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Abstract
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of animals.

Background: Obesity, excess fat tissue in the body, can underlie a variety of medical complaints including heart
disease, stroke and cancer. The pig is an excellent model organism for the study of various human disorders,
including obesity, as well as being the foremost agricultural species. In order to identify genetic variants associated
with fatness, we used a selective genomic approach sampling DNA from animals at the extreme ends of the fat
and lean spectrum using estimated breeding values derived from a total population size of over 70,000 animals.
DNA from 3 breeds (Sire Line Large White, Duroc and a white Pietrain composite line (Titan)) was used to
interrogate the lllumina Porcine SNP60 Genotyping Beadchip in order to identify significant associations in terms of
single nucleotide polymorphisms (SNPs) and copy number variants (CNVs).

Results: By sampling animals at each end of the fat/lean EBV (estimate breeding value) spectrum the whole
population could be assessed using less than 300 animals, without losing statistical power. Indeed, several
significant SNPs (at the 5% genome wide significance level) were discovered, 4 of these linked to genes with
ontologies that had previously been correlated with fatness (NTS, FABP6, SST and NR3C2). Quantitative analysis of
the data identified putative CNV regions containing genes whose ontology suggested fatness related functions

Conclusions: Selective genotyping of EBVs at either end of the phenotypic spectrum proved to be a cost effective
means of identifying SNPs and CNVs associated with fatness and with estimated major effects in a large population
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Background

The study of the process through which pigs convert food
comparatively into fat and lean tissue (i.e. the control of
fatness) has many potential applications and implications.
From an agricultural perspective, pork is the primary
source of meat protein worldwide (43%) and global con-
sumption has doubled over the last ten years (World
Health Organisation, 2012). The increasing global popu-
lation and the constant increase in meat consumption
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in developing countries, especially East and Southeast Asia,
bring an unprecedented challenge to the pig breeding
industry who are charged, in part, with feeding this grow-
ing number of people [1]. Furthermore, market forces
demand the tailoring of meats to specific populations
and cultures. Pig breeding companies constantly focus their
efforts on either producing lean or fat animals or specific-
ally targeted traits e.g. intramuscular fat in their products
[2]. While fatness is inexorably linked to diet, genetic fac-
tors undoubtedly have an influence and marker assisted
selection regimes, aimed at increasing or decreasing
growth of fat or lean tissues selectively, require further
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sophistication. Pork producers aim to improve genetic-
ally advanced breeding stock by improving both the
food conversion ratio (FCR) and the residual feed intake
of each slaughter pig, as well as producing higher yield-
ing carcasses with significant improvement in lean meat
percentage [3]. Such sophistication could be advanced
further through a deeper understanding of the genetic
control of fatness.

The pig is generally considered an excellent model
organism for the study of many aspects of human
physiology and disease states including cancer, diabetes,
[4] maternal aggression [5] and obesity [6-8]. Obesity,
excess fat accumulating in the tissues [9], can lead to a
variety of illnesses including coronary heart disease,
stroke and cancer [10]. Study of the role of genetic
variation in the fatness of pigs therefore can have bio-
medical implications for the understanding and con-
trol of one of the biggest killers in the Western world,
through the identification of orthologous genes and
their variants.

It addition to chromosomal level genomic changes,
normal genetic variation at the sequence level includes
insertions and deletions (indels) [11], single nucleotide
polymorphisms (SNPs) and copy number variants (CNVs).
SNPs are the most frequent genetic variation between
humans [12]. SNPs are usually biallellic and the least
abundant allele (or minor allele frequency (MAF)) usu-
ally occurs at in at least 1% of the population [13]. SNPs
are commonly found in non-coding regions, however
generally do not reside within genes [14]. SNPs act as
markers linked to phenotypically relevant loci and they
therefore function as powerful tools in non-hypothesis
driven research [15]. Certain SNPs have been causally
linked with monogenic traits (1 gene/1 trait). Examples
of such traits include achondroplasia [16] and sickle cell
anaemia [17] as well as variants located near the MC4R
gene, which are known to influence fat mass, weight
and risk of obesity, with mutations of this gene being a
cause of monogenic severe childhood onset diabetes). It
is the association of SNPs with polygenic and multifac-
torial traits however, that has received the most atten-
tion in recent years. That is, post-genomic technologies
such as SNP microarrays have permitted genome wide
association studies (GWAS) for thousands of traits in
humans. Such studies include research into complex
diseases in humans such as breast cancer [18], type 2
diabetes (T2D) [19,20], Crohn’s disease [21,22], Parkinson’s
disease [23], coeliac disease [24] and obesity. Some
examples of obesity GWAS in humans include research
into early onset extreme obesity. One particular study
provided proof of principle for the concept that GWAS
are useful in detecting genes relevant to complex phe-
notypes. In this case a human SNP array comprising of
440,794 SNPs from 487 extremely obese young German
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samples and 442 healthy lean German controls. Fifteen
significant SNPs were determined, 6 of which were asso-
ciated with the FTO gene, suggesting that it strongly
contributes to early onset obesity [25]. To date however,
the studies of SNPs associated with fatness in pigs have
been limited in comparison to the number of human
studies [26-28]. Indeed, there are few GWAS in the pig
in relation to phenotypic traits. Popularly studied traits
in the pig, apart from fatness include boar taint [29-31],
body composition and structural soundness [32,33], how-
ever such studies are also still in their infancy; this perhaps
reflects the fact that a SNP microarray (chip) for the pig
has only been developed within the last 4 years. Although
these studies have provided much insight into the mo-
lecular biology of many traits, more are necessary in
order to fill gaps in our knowledge of fatness, as it is a
multifactorial, complex trait. The agricultural sector stands
to benefit financially from such research and there are
potentially biomedical applications if orthologous human
genes can be associated with obesity, especially if GWAS
can be performed in a low-cost manner by means such
as use of selective genotyping. Selective genotyping, i.e.
use of individuals at the extreme ends of a phenotypic
spectrum provides an effective means of performing GWAS
on a large population by sampling small numbers of
animals and has its theoretical basis in the early 1990s
[34]. Most recently applied to identify SNPs associated
with back fat thickness in pigs used for Italian dried
ham [35].

CNV regions (CNVRs) are segments of DNA (ranging
from 1 kilobase (kb) to several megabases (Mb) in size [36])
that vary in copy-number by comparison with reference
genomes [36]. It is thought that 12% of the human genome
contains CNVRs [37] that are heritable in normal indi-
viduals. Around 0.4% of genome content in people who
are unrelated is thought to vary in copy number [38].
Specific algorithms for CNV detection from SNP chip
raw data include ‘PennCNV’,‘GADA’ [39], CONAN’ [40],
‘cnvPartition” and ‘QuantiSNP’, the last 2 of which have
been used in this study. Comparative analyses of the
above have suggested a preference for QuantiSNP [41].
The study of CNVs has been pioneered in humans and
catalogues of human CNVs are now available [42-44].
Significant associations of CNVs with human disease are
numerous as CNVs are thought to be able to influence
gene expression and may also play a role in affecting
metabolic traits. These include susceptibility to HIV1
[45], a role in auto immune disease and lupus glomer-
ulonephritis [46]. CNVs are strongly correlated with gene,
repeat and segmental duplication content [47] and play
a significant role in the development of complex traits.
A recent study showed that 19 CNVs are significantly
associated with the mechanisms for the control of a number
of metabolic traits in mice. Indeed mouse chromosomes 1,
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4 and 17 all have CNVRs in regulatory regions influencing
body weight [48]. Wang et al. [49] used PennCNV on SNP
chip data in humans to study obese individuals with
‘never overweight’ controls. The authors determined that
in a study of over 800 individuals, large CNVs and rare
deletions were associated with the risk of moderate
obesity [49]. Moreover, CNVs contained candidate obesity
genes including a 3.3 Mb deletion disrupting NAP1L5
(nucleosome assembly protein 1-like 5) as well as a 2.1
Mb deletion disrupting UCP1 (uncoupling protein 1)
and IL15 (interleukin 15). Such studies for the determin-
ation of CNVRs in pigs however are, to date, limited to
only 6. The first focussed on chromosomes 4, 7, 14 and
17, in which 37 CNVRs were identified [50], with the
second identifying 49 CNVRs genome wide [51]. The third,
published in 2012, used a sample size of 474 pigs, across
3 pure-bred lines, Yorkshire, Landrace and Songliao Black
as well as a cross-bred line, Duroc-Erualian. PennCNV
was the chosen platform, with 382 CNVs identified, gen-
ome wide, from information from the Illumina SNP60
platform [52]. Chen and colleagues also used PennCNV
to analyse porcine CNVs; they found 565 CNVRs con-
taining a total of 1315 CNVs, from 18 populations.
Hotspots for these CNVs included areas on chromosomes
6,11, 13, 14 and 17, with the Duroc breed having the most
CNVs found per individual [53]. A study in 2012 using
array comparative genomic hybridisation (CGH) on 12
pigs from several different breeds (including Large White
and Duroc) highlighted 259 CNVRs [54], whilst Wang
and colleagues used PennCNV to glean CNV informa-
tion from data derived from the Illumina Porcine SNP60
Beadchip, finding 382 CNVs in a total number of 474
pigs [52].

Studies in the pig have not before however, studied
the effect of CNVs on specific traits, with few using
QuantiSNP or cnvPartition.

Given the above, it is clear that, despite the need to
understand the genetic control of fatness in pigs, both
from an agricultural and biomedical standpoint, very few
genes have hitherto been associated with fatness and/or
leanness in this species. The availability of the porcine
60 K SNP chip (Illumina) allows us to ask whether there
are SNPs and/or CNVRs significantly associated with de-
fined fatness phenotypes in different pig breeds. To date,
we are aware of only one GWAS and no CNV searches
that have addressed this question. Fontanesi and col-
leagues [35] looking at a single breed and finding gene
ontology terms associated with nervous system develop-
ment and regulation. With this in mind, in this study,
we performed a GWAS using selective genotyping to
sample a population of over 70,000 animals from 3
breeds identifying both significant SNPs and extracting
quantitative information from the raw data to identify
also CNVs.
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Results

SNP analysis

Selective genotyping permitted the generation of statisti-
cally significant results using Estimated Breeding Values
(EBVs) from animals in the upper and lower 5th percen-
tiles. After SNP chip interrogation, a total of 33,080 SNPs
were eliminated from the analysis from the original 64,232
due to either the Minor Allele Frequency (MAF) being
<0.05, SNPs being located on the sex chromosomes or
those that deviated from Hardy Weinberg Equilibrium
(HWE). 31,152 SNPs were taken further for analysis. The
results shown in Figure 1 (A, SLLW, B Duroc and C
Titan) are the Manhattan plots obtained for the 3 breeds.
This figure displays the results from an additive model
with significant SNPs at the 5% genome wide level;
(p value greater than 0.000019952 (i.e. —log10(p) equal to
5.7)) (see Methods). An example of a chromosome that
had significant clustered SNPs present in chromosome 7
(SLLW breed) is shown in Figure 2. Clustering of other
SNPs near a SNP of interest reinforces its significance. For
the 3 breeds, Duroc, Titan and SLLW, a total of 50, 10
and 12 SNPs (respectively) were considered to be signifi-
cant, all of these being breed specific. The most significant
SNPs were located on chromosomes 7 and 15 (SLLW),
5 and 15 (Duroc) and 9 and 13 (Titan). Following gene
ontology, genes that either had an association with fat-
ness (4 genes) or those that resided within a gene (17
genes) are shown in Table 1. Table 2 shows SNPs that
were deemed as significant in this study, but without
genes upstream or downstream that were associated with
fatness. Significant SNPs that were located either up or
downstream from genes and implicated in the fatness
phenotype in the Duroc breed, were MARC00776967
downstream from NTS on chromosome 5 (neurotensin,
involved in maintenance of gut structure and function,
and in the regulation of fat metabolism), ASGA0073794
upstream from FABP6 on chromosome 16 (FABPs roles
include fatty acid uptake, transport, and metabolism),
INRAO0040972 upstream from SST on chromosome 13
(somatostatin, an important regulator of the endocrine
system through its interactions with pituitary growth
hormone, thyroid stimulating hormone, and most hor-
mones of the gastrointestinal tract) and ASGA0102890
upstream from NR3C2 located on chromosome 8 (which
encodes the mineralocorticoid receptor, involved in
metabolism). 12 other significant SNPs identified in the
Duroc breed, resided in the genes TECTA, EPASI,
TMPRSS4, ADAM32, MX2, HSF5, MPZL3, CAMKI1D,
DOCKS5, CCDC39, DENND2D and TEX14. Only 1 sig-
nificant SNP (ALGA0027483) was found to be located
within an intronic region of a gene for the Titan breed.
This gene was SPAG17, known to be involved in main-
tenance of the structural integrity of the central apparatus
of the sperm axoneme. There were no genes implicated
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Figure 1 Graphical interpretation of SLLW (A), Duroc (B) and Titan (C) SNP results for Rib Fat for all chromosomes. Legend: Graphical
interpretation of SNP results for Rib Fat for all chromosomes. Red dots represent SNPs on odd numbered chromosomes while the green dots are
from even numbered chromosomes. The dotted lines represent the 5% (bottom line) and 1% (top line) confidence thresholds.
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Figure 2 Graphical microarray outputs from chromosome 7 in the SLLW breed. Legend: Graphical microarray outputs from chromosome 7

in the SLLW breed. Each of the dots represents a SNP plotted against its chromosome position (bp) and significance value (—log10(p)). The
circled SNPs represent SNPs discovered within the following genes: TINAG, DST and GLOT1.
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Table 1 Significant SNPs and genes implicated in this study

Chromosome Position Gene SNP position Locus SNP code Breed Fat/Lean
5 91141085 NTS Downstream MARC0076967 A/C Duroc Rib fat
16 61040142 FABP6 Upstream ASGA0073794 A/G Duroc Rib fat
13 94991811 SST Upstream INRA0040972 A/C Duroc Rib fat
8 69607171 NR3C2 Upstream ASGA0102890 A/G Duroc Rib fat
9 46808866 TECTA In ASGA0086155 A/G Duroc Rib fat
3 87581931 EPAST In DRGA0004073 A/C Duroc Rib fat
9 44294242 TMPRSS4 In ASGA0096348 A/C Duroc Rib fat
15 44784671 ADAM32 In ALGA0085262 A/C Duroc Rib fat
13 144382945 MX2 In ALGA0074022 A/G Duroc Rib fat
12 32729466 HSF5 In ASGA0054362 A/G Duroc Rib fat
9 44430920 MPZL3 In CASI0012011 A/G Duroc Rib fat
10 56352838 CAMK1D In M1GA0014251 A/C Duroc Rib fat
14 9438426 DOCK5 In ALGA0075006 A/G Duroc Rib fat
13 90285880 CCDC39 In ALGA0071824 A/C Duroc Rib fat
4 113559620 DENND2D In M1GA0006409 A/G Duroc Rib fat
12 32843547 TEX14 In ALGA0066216 A/G Duroc Rib fat
4 106837043 SPAG17 In ALGA0027483 A/C Titan Rib fat
7 30950588 TINAG In ALGA0039880 A/G Sire line Rib fat
7 33345033 DST In INRA0024695 A/G Sire line Rib fat
7 33530081 DST In ALGA0040094 A/G Sire line Rib fat
7 39122530 GLO1 In DIAS0000554 A/C Sire line Rib fat

Table shows the position of significant SNPs either associated with genes implicated in a fatness phenotype (grey) and SNPs within genes, discovered through the
interrogation of the lllumina SNP60 BeadChip. The chromosomal position, position of the SNP in relation to the gene (located either within the gene (denoted as
‘in’), downstream or upstream), SNP code and the breed in which the gene was identified are also shown.

with fatness found in the Titan breed. Significant SNPs
in the SLLW breed were identified in 3 chromosomes,
7, 15 and 16. Whilst there were no genes identified either
up or downstream from significant SNPs, that could
have been directly implicated with a fatness phenotype,
other significant SNPs that resided within genes included
ALGA0039880 in the gene TINAG (tubulointerstitial neph-
ritis antigen), INRA0024695 and ALGA0040094 both in
the gene DST (dystonin) and DIAS0000554 in the gene
GLO1 (glyoxalase I). The only gene that had a SNP located
within a coding region in any of the 3 breeds was GLO1.
After analysis using the Ensembl variant effect predictor,
the amino acid at position 41 displayed a synonymous
substitution, with the residue leucine not being modi-
fied after the SNP change. All significance levels for all
SNPs in all breeds are depicted in Figure 1. It was inter-
esting to note that the Duroc breed had many more
SNPs associated with a fatness phenotype than any of
the other breeds analysed with these SNPs having a
higher level of significance also.

CNV Analysis
In terms of CNV Analysis, 1 example of the output from
QuantiSNP is shown in Figure 3 for Titan chromosome 1.

All red lines on this figure depict CNVs discovered in ‘fat’
(upper 5th percentile) pigs and green lines depict those
found in ‘lean’ (lower 5th percentile) pigs. In order to
distinguish between levels of significance (determined
by Log Bayes Factors), a darker line (either red or green,
as shown in the key) indicates a high Log Bayes Factor
(>30), and therefore a higher level of significance, while
a paler line indicates samples with a Log Bayes Factor of
between 10 and 30 (therefore with a lower significance
value). Lines above the x-axis in the middle of the figure,
indicate gains in copy number whilst lines below are
losses. The chromosome position in Mb is shown below
the graph. The start and ends of the putative CNVs are
defined on the chip and through reference to the pub-
lished porcine genome sequence. The total number of
CNVs detected was higher from QuantiSNP (216) than
from cnvPartition (27). Of the total 243 CNVs detected
in 5 or more animals (from either CNV calling approach),
202 were unique to QuantiSNP (83%), 14 were unique
to cnvPartition and 27 were detected by both (11%).
Generally, there were 3 times more losses found by both
programs than gains. In order to determine whether
regions of the genome differ in DNA copy number in
statistically different numbers of ‘fat’ and ‘lean’ animals,
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Table 2 Table shows SNPs identified as being significant in this study and genes (not associated with fatness) located
0.5 Mb upstream or downstream from each SNP, discovered through the interrogation of the lllumina SNP60 BeadChip

Duroc

SNP ID Genes upstream Genes downstream
INRA0003205 SH3BGRL2, ELOVL4, TTK LCA5, HMGN3
INRA0002667 - MANEA
ALGA0010375 STRBP, GPR21, ZBTB6, RC3H2 CRB2, DENNDIA
MARC0026060 - -
MARC0051272 - -
INRAO005757 IFNB1, PTPLAD2, KIAA1797 MLLT3
ALGA0006852 NOX5 GLCE, KIF23, PAQRS
ASGA0003731 TTK, ELOVL4 SH3BGRL2
DRGA0002899 BBOX1, CCDC34, LIN7C, LGR4 SLC5A12, ANO3, MUC15
ALGA0019845 SLCTA4, RAB1A, CEP68 SERTAd2, AFTPH
ASGA0014296 PHF2, FAM120A BARX1, PTPDC1
MARC0074041 UXST, NCK2 FHL2
MARC0068661 FAM788B Uck2
INRA0014911 TOX -
MARCO0005831 - PEX2
ALGA0031998 - -
ALGA0031986 - PLEKHAS
DRGA0006714 DSC1 RNF125
ASGA0095121 GLTPD1, TTLLTO MIB2, CDK11A
ALGA0117693 EFS15, RNF11, TTC39A, CDKN2C -
H3GA0024542 - -
MARC0045989 CNOTéL, MRPL1 FRAST, NPY2R
DIAS0001163 - -
ALGA0115519 - PHF14
MARC0022409 PAK1 INTS4, KCTD14, ALGS8

MARC0001591
MARC0016326
ALGA0066217
ALGA0066214
ASGA0058594
H3GA0036520
ALGA0073528
MARC0032428
ASGA0102446
ALGA0122006
DRGA0012091
ALGA0070937
INRA0040988
DRGA0012752
ALGA0109563
H3GA0040313
ALGA0080178

CD300LB, RAB37, NAT9, GRIN2C, FADS6

RNF43, BZRAP1
RAD51C
SUPT4H1, RNF43, BZRAP1
RAP2B
RYBP
GOLIM4
PTX3, VEPH1
CD47, IFT57, HHLA2, MYH15
LRRTM4
OSTN, UTS2D, CCDC50
MBNL1
NID1, GPR1378B, ERO1LB
MBL2

SEPT4, TEX14
TRIM37
MTMR4, SEPT4, TEX14
P2RY1
EIF4E3
C210rf7, BACH1
MECOM
SHOX2, RSRC1
KIAA1524, DZIP3, RETNLB
RBMS3

P2RY1
GNG4, TBCE, B3GALNT2, GGPS1
DKKT1, PRKG1
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Table 2 Table shows SNPs identified as being significant in this study and genes (not associated with fatness) located
0.5 Mb upstream or downstream from each SNP, discovered through the interrogation of the lllumina SNP60 BeadChip

(Continued)

ALGA0080086 -
ALGA0083515 -
ASGA0070192 MYO1B

MARCO0015113 COPS7B, PDE6D, NMURT, NCL
ALGA0085117 -
ASGA0095282 -
ALGA0094547 IDH3B, TMC2
ASGA0075751 -
ASGA0075610 PLCB1, PLCB4
SLLW

SNP ID Genes upstream
ALGA0039930 LRRC1
ALGA0040140 COL21A1
ALGA0040529 GLO1
ASGA0032973 -
DRGA0015258 ATP5G3
ASGA0070042 ATP53G
ALGA0086180 -
MARC0049797 CCDC141
ASGA0070135 SESTD1
INRA0049850 SSFA2
ASGA0070147 DNAJC10
ALGA0115880 -
MARC0085425 -
Titan

SNP ID Genes upstream

ASGA0014024 -
MARC0044718 -

ASGA0042741 FAM55D
ASGA0048928 PRKCQ
MARC0069967 LARS2
DRGA0012769 MME
ASGA0058709 -
DRGA0013970 RHOBTB1
ALGA0109681 GYPC
MARC0078259 -

OBFC2A, SDPR
D1S3L2, ECEL1T, CHRND, CHRHG

STK35, PDYN
SPTLC3, TASP1

Genes downstream
C6orf142
DNAH8

HOXD11
SESTD1
PPP1R1C

AGPS

Genes downstream
ABCC1

SFMBT2
GMPS
TBLTXR1

DTD1

Mann Whitney U tests (2 tailed) were performed; samples
with a p value of <0.05 were considered significant. The
statistical results for significant CNVRs can be found in
Table 3, that shows CNVs present in more than 5 animals,
for both CNV detecting algorithms. The estimated copy
number and the number of animals in which the CNVs
were found is shown. Each CNV was assigned a CNV ID;
1.S2 represents a CNV on chromosome 1, from the SLLW

breed, assigned the number 2. 2 CNVRs contained genes
that their ontology suggested could play a role in fatness,
shown in Table 4. These CNVs were 5.D2 (chromosome
5, Duroc) and 14.D1 (chromosome 14, Duroc). 98% of the
CNVs overlapped coding sequence. In the SLLW breed,
cnvPartition results covered 6.11% of the genome, while
QuantiSNP determined a 11.26% coverage. cnvPartition
and QuantiSNP results for the Duroc breed indicated
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Figure 3 QuantiSNP output for Titan chromosome 1. Legend: QuantiSNP output for Titan chromosome 1. Red lines depict CNVs discovered
in fat pigs and green lines depict those found in lean pigs. To distinguish between levels of significance (determined by Log Bayes Factors), a
darker line (either red or green, as shown in the key) indicates a high Log Bayes Factor (>30), and therefore a higher level of significance, while a
paler line indicates samples with a Log Bayes Factor of between 10 and 30 (therefore with a lower significance value). Lines above the x-axis in
the middle of the figure, indicate gains in copy number whilst lines below are losses. The chromosome position in Mb is shown below the graph

genome coverage of 5.03% and 10.93% respectively, with
the percentage coverage in the Titan breed being 4.22%
(cnvPartition) and 0.62% (QuantiSNP). The distribution of
the CNVs can be found in the Additional file 1: Figure S1.
Here, the positions of the CNVs are noted with respect
to a standard porcine ideogram (ignoring whether these
animals are fat or lean). It is depicted whether the CNVs
(found in 5 or more animals) are losses or gains by the
position, left or right of the chromosome respectively, in
which breed they were observed (colour code) and in
how many animals each CNV was observed (number
inside the coloured ellipse). Results from both QuantiSNP
and cnvPartition are given side by side.

Discussion

The results presented demonstrate the applicability of
selective genotyping when using a GWAS approach.
Unlike the most recent similar study [35] the breeds
under investigation are ones marketed extensively world-
wide and clearly display breed specific differences. For
GWAS data to be used in practical applications, it is
essential that the SNPs discovered as associated with
fatness and leanness (or indeed any other commercially
relevant trait) are segregating in the population in ques-
tion. To this end, in any association study, the benefits
must outweigh the costs; here we have provided evidence
of a low-cost approach to GWAS by using EBV data for

animals in the upper and lower 5th percentiles. It is also
essential that the relevant samples are archived and readily
accessed. Storage of large numbers of blood or DNA sam-
ples in freezers is expensive and space consuming. Here
we demonstrate that amplifying DNA from archived blood
spots can overcome this problem. Finally, we demonstrate
that CNV information can be derived from the raw SNP
chip data, providing the opportunity for studies of DNA
copy number and its association with commercially and
biologically relevant traits.

SNP discovery and gene ontology

In the current study, we identified a total of 12 SNPs in
the SLLW breed, 50 in Duroc breed and 12 in Titan
breed significantly associated with fatness or leanness as
defined by EBVs for back fat. The reasons why Duroc
had so many more than the other two (indeed over twice
as many as the other two put together) is not clear. We
are not aware that Duroc is any more genetically diverse —
one possible explanation is a technical one in that the
chip itself was made from a Duroc pig and the results
may reflect ascertainment bias. SNPs were identified that
were either contained within, or 0.5 Mb up or down-
stream of genes whose ontology terms strongly implicated
them in a fatness phenotype as follows: NTS (neuroten-
sin), is involved in energy homeostasis, a complex physio-
logical process most probably related to fatness [55].
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Table 3 Significant CNVR results comparing fat and lean samples using Mann Whitney (two tailed) testing

Program CNV ID Chromosome Start position End position Copy number Fat Lean p(2) U
cnvPartition 14.51 14 49996213 53700421 0 29 18 0.05 1416
1 0 0
2 19 30
3 0 0
4+ 0 0
cnvPartition 6.D1 6 68258924 78889296 0 27 16 0.05 1416
1 0 0
2 21 32
3 0 0
4+ 0 0
cnvPartition 14D1 14 50332490 53700421 0 29 40 0.05 888
1 0 0
2 19 8
3 0 0
4+ 0 0
QuantiSNP 403 4 79881 2580313 0 0 0 0.01 768
1 28 44
2 20 4
3 0 0
4+ 0 0
QuantiSNP 4.D5 4 74926691 77748130 0 0 0 0.05 888
1 28 39
2 20 9
3 0 0
4+ 0 0
QuantiSNP 5D2 5 33971 9428425 0 0 0 0.003 744
1 23 40
2 25 8
3 0 0
4+ 0 0
QuantiSNP 14.D1 14 47658364 58439670 0 0 0 0.01 768
1 12 28
2 36 20
3 0 0
4+ 0 0
QuantiSNP 1502 15 90602719 95659643 0 0 0 0.05 888
1 29 40
2 19 8
3 0 0
4+ 0 0
cnvPartition 14712 14 74855162 77603365 0 19 36 0.003 744
1 0 0

2 29 12
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Table 3 Significant CNVR results comparing fat and lean samples using Mann Whitney (two tailed) testing (Continued)

cnvPartition 1511 15 19895180
QuantiSNP 1712 1 18418830
QuantiSNP 4.5 4 43206823

3 0 0
4+ 0 0
21543806 0 4 18 0.01 816
1 0 0
2 44 30
3 0 0
4+ 0 0
18641391 0 0 0 <0.0001 456
1 17 46
2 31 2
3 0 0
4+ 0 0
45758968 0 0 0 0.05 1416
1 0 0
2 43 32
3 5 16
4+ 0 0

Table shows significant CNVs (determined by Mann Whitney U (two tailed) tests, present in more than 5 animals for both QuantiSNP and cnvPartition. The chromosome
and start and end of each of the CNVRs, is given. The estimated copy number of the sequence and the number of animals in which each was observed is also provided.
Each CNV was assigned a ‘CNV ID.’ For example “1.52 denotes that the CNV is on chromosome 1, it is from SLLW breed and it has been assigned the number ‘2". Duroc

and Titan CNVs were assigned the letter D and T respectively.

Genes such as NTS have been shown to be involved in
both central and peripheral signals affecting feed intake
[56,57]. SST (somatostatin) was first isolated from the
hypothalamus of sheep as a 14 amino acid peptide in
1973 [58]; SST plays a vital role in the regulation of
growth and development in vertebrates, particularly muscle
growth. It is known to be one of the most important genes
involved in both the regulation of animal growth, me-
tabolism and development through its negative role on
growth, as it acts as an inhibitor of growth hormone
release [59], inhibition of cell proliferation as well as
affecting nutrient absorption in the alimentary canal [60,61].
A study focussing on a polymorphism in SST and its
association with growth traits in Chinese cattle was
published earlier this year that has been correlated with im-
proving the establishment of meat production performance

by breeding of new beef cattle [58]. Fatty acid binding
protein 6 (FABP6), which was mapped to chromosome
16 in 2007 [62], was also found to be significant in the
Duroc population in this study. It has been shown that
FABP6 is associated with type II diabetes therefore sug-
gesting an association of variants between fatness and
type II diabetes susceptibility [63], as well as the role
of FABPs in fat absorption and in the development of
metabolic syndrome [64]. GLO1 (SSC17) was a gene
of particular interest highlighted throughout this study
due to the fact that it was the only candidate gene iso-
lated in this GWAS that had a SNP residing within the
gene itself. GLO1 is a candidate gene that is thought to be
involved with fatness; a study that focussed on a QTL for
carbohydrate and total energy intake on chromosome 17
in mice showed that genes (including GLO1) involved in

Table 4 All genes significantly associated with fatness that are contained between the estimated start and end of the

CNVRs identified in this study

Function

CNV ID Breed Chromosome Gene CODE Gene name
502  Duroc 5 MCHRI_PIG ~ Melanin concentrating hormone receptor 1
5D2  Duroc 5 F1SM76_PIG  Peroxisome proliferator activated receptor alpha
14.D1  Duroc 14 FIRLV1_PIG Sodium/glucose transporter
14.D1  Duroc 14 F1RLU7_PIG Sodium/glucose co-transporter

Regulates functions in the mammalian brain,
particularly feeding behaviour; mice lacking MCH
eat less and are therefore lean

Involved in metabolic control of the expression of
genes encoding fatty acid oxidation

Mediates transport across cellular membranes responsible
for active glucose absorption across brush border of cells
that lie in the gastrointestinal tract

Low affinity sodium/glucose transporter
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fat metabolism were decreased in carbohydrate preferring
mice [65,66]. A GWAS performed in 2009 discovered
specific alleles that interestingly were associated with
both increased back fat and better leg action [67]. These
genes included MTHER, WNT2, APOE, BMP8, GNRHR
and OXTR.

The results presented have also been compared to a
recent GWAS performed in a specific sire line large white
breed used in dried Italian ham production [35]. The
genes which Fontanesi and colleagues found to be asso-
ciated with significant SNPs by gene ontology, did not
overlap with ones found in this study, however interest-
ing insights were made, possibly indicating that neur-
onal genes may play a role in fat deposition in the pig.
This concurs with one of the genes we found to be asso-
ciated with fatness, neurotensin, widely distributed
throughout the central nervous system that may be a
neuromodulator or neurotransmitter.

Technical issues pertaining to GWAS

There are several factors to consider when interpreting
GWAS for example, in replication of such studies, the
consistency of the results vary [68]. Some genes are
reproducibly found in follow-up studies, such as genes
related to diabetes including the peroxisome proliferator-
activated receptor-y (PPARG). This was of particular
interest as the peroxisome proliferator activated recep-
tor alpha, was found in a CNV which was significant in
this study. Replication problems involved in replication
of GWAS have been widely reported [69-72] also men-
tioning that small sample sizes can be problematic.
Inconsistent results have been reported in obesity studies
[69], which suggests that many results may be population
dependent.

One possible criticism of the results presented here is
the relatively small sample size used. We would argue
that this might have been more of a problem had we
considered the data as a binary trait (i.e. either ‘fat’ or
‘lean’). We believe that there is no loss of power (when
compared to analysing the entire population of over 70,000
animals, from which the EBVs were derived) by adopting
selective genotyping, indeed we suggest that use of this
approach (i.e. using EBVs from animals in the tails of
the distribution), in fact, retains most of the power of
the calculations. If the EBVs are calculated from a larger
number of individuals then it removes a source of envir-
onmental variation and potentially provides a more accur-
ate estimate of the genetic effect (taking into account
information from other animals in the population that
were not genotyped). As Darvasi and colleagues showed,
selective genotyping is very effective to retain the power
of the experiment while reducing the cost of genotyping
[34]. There is no evidence that selective genotyping would
bias results, thereby increasing the number of false positives,
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providing that an appropriate significance threshold is calcu-
lated to account for multiple testing. A similar approach
was recently published in this journal by Fontanesi and
colleagues [35] have demonstrated that selective genotyp-
ing is very effective to retain the power of the experiment
while reducing the cost of genotyping. Given this informa-
tion, we were able to derive data from a 70,000+ animals,
thereby avoiding a high false positive rate. Admittedly we
might miss QTL with relatively small effects, however
part of the point of the exercise was to discover traits
that were most biologically significant and thus com-
mercially relevant.

CNV analysis
The CNV information presented is, one of few such
studies in pigs and has identified 243 candidate CNVs. It
is worthy of note however that further studies involving
deep sequencing, array CGH and or qPCR would be re-
quired to confirm the extent to which the data presented
here represent physical changes on DNA copy number.
Nonetheless we have demonstrated that use of SNP chips
can identify “putative” CNVs that warrant further investi-
gations. Our attempts to confirm some of the results are
mentioned below. Only 2 putative CN'Vs that were discov-
ered contained genes that, as implied by their ontology
terms, might be involved in fatness. Both programs identi-
fied CNVR14.D1 whereas QuantiSNP only called CNVR5.
D2. In CNVR5.D2, a copy number loss (in comparison to
the reference genome) was observed in both fat and lean
animals, however the number of animals that displayed
a loss was significantly greater in lean animals (40) com-
pared to fat animals (23). This is particularly interesting,
due to the fact that 1 of the genes located within this
putative CNVR was MCHR1, known to regulate feeding
behaviour. It has been shown that mice lacking MCHR1
eat less and are therefore leaner [73,74]. PPARa, involved
in metabolic control of the expression of genes encoding
fatty acid oxidation enzymes [75], is also located in this
putative CNVR. CNVR14.D1, again displayed a greater
number of samples with a loss in copy number in ‘lean’
compared to ‘fat’ animals (28 vs 12). Genes contained
within this CNVR include sodium/glucose transporters
and co-transporters, responsible for glucose absorption
across the brush border of gastrointestinal tract cells;
similar gene families have also been identified in other
pig CNVR studies [52,53]. When comparing the data
produced from this study to other published work, there
were 7 losses identified by QuantiSNP that were also
found by Fadista et al. [50]. Seven overlapping CNVRs
were also found when comparing our data to Ramayo-
Caldas et al. [51], however there were discrepancies in
calling whether these were gains or losses.

A total of 83% of the 243 putative CNVs identified were
unique to QuantiSNP, 6% were unique to cnvPartition and



Fowler et al. BMC Genomics 2013, 14:784
http://www.biomedcentral.com/1471-2164/14/784

11% were detected by both programs. One possible reason
for these discrepancies is that each of the programs made
use of a different algorithm in order to detect putative
CNVs. cnvPartition, the plug-in available for Illumina’s
Genome Studio, produces 1 of 14 possible outputs as-
suming 5 copy number states; a homozygous deletion,
heterozygous deletion, dizygous (normal state), trizy-
gous (1 extra copy) and finally tetrazygous (2 more copies
than the normal state). This algorithm models log r ratios
(LRRs) and b allele frequencies (BAFs) as a bivariate
Gaussian distribution. In contrast, QuantiSNP is based
on a Hidden-Bayes Objective Markov Model (HB-OMM)
that considers the number of copies in both the hidden
and observed states. QuantiSNP uses a filtering process by
which any CNVs called with a Log Bayes Factor of less
than ten were removed whereas cnvPartition does not.
Taking this into consideration it is surprising that
QuantiSNP called more CNV regions than cnvPartition,
however this could suggest that the algorithm used by
the cnvPartition software is more accurate at calling
CNVs. Generally, there were more losses found by both
programs than gains. A paper published this year dis-
cussed new freely available software called ParseCNV.
This is a CNV call association software that uses CNV
information to create SNP statistics from information in
the PennCNV format [76]; this would be an interesting
future study to perform on this data.

qPCR was attempted in order to verify the results pro-
duced from both cnvPartition and QuantiSNP, however,
after numerous attempts, results did not give adequate
consistency in order to calibrate the system and there-
fore make it possible to verify the putative CNV calls by
independent means. As discussed in a study published in
2010, there are several reasons as to why CNVR predic-
tion varies between qPCR analysis and in silico analysis
of data. The 4 x sequence depth of the Sus scrofa genome
build 9 and low probe density of the Porcine SNP60
BeadChip makes it difficult to determine the genuine
boundaries of CNVRs. This can therefore lead to an
over-estimation of the real size of the region. SNPs
and indels also have the ability to affect the hybridisa-
tion of qPCR primers and true CNVR boundaries may
be polymorphic between analysed animals [51]. Array
CGH could also be used as an alternative platform to
derive CNV information from and compared to data
produced in this study. There have been several such
studies performed [37,77,78] including one in pigs [51].
Whilst this would be an interesting comparison, it is
possible that similar amplification problems might be
experienced.

Conclusions
The combination of a cost effecting selective genotyping-
based GWAS, data from 3 widely consumed pig breeds,
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the derivation of data from archived blood spots and the
simultaneous mining of both SNP and CNV data are
the unique aspects of this study. The discovery of novel
SNPs and CNVs associated with fatness are, potentially
of value to the pig breeding industry and shed light on
the aetiology of fatness in mammals (including humans).
However they demonstrate the phenomenon of breed-
specificity and thus highlight the need for the study of
multiple populations to verify genotype - phenotype
correlations.

Methods

Sample acquisition

An Aloka 500 Ultrasound scanner, coupled with AUSkey
fat and muscle depth system software was able to provide
an accurate representation of average fat depth (aFd) and
average muscle depth (aMd) for 18757 Duroc pigs, 26992
Sire line large white and 27537 Titan (Pietrain) animals
(this measurement is directly correlated with the total fat
in the carcass [79]). Raw data was then converted to EBVs
correcting the rib fat depth to the fixed animal weight of
91 kg. EBVs for each of the 70,000+ animals were obtained
from the standard evaluation scheme employed by JSR
using best linear unbiased prediction (BLUP) analysis. All
samples were from males, with a similar genetic back-
ground and reared under identical conditions (stocking,
density, feed, space etc.), in order to prevent other poten-
tial contributing factors that could influence any conclu-
sions drawn. For selective genotyping, animals in the upper
5th percentile and the lower 5th percentile of the EBV
range for fatness were taken forward for further investiga-
tion. All DNA samples were extracted from blood spots
stored on FTA Whatman Cards™ that were sourced from
the JSR Genetics (Driffield UK) archive. Of the 288 samples
used, 96 were from each of the 3 aforementioned breeds;
48 from each group either in the upper or lower 5th
percentile and their EBV values used for subsequent cal-
culation. DNA isolation, amplification and SNP chip in-
terrogation was performed using the method previously
developed in house [80], with several alterations to the
manufacturer’s instructions, including 2 punches being
removed as opposed to 1, heating of the cards and washes
being performed using water instead of FTA purification
reagent and Tris EDTA. Extracted samples were ampli-
fied via Whole Genome Amplification (WGA) using the
Sigma-Aldrich WGAZ2 kit, in order to produce an ap-
propriate amount of DNA for microarray analysis, fol-
lowing manufacturer’s instructions. This fragmentation
based WGA produces short 400-600 bp overlapping
fragments that are primed with defined 3'and 5’ ends
and amplified via linear amplification followed by geo-
metrical amplification, therefore generating a thorough
coverage of the genome.
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Genotyping

SNP analysis

[llumina Porcine SNP60 Genotyping BeadChips were
interrogated with WGA amplified DNA from each por-
cine sample, according to manufacturer’s instructions,
in an approach similar to that described by our own
group [81,82] at Cambridge Genomic Services, Department
of Pathology, University of Cambridge. All DNA concentra-
tions were adjusted to a concentration of 50 ng/ul, in a
final volume of 5 pl per sample. Raw fluorescence data
were captured and normalized, using internal and exter-
nal controls, and stored as image files. Following scan-
ning, image data were transferred to the GenomeStudio
Software framework V2010.1 and converted from fluor-
escence data to genotypic data based on the manufac-
turer’s design algorithms and the call rates produced by
the Illumina software were determined. Significance
analysis of the SNP chip data was performed, assuming
an additive model and the raw data was corrected to the
fixed animal weight of 91 kg, and then converted to EBVs
using the PEST software. The model used herd/sex/season
as a fixed effect with litter fitted as a random effect. The
genotype scores for a given SNP were 1, 2 and 3 for geno-
types AA, AB, and BB, respectively. For a given SNP only
records were used when the genotype was known, any
animals for which records were unknown were removed
from the study. Analysis of variance was performed to
obtain the P values. Due to multiple testing, Bonferroni
corrections were implemented in order to determine
the appropriate significance value. Due to multiple test-
ing, an empirical genome wide significance threshold
was calculated using permutation analysis, where SNPs
are not considered to all be independent. Genotypes for
all individuals were permuted and the GWAS analysis
was calculated in all SNPs with the smallest p value be-
ing used to calculate the distribution. The permutation
analysis was repeated 10,000 times and the value for the
top 5% was deemed to be the significance threshold.
SNPs that deviated from Hardy-Weinberg Equilibrium
(HWE) were also removed, so results were not skewed.
Significant SNPs were consequently investigated to de-
termine whether they were located within, or close to a
gene, using the Ensembl output for orthologous regions.
This involved data mining using a combination of Ensembl
(www.ensembl.org) and NCBI to interpret where the SNP
resided (pig genome assembly version 9.2). A window of
1 Mb was examined (0.5 Mb upstream and 0.5 Mb down-
stream from the SNP was considered). If a SNP resided
within a gene this was also noted. Subsequently, gene func-
tion was determined and SNPs were then placed into 2
groups, those in which their function suggested a pathway
in which the control of fatness might be implicated, and
those that were not. In order to determine the location and
function of a SNP of interest within a gene, the variant
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effect predictor, a tool available from Ensembl was used
(http://www.ensembl.org/info/website/upload/var.html).

CNV analysis

In order to derive CNV information from the existing
SNP data, 2 analytical tools for the determination of copy
number variation using SNP genotyping data were used,
QuantiSNP and cnvPartition. QuantiSNP uses an Object-
ive Bayes Hidden-Markov Model (OB-HMM) to estimate
probabilities of CN'V/aneuploidy detection [83]. QuantiSNP
uses both LRRs and BAFs in order to call CNVs with cor-
rections for differences in GC content also being employed
in order to correct signal strength [84]. cnvPartition calcu-
lates copy number variants along with scores of confidence,
therefore indicating the locations of CNV regions (www.
illumina.com) using both BAFs and LRRs for each of 14
genotypes (double deletion, A, B, AA, AB, BB, AAA, AAB,
ABB, BBB, AAAA, AAAB, ABBB, BBBB) as a simple bi-
variate Gaussian distribution. Samples with a call rate below
0.9 were removed, and the confidence thresholds and num-
ber of probes needed to determine a CNV event were
altered accordingly; increasing the threshold improved
the clarity of the output, while using a high probe count
increased the stringency. 3 outputs were produced, 1
per breed with CNV fold change being represented in
different colours for 5 groups (0-0.5, 0.5-1.5, 1.5-2.5,
2.5-3.5 and 3.5-4.5). Data derived from QuantiSNP graphs
and cnvPartition outputs were subsequently collated. Only
CNVs present in more than 5 animals for both QuantiSNP
and cnvPartition were considered. The chromosome, the
start and end of each of the CNVRs, the estimated copy
number of the sequence and the number of animals in
which each was observed (2 copies was considered to
be typical as pigs are diploid organisms) were recorded.
Mann Whitney U tests (2 tailed) were performed the data
to determine if there were any significant differences be-
tween samples in the upper and lower 5th percentiles with
p values of <0.05 being considered statistically significant.

Additional file

Additional file 1: Figure S1. Chromosome position of putative CNVs
ascertained by quantiSNP and CNV partition. Left hand chromosome
denotes result from CNV partition, right hand chromosome from
quantSNP. Each putative CNVR is depicted as an elliptoid shape, colour
coded for each breed as indicated. The numbers within the shape
indicate the number of animals in with each putative CNV was found. If
to the left of each chromosome a potential loss compared to the
reference genome is apparent, a potential gain if to the right.
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