested for its

biological relevance via tests for overrepresentation of
specific biological processes and molecular pathways.
Sorted by decreasing specificity, gene ontology (GO)
analyses revealed significant overrepresentations of genes
acting in “cell surface receptor signaling pathways”, “signal
transduction”, “cell communication”, “cell adhesion” and
“cellular processes” (Table 4). These results reflect the
current literature, because complex signaling events
between cells and tissues are known to be crucial for
growth in mammals [44]. Pathway analyses with DAVID
revealed enrichments in the KEGG pathways “GnRH
signaling” (p-value = 5.0 × 10-3), “vascular smooth muscle
contraction” (p = 2.8 × 10-2) and “gap junction” (p = 2.3 × 10-2),
although the p-values were no longer significant when
corrected for multiple testing. From this list, the com-
ponents of the GnRH signaling pathway were of par-
ticular interest, because GnRH signaling triggers sexual
maturation in a number of species including male cattle
[45-47]. Pulsatile releases of GnRH from the hypothalamus
cause the release of luteinizing hormone (LH) and follicle
stimulating hormone (FSH) from the anterior pituitary
gland, which in turn is necessary for spermatogenesis



Figure 4 Comparison of connections per gene in the growth-
network versus the average number of connections per gene
across all random networks. The figure illustrates the number of
connections per gene in the growth network and the average
number of connections per gene across the random networks. Due
to the transparent style of the white bars, black bars or parts of
black bars that are hidden by a white bar are colored in light grey.
The respective detailed data are provided in Additional file 3.
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and maturation. GnRH signaling exerts substantial effects
on growth at the onset of puberty in mammals as dem-
onstrated by Yingling et al. [48,49]. In their studies, the
authors delayed the onset of puberty in rats by GnRH-
antagonist injections into the hypothalamus. This treatment
had major impact on body weight and bone development
in the treated animals. We therefore conclude that the
divergent growth at puberty in the SEGFAM population
is extensively mediated by components from the GnRH
signaling cascade, because a high number of genes
Table 3 The 10 most densely connected genes within the gen

ID* Official gene name*

TH1L TH1-like (Drosophila)

BTC Betacellulin

MRVI1 Murine retrovirus integration site 1 homolog

USP40 Ubiquitin specific peptidase 40

FHIT Fragile histidine triad

DGKH Diacylglycerol kinase eta

DNAJB14 DnaJ (Hsp40) homolog, subfamily B, member 14

BRE Brain and reproductive organ-expressed (TNFRSF1A modulato

STX12 Syntaxin 12

PRLHR Prolactin releasing hormone receptor

*In accordance with HUGO Gene Nomenclature Committee (HGNC) definitions.
§Total number of genes to which the target gene is connected in the gene-gene in
encoding components in the GnRH signaling pathway
are represented in the growth network (Additional file
4, Figure 5). Important processes like the activation of
mitogen-activated protein kinases, calcium release via
PLCβ (phospholipase C, beta) or cAMP regulation via Gs
(guanine nucleotide-binding protein G) and AC (adenylate
cyclase) are affected by these genes. Interestingly, BTC
and DGKH, two highly connected nodes (hubs) in the
growth network, encode proteins that are established
binding partners of components in the GnRH signaling
pathway (Table 3, Figure 5). Besides their structural
importance (hubs link the less connected nodes to the
whole network), hubs in scale-free networks also tend
to be good predictors for the biological processes within
the network [50,51]. BTC belongs to the epidermal growth
factor (EGF) family which stimulates growth, proliferation,
and differentiation of cells [52]. BTC has been reported
to bind to the EGF receptor and to have a mitogenic
and growth promoting effect on mesenchymal cells
[53]. In the present study, effects of BTC on divergent
growth might be mediated by its interactions with the
epidermal growth factor receptor (EGFR) (Figure 5).
Watanabe et al. confirmed EGFR as the primary receptor
for BTC [54]. Studies on ovarian follicles detected an
interplay between BTC and LH in follicle maturation
[55,56]. It was concluded that BTC is a downstream
mediator of LH and propagates LH signals. LH is
essential for the synthesis of testosterone production,
which has a variety of effects during sexual maturation
and development. Due to the physiological interplay
between BTC and LH, and BTCs’ outstanding position
as a hub in the growth network, we put up the hypothesis
that BTC might act as a trigger of growth in our resource
population. We assume that BTC might exert its effects
on divergent growth by interacting with genes from the
initial steps of the GnRH cascade as proposed in Figure 5.
Downstream interactions with LH might finally affect
e-gene interaction network

Chromosome Position [UMD 3.1] Connectivity§

13 57899212 - 57909996 105

6 91430305 - 91480129 104

15 42548308 - 42674631 100

3 113786837 - 113866952 93

22 41319551 - 42108622 92

12 12293695 - 12405237 91

6 26105476 - 26143561 87

r) 11 71403125 - 71826561 87

2 126134951 - 126170517 86

26 39219423 - 39220535 83

teraction network via a direct edge.



Table 4 Significantly enriched biological processes within the gene-gene interaction network, estimated by GO term
enrichment analyses using PANTHER 8.0

Biological process N reference* N network (observed)§ N network (expected)# P value+

Cell communication 1982 347 271 8.60E-06

Signal transduction 1865 325 255 5.25E-05

Cellular process 2742 450 375 6.33E-05

Cell surface receptor signaling pathway 893 169 122 1.45E-03

Cell adhesion 638 126 87 3.97E-03

*Total number of genes in the reference list for the respective biological process.
§Total number of genes in the gene-gene interaction network for the respective biological process.
#Total number of number of genes that would be expected by chance.
+Significance of enrichment calculated by a binomial statistical test and corrected for multiple testing via a Bonferroni correction.
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testosterone metabolism, which is a known driver of
growth at puberty in vivo.
The results of the present study suggest that diacyl-

glycerol kinase eta (DGKH) might be a second candidate
gene for interactions affecting divergent growth in the
resource population. Analogous to BTC, DGKH is also
one of the major hubs in the growth network and is
therefore likely implicated in interactions modulating
growth (Table 3). DGKH is a member of the enzyme
family of diacylglycerol kinases, which catalyze the phos-
phorylation of diacylglycerol to produce phosphatidic acid
(reviewed in [57]). DGKH was proposed as a regulator
protein of the Ras/Raf/MEK/ERK signaling cascade,
because it targets and activates Raf (especially C-Raf )
[58]. This cascade controls a vast number of growth
regulating processes in cells, including proliferation,
transformation and differentiation [59]. The overall im-
portance of C-Raf for proper development and growth is
impressively demonstrated by a study on C-Raf mutant
mice [60]. In this study, Raf mutant individuals either
died because of severe developmental defects or showed
distinct growth retardations. Therefore, DGKH might
interact with growth processes via its activating properties
on C-Raf, which might subsequently modify growth via
its downstream signaling partners. Based on our results
and the supporting literature, we therefore propose DGKH
as a modulator of growth in our resource population.
In contrast to BTC, which might trigger the initial steps
of the GnRH cascade, DGKH exerts its effects further
downstream in GnRH signaling (Figure 5). We therefore
propose an interaction model in which divergent growth
is induced by BTC signals which might be modulated
by DGKH.

NCAPG-network
The NCAPG/LCORL locus seems to be an important
conserved modulator of mammalian pre- and postnatal
growth, because it previously had been identified in GWAS
within several populations and species including human
[12,17,61,62]. NCAPG is a potential effector of a QTL on
BTA6 affecting pre- and postnatal growth in our resource
population, with the most pronounced NCAPG effects on
body growth being observed at the onset of puberty [4-6].
Thus, the role of NCAPG and its interactions with other
genes from the growth network was of specific interest
and examined in a NCAPG-specific sub-network. NCAPG
belongs to the family of condensins and is an important
mediator for chromosome condensation during mitosis,
where it interacts with DNA methyltransferase DNMT3B
[63,64]. However, the physiological pathways through
which NCAPG affects body weight at onset of puberty
are largely unknown. Recently, Weikard et al. [6] described
associations between NCAPG variants and serum levels
of arginine, which suggests a role of NCAPG in arginine
metabolism. As arginine metabolism is involved in lipid
metabolism, growth and developmental processes in
mammals [65], this result represents a promising indicator
of the physiological background of NCAPG. However, a
conclusive physiological link between the role of NCAPG
during mitosis, the effect on arginine level and pre- and
postnatal growth is still missing. To further elucidate this
relationship, the present study established a gene-gene
interaction network comprising NCAPG and its densely
interacting genes from the growth network. The aim
was to detect genes with strong partially correlating
additive effects on growth, which thus might complement
NCAPG functions in divergent growth. An NCAPG
specific network restricted to NCAPG and all genes
that were connected to NCAPG in the growth network
contained 37 different genes (Table 5). In contrast to
the high connectivity of NCAPG in this growth-derived
network, NCAPG was connected to an average of only
2.3 genes in the random-networks, thus underpinning
the non-random nature of NCAPG connections in the
growth network (Additional file 3). In the second step,
the NCAPG–specific network was extracted for genes
that most densely interact with each other by using the
MCODE software. The resulting final NCAPG sub-
network comprises the following 14 genes (Figure 3B,
Table 5, connections provided in parentheses): ACCN1
(13 connections), BRE (13), FSHR (13), MRVI1 (13),
NCAPG (13), PTPRD (13), ALK (12), ASB5 (11), GRIK2



Figure 5 Gonadotropin-releasing hormone (GnRH) signaling pathway containing genes that are represented in the Partial Correlation
Information Theory (PCIT) network “growth at the onset of puberty”. DAVID analysis indicating a nominally significant enrichment of genes
from the GnRH signaling pathway that are associated with key- or supportive phenotypes for growth at the onset of puberty. Pathway components
that are encoded by genes included in the PCIT network are colored in orange. Purple dots highlight betacellulin (BTC) and diacylglycerol kinase eta
(DGKH), which were identified as major hubs in the growth network (Table 3). Arrows indicate molecular interactions or relations, dotted
arrows indicate indirect effects. Graph adapted from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg-
bin/show_pathway?hsa04912, accessed: 06/20/2013).
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(11), PBX4 (11), SMG6 (11), ADAM15 (10), POLR2G
(10), and AGTPBP1 (8).
Interestingly, murine retrovirus integration site 1 homo-

log (MRVI1, also known as IRAG), one of the major hubs
in the growth network (Table 3), is also among the most
highly connected genes in the NCAPG sub-network
(Table 5). Thus, we suggest that MRVI1 might play an
important role in divergent growth due to its possible
interactions with NCAPG in a common pathway. MRVI1
controls physiological functions that depend on nitric
oxide (NO) [66,67], which in turn needs arginine as a
substrate (Figure 6). NO is a signaling molecule that
exerts its effects in a wide range of metabolic processes,
and it is generally crucial for the maintenance of energy
homeostasis in mammals (as reviewed in [68]). Its effects
on growth might be mediated by its properties in glucose
and lipid metabolism as well as the turnover of proteins.
Because the effects of MRVI1 effects on body growth
strongly correlate with NCAPG effects (as proven with
the NCAPG sub-network), we argue that both genes
might influence body growth by the arginine-NO pathway.
This suggests a physiological role of NCAPG in NO
signaling, additionally to its supposed role in arginine
metabolism. Interestingly, Weikard et al. [6] concluded
from their data that the observed different serum arginine
levels in the individuals from the resource population
might result from a decreased arginase activity (arginase
converts arginine to ornithine). Because arginase and
NOS (NOS converts arginine to NO) compete for cellular
arginine as substrate, an inhibition of arginase activity
might favor NO synthesis (Figure 6). Therefore, our
results support the hypothesis of Weikard et al. and
indicate that NCAPG might indirectly affect the NO
pathway through its effects on arginine metabolism.
NO and MRVI1 are implicated in the contraction of
the vascular smooth muscle, which regulates the blood
flow and subsequently the nutrient supply in peripheral
tissues. This process is achieved by a signaling cascade,
through which NO and MRVI1 reduce intracellular
Ca2+ concentrations. Thus, NCAPG and MRVI1 might
interactively modulate growth through their effects on
arginine-NO dependent vascular smooth muscle con-
tractions (Figure 6). Schlossmann et al. [67] assume
that the established regulatory effects of MRVI1 on
intracellular Ca2+ supply also could directly contribute
to cell growth, because Ca2+ impacts cell vitality. Taken
together, our results indicate interactions of NCAPG
and MRVI1 in cattle growth, which presumably might



Table 5 The genes in the NCAPG-specific networks

Connectivity

GeneID Official gene name* BTA† Position [UMD 3.1] NCAPG-specific sub-network
(MCODE derived)§

NCAPG-specific
network§

ACCN1 Acid-sensing (proton-gated) ion channel 2 19 16353062 - 17563070 13 21

ADAM15 ADAM metallopeptidase domain 15 3 15593181 - 15603336 10 23

AGTPBP1 ATP/GTP binding protein 1 8 80235082 - 80433151 8 13

ALK Anaplastic lymphoma receptor tyrosine kinase 11 70321848 - 70646314 12 15

ARNTL2 Aryl hydrocarbon receptor nuclear
translocator-like 2

5 82875251 - 82956797 0 9

ASB5 Ankyrin repeat and SOCS box containing 5 27 6692312 - 6736965 11 15

BRE Brain and reproductive organ-expressed
(TNFRSF1A modulator)

11 71403124 - 71826561 13 18

CAPN2 Calpain 2, (m/II) large subunit 16 27781671 - 27840011 0 11

DNAJC2 DnaJ (Hsp40) homolog, subfamily C, member 2 4 44769574 - 44803651 0 4

Drosophila Single-minded homolog 1 (Drosophila) 9 50160697 - 50228919 0 12

ELMO1 Engulfment and cell motility 1 4 60356210 - 60838995 0 14

ELOVL5 ELOVL fatty acid elongase 5 23 25155742 - 25228997 0 37

FSHR Follicle stimulating hormone receptor 11 31110744 - 31305197 13 16

GRIK2 Glutamate receptor, ionotropic, kainate 2 9 48857302 - 48925683 11 14

IGSF21 Immunoglobin superfamily, member 21 2 134864753 - 135060996 0 8

INSR Insulin receptor 7 17279726 - 17421470 0 7

ITPKB Inositol-trisphosphate 3-kinase B 16 30390092 - 30491749 0 12

JAZF1 AZF zinc finger 1 4 68444035 - 68773107 0 14

LPL Lipoprotein lipase 8 67497758 - 67511231 0 4

MRVI1 Murine retrovirus integration site 1 homolog 15 42548308 - 42674631 13 22

MXD4 MAX dimerization protein 4 6 108490181 - 108501583 0 13

NCAPG Non-SMC condensin I complex, subunit G 6 38765969 - 38812056 13 37

p600 Interleukin 13 7 23018546 - 23020546 0 11

PBX4 Pre-B-cell leukemia homeobox 4 7 3631055 - 3685738 11 17

PDE4D Phosphodiesterase 4D, cAMP-specific 20 18748587 - 20322583 0 10

PLCB4 Phospholipase C, beta 4 13 2211089 - 2411116 0 15

POLR2G Polymerase (RNA) II (DNA directed) polypeptide G 29 41777025 - 41780284 10 17

PPP1R3A Protein phosphatase 1, regulatory subunit 3A 4 54866421 - 54906488 0 6

PTPRD Protein tyrosine phosphatase, receptor type, D 8 36342559 - 36800975 13 27

RAB6IP1 RAB6 interacting protein 1 15 43965508 - 44059813 0 12

RBMS3 RNA binding motif, single stranded interacting protein 3 22 3898961 - 4695095 0 7

RGS7 Regulator of G-protein signaling 7 16 36478831 - 36695721 0 12

SCPEP1 Serine carboxypeptidase 1 19 8018816 - 8052591 0 8

SMG6 Smg-6 homolog, nonsense mediated
mRNA decay factor (C. elegans)

19 23660756 - 23858481 11 16

SPAG9 Sperm associated antigen 9 19 36343607 - 36422983 0 1

THSD7A Thrombospondin, type I, domain containing 7A 4 19451228 - 19727594 0 14

ZBTB16 Zinc finger and BTB domain containing 16 15 24917133 - 25116350 0 10

†Bos taurus chromosome.
*In accordance with HUGO Gene Nomenclature Committee (HGNC) definitions.
§Total number of genes to which the target gene is connected via a direct edge.
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Figure 6 Model for mechanisms of divergent growth associated
with NCAPG. Black boxes identify genes and gene products that
interact with each other in the NCAPG-network (Figure 3B). Grey
shaded boxes specify gene products which are encoded by genes
from the global growth network (Figure 3A). Arrows indicate molecular
interactions, dashed arrows indicate genetic effects, dotted lines
indicate physiological effects and blocked lines indicate a decreased
pathway activity. Graph adapted from [6] and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/, path-
way: vascular smooth muscle contraction, accessed: 06/20/2013).

Table 6 The genes in the GDF8-specific sub-network

GeneID Official gene name*

CBLB Cas-Br-M (murine) ecotropic retroviral transforming sequenc

CLDN10 Claudin 10

ENOX1 Ecto-NOX disulfide-thiol exchanger 1

ETV6 Ets variant 6

GDF8 Myostatin

LRRK1 Leucine-rich repeat kinase 1

MBNL1 Muscleblind-like splicing regulator 1

NPHP4 Nephronophthisis 4

ODZ3 Odz, odd Oz/ten-m homolog 3 (Drosophila)

PARN Poly(A)-specific ribonuclease

TMPRSS11F Transmembrane protease, serine 11 F

TNFRSF10A Tumor necrosis factor receptor superfamily, member 10a

UNC5C Unc-5 homolog C (C. elegans)

*In accordance with HUGO Gene Nomenclature Committee (HGNC) definitions.
§Total number of genes to which the target gene is connected in the NCAPG-subcl
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be mediated by the complementary effects of NCAPG
and MRVI1 in the arginine-NO metabolism. Regarding
potential NO effects via vascular smooth muscle con-
traction, it is interesting that BTC, another major hub
in our growth network, is a potent mitogen of vascular
smooth muscle cells [69]. Vascular smooth muscle cells
interact with endothelial cells to enable formation of new
blood vessels [70] which is essential for an appropriate
blood supply in growing tissue.
Besides the NCAPG – MRVI1 correlation of additive

effects, we further detected connections between NCAPG,
follicle stimulating hormone receptor (FSHR) and glu-
tamate receptor, ionotropic, kainate 2 (GRIK2) in the
NCAPG sub-network. FSHR and GRIK2 play important
physiological roles in maturation and puberty. FSHR is
the receptor for follicle stimulating hormone (FSH),
which is important for the development of reproductive
organs during puberty [71]. GRIK2 belongs to the kainate
family of glutamate receptors, which transmit glutamate
induced signaling events. Glutamate is one of the most
important signaling molecules in the brain, and it is of
specific relevance for the onset of puberty, because
glutamergic neurotransmission initiates GnRH release.
Interactions of NCAPG, FSHR and GRIK2 in the NCAPG-
network, due to partial correlations of additive gene effects
on growth at the onset of puberty, thus suggest a possible
indirect connection between NCAPG, growth at puberty
and regulation of reproductive functions in the investi-
gated bovine resource population.

GDF8-network
GDF8 is a major regulator of pre- and postnatal growth
and specifically muscle development in many vertebrate
species including mice, dog, sheep, cattle, horse and
Chromosome Position [UMD 3.1] Connectivity§

e b 1 50659277 - 50880121 12

12 76758754 - 76864806 12

12 13381372 - 13679287 11

5 98412609 - 98576590 10

2 6213566 - 6220196 12

21 5642545 - 5785655 12

1 116238830 - 116394390 12

16 48181539 - 48314477 12

27 12356887 - 12807702 12

25 13455797 - 13634775 11

6 85473854 - 85612662 12

8 71177822 - 71189201 12

6 30361298 - 30787250 12

uster via a direct edge.

http://www.genome.jp/kegg/
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human [7,10,11,16,18]. Several mutations in GDF8 have
been shown to cause the muscular hypertrophy pheno-
types in cattle [7,9]. GDF8 negatively regulates muscle
development by limiting the growth of muscle fibers. Thus,
GDF8 is directly involved in processes that contribute
to mammalian body growth. The SEGFAM resource
population segregates for the GDF8 Q204X mutation,
and pronounced effects of GDF8 Q204X on body mass
gain, protein accretion and free plasma carnitine had
been observed in this population at the onset of puberty
[6]. Consequently, the growth network was examined
for genes that cluster densely together with GDF8 in
order to generate a network that captures information
about gene-gene interactions of GDF8 in cattle growth
at the onset of puberty. Analogously to the NCAPG-
network, we first extracted a GDF8-specific network
from the total growth network. Subsequently, the resulting
set of genes and their interactions were examined with
MCODE in order to identify the highly connected regions
within this network. In the resulting GDF8 sub-network,
GDF8 was connected to 12 other genes (Table 6). In
contrast, GDF8 was connected to only 3.7 genes on aver-
age in the random networks. This observation underlines
the non-random nature of the GDF8 sub-network.
Muscle development and remodeling are complex events

that depend on a wide range of transcription factors,
signaling molecules, metabolites and proteins (reviewed
in [72]). This is in agreement with the GDF8 sub-network
containing a diverse set of genes involved in a variety of
pathways and processes linked to muscle development.
Interestingly, leucine-rich repeat kinase 1 (LRRK1) is one
of the genes present in the GDF8 sub-network. LRRK1
regulates trafficking of EGFR in the endosomal system
and is therefore involved in the recycling and degradation
of EGFR [73]. EGFR processes EGF induced signaling
and stimulates growth processes in a variety of tissues
as outlined above for the entire growth network (Figure 5).
Thus, LRRK1 links the global growth network with the
specific GDF8 sub-network and might contribute to
body and muscle growth in the SEGFAM resource
population via its impact on EGFR turnover. In summary,
the GDF8 sub-network underpins the complex interplay
of transcription and splicing factors, signaling molecules
and decay regulators in growth and muscle remodeling.

Conclusions
To our knowledge our study is the first to combine
genetic, metabolomic and physiological data in a systems
biology approach in cattle. This innovative approach
was able to obtain valuable new insight into the genetic
background of divergent growth in cattle. Our data in-
dicate GnRH signaling as a relevant genetic modulator
of bovine growth at the onset of puberty. In addition to the
confirmed effects of two conserved mammalian growth
modulators, NCAPG and GDF8, our data suggest that
BTC and DGKH might be further mediators of divergent
growth in our cattle resource population via gene-gene
interactions. Our data support the existing assumptions
about the physiological role of NCAPG in arginine-NO
metabolism and propose a model, in which downstream
processes of NO signaling, including MRVI1 effects,
might act on divergent growth. Furthermore, we obtained
indication of an indirect connection between growth at
puberty and regulation of reproductive functions due
to FSHR and NCAPG interactions. Further studies will
investigate the regulation of the highlighted genes and
pathways to obtain advanced data on their specific role
in divergent growth at the onset of puberty.
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Additional file 1: Manhattan plots of GWAS results. Significance of
association (−log10(p)) between SNPs across the bovine genome and the
target traits from the groups of body weights (A,B), amino acids (C,D),
acylcarnitines (E-J), phosphatidylcholines (K,L) and sphingomyelins (M)
(N = 144 – 147). (A) total weight at month 9 (tw273), (B) daily weight gain
from month 6 to 9 (dwg273), (C) arginine, (D) lysine, (E) free carnitine (C0), (F)
acetylcarnitine (C2), (G) valerylcarnitine (C5), (H) suberylcarnitine (C8:1), (I)
myristylcarnitine (C14), (J) stearoylcarnitine (C18) (K), diacylphosphatidylcholine
C32:0 (PC_aa_C32:0), (L) acylethylphoshatidylcholine C36:1 (PC_ae_C36:1), (M)
sphingomyelin C20:2 (SM_C20:2).

Additional file 2: Number of connections per gene for the growth
network, the metabolites-only network and for each of the 10 random
networks. The table summarizes the number of connections per gene as
determined from the gene-gene interaction network as determined by
PCIT for the three different kinds of networks (growth network,
metabolites-only network and random networks).

Additional file 3: List of the genes in the association weight matrix
(AWM) and their number of connections in the growth network, the
metabolites-only network and in each of the 10 random networks.
The table lists all genes included in the AWM and provides the total
number of connections for each of the genes in the growth network, the
metabolites-only network and in each of the 10 random networks.

Additional file 4: Components of the Gonadotropin releasing-
hormone pathway that are encoded by genes from the
growth network.
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