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Abstract

Background: Early application of second-generation sequencing technologies to transcript quantitation (RNA-seq)
has hinted at a vast mammalian transcriptome, including transcripts from nearly all known genes, which might be
fully measured only by ultradeep sequencing. Subsequent studies suggested that low-abundance transcripts might
be the result of technical or biological noise rather than active transcripts; moreover, most RNA-seq experiments
did not provide enough read depth to generate high-confidence estimates of gene expression for low-abundance
transcripts. As a result, the community adopted several heuristics for RNA-seq analysis, most notably an arbitrary
expression threshold of 0.3 - 1 FPKM for downstream analysis. However, advances in RNA-seq library preparation,
sequencing technology, and informatic analysis have addressed many of the systemic sources of uncertainty and
undermined the assumptions that drove the adoption of these heuristics. We provide an updated view of the accuracy
and efficiency of RNA-seq experiments, using genomic data from large-scale studies like the ENCODE project to provide
orthogonal information against which to validate our conclusions.

Results: We show that a human cell’s transcriptome can be divided into active genes carrying out the work of the cell
and other genes that are likely the by-products of biological or experimental noise. We use ENCODE data on chromatin
state to show that ultralow-expression genes are predominantly associated with repressed chromatin; we provide a
novel normalization metric, zFPKM, that identifies the threshold between active and background gene expression; and
we show that this threshold is robust to experimental and analytical variations.

Conclusions: The zFPKM normalization method accurately separates the biologically relevant genes in a cell, which are
associated with active promoters, from the ultralow-expression noisy genes that have repressed promoters. A read
depth of twenty to thirty million mapped reads allows high-confidence quantitation of genes expressed at this threshold,
providing important guidance for the design of RNA-seq studies of gene expression. Moreover, we offer an example for
using extensive ENCODE chromatin state information to validate RNA-seq analysis pipelines.
Background
Second-generation sequencing technology has provided
deep insight into the complexity of the transcriptome.
Early sequencing of cellular mRNA resulted in a level of
transcript quantitation that was in broad concordance
with microarrays [1]. Subsequent studies with improved
mapping tools [2,3] and increasingly deep sequencing
depth [4,5] suggested that, with enough depth of coverage,
most annotated genes could be observed at some level. A
key unanswered question, however, is whether these low-
abundance transcripts are biologically significant [6,7].
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A recent study by Hebenstreit et al. [8] demonstrated
that gene expression in mammalian cells measured by
RNA-seq follows a bimodal distribution of high and
low expression genes, and suggested that the high-
expression genes comprise the active, functional tran-
scriptome of the cell. The results of several studies
constrain the range of the threshold that divides active from
low-expression genes: at the upper bound, Hebenstreit
et al. and Mortazavi et al. [9] calculated that fragments per
kilobase of gene model per million mapped reads (FPKM)
values of 1 to 2 correspond to ~1 mRNA molecule per cell,
though a deep proteomic sampling of HeLa cells detected
proteins from several genes expressed below this level [10].
At FPKM of about 0.3, RNA-seq reads were shown to map
to exonic regions and intergenic regions at similar rates
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Figure 1 A typical RNA-seq expression profile. Blue, density plot
of log-transformed FPKM values of protein coding genes, from
ENCODE cell line GM12878 (left axis). Red, Gaussian fit to the right
side of the main peak. Green, fraction of genes in bin (bin size = 500
genes) with an active promoter, from [14] (right axis). Black, fraction
of genes in bin with a repressed promoter. The dashed grey line
represents the level of gene expression where the fraction of active
promoters is equal to the fraction of repressed promoters, and is
evaluated in FPKM and as a Z-score relative to the Gaussian
fit (zFPKM).
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[11], suggesting lower confidence in measured expression
below this level. However, the data used in these studies
were from short read RNA-seq (often 32-base single-end
reads) of moderate depth (typically ~20 million reads).
Advances in RNA-seq library preparation and sequencing
technology now regularly yield tens to hundreds of millions
of paired-end reads of 50 to 100 or more bases in length.
Increased read length improves mapping accuracy and
lowers the odds of spurious multiple mapping, while
greater read depth allows more accurate assessment of the
relative abundance of low-expression transcripts as well as
the detection (by at least one read mapping) of a greater
number of genes [5]. These advances undermine the as-
sumptions upon which previous heuristics for evaluating
gene expression were based, highlighting the need for
updated understanding of the signal and noise present in
RNA-seq data.
In this study, we integrate current-generation RNA-

seq and chromatin state data from the ENCODE project
to understand the relationship between gene expression
level and promoter activity signatures. We explore the
effect of varying read depth on transcript detection and
quantitation, and offer a novel normalization method
that robustly identifies the subset of active genes ob-
served in an RNA-seq experiment and provides guidance
regarding efficient experimental design.

Results and discussion
Expression state from chromatin state
We examined the transcript levels of 17 human cell lines
from the ENCODE 2.0 RNA-seq data set. Using the
Tophat/Cufflinks pipeline [3,12], we determined gene
expression levels of ~19,000 protein coding genes, using
GENCODE gene models [13] (Additional file 1: Table S1).
In all cases, and consistent with prior studies, the log2
(FPKM) distribution shows a primary peak of high expres-
sion genes, with a long left shoulder of low-expression
transcripts (Figure 1 and Additional file 2: Figure S1).
An important question arising from this observation is

whether the low-expression transcripts of the shoulder
are comprised of functional genes or merely by-products
of leaky gene expression, sequencing errors, and/or
off-target read mapping. To explore this question, we
compared gene expression profiles to the results of an
integrated analysis of chromatin state derived from
ENCODE ChIP-seq data [14]. Each gene promoter was
tagged as "active" or "repressed" based on the local chro-
matin state (see Methods and Additional file 1: Tables S3
and S4). Genes were rank-ordered by expression level,
binned (n = 500), and the fraction of genes in the bin with
either active or repressed promoters was plotted against
the genes’ mean expression level (Figure 1). As expected,
~100% of highly expressed genes have active promoters.
However, transcripts detected at low levels tend to be
associated with repressed promoters, suggesting that they
do not play a functional role in the cell.
We judged that a reasonable expression cutoff describ-

ing the active genes in a cell would be the point where
the ratio of active to repressed promoters drops below 1.
Identifying this point by linear interpolation yielded
FPKM values from 0.14 to 0.44 or log2(FPKM) values
from −2.8 to −1.2 across the 9 ENCODE samples, a
three-fold range of expression (Table 1). However, some
of the variability in these values is explained by small
positional shifts in the log2(FPKM) distributions. To
normalize the distributions, we fit the right half of each
gene expression curve to a half-Gaussian curve, mir-
rored the half-Gaussian into a full Gaussian distribution,
and transformed log2(FPKM) into zFPKM derived from
this fit (see Methods and Additional file 1: Table S2).
After applying this transformation, and removing an out-
lier, we find that the active/repressed promoter threshold
is zFPKM −2.82 +/− 0.22 (Table 1). Thus the zFPKM
transform can be used with gene expression data alone
to determine with high consistency the range of gene
expression defined by active chromatin. Hereafter, we
define this threshold as zFPKM > = −3, preferring to err
on the side of capturing too many noisy genes rather
than too few active ones.
Data from the ENCODE cell lines is the product of a

controlled set of experimental and analytical protocols.
It is therefore not surprising that the FPKM distributions
are highly consistent; in fact, the normalized zFPKM
threshold of −3 corresponds to a raw FPKM in a fairly
tight range of 0.10 to 0.31 across the 17 ENCODE cell



Table 1 A Gaussian fit describes active genes

Cell line μ σ Threshold Threshold

log2 (FPKM) zFPKM

GM12878 3.70 1.94 −2.18 −3.03

H1-eSC 3.42 2.18 −1.20* −2.12*

HMEC 3.77 2.11 −2.37 −2.91

HSMM 3.77 2.05 −2.41 −3.02

HUVEC 3.54 2.27 −1.85 −2.38

HepG2 3.24 2.18 −2.79 −2.77

K562 3.83 1.98 −2.19 −3.04

NHEK 3.45 2.07 −1.96 −2.61

NHLF 3.69 2.07 −2.06 −2.78

Mean +/− SD −2.11 +/− 0.42 −2.74 +/− 0.30

−2.23 +/− 0.28* −2.82 +/− 0.22*

The distribution of log2 (FPKM) expression for each sample was calculated and
the right side of the major peak was fit by a Gaussian distribution with
parameters μ and σ. The threshold of active gene expression, defined as the
intersection between the linear fit of the active promoter fraction and the
repressed promoter fraction, was calculated in log2(FPKM) and zFPKM. (*) H1
embryonic stem cells were removed as an outlier.

Figure 2 RNA-seq data from different experimental protocols
shows varied distributions of gene expression. (a) Log2(FPKM)
distributions from the Illumina Bodymap samples, ICGC Pancreatic
cancer samples, and (b) the GEUVADIS RNA-seq data from 465
lymphoblastoid cell lines (c) A scatter plot of mean vs. standard
deviation of the Gaussian fit for each of these experiments (bottom
panel) shows the relative variation in the gene expression distributions.
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lines. However, many if not most other data sets lack
this internal consistency. Figure 2 shows the log2(FPKM)
distributions from several public data sets, including the
Illumina BodyMap set of 16 healthy human tissues,
pancreatic cancer RNA-seq from ICGC [ref], and the re-
cently published GEUVADIS project RNA-seq of 465
lymphoblastoid cell lines derived from different individ-
uals [15]. We fit a Gaussian to the major peak of each
distribution and plotted the mean and standard devi-
ation of each fit (Figure 2c). The resulting scatter plot
demonstrates the variability of some RNA-seq data (and,
conversely, the remarkable consistency of the GEUVADIS
data), and strongly signals that a single heuristic for
such diverse data may not be appropriate. The zFPKM
approach offers a useful data normalization strategy in
these cases.
While we do not have corresponding information on

chromatin state for these samples, other cell line data do
corroborate the relationship between promoter activation
level and gene expression in the major peak. Additional
file 2: Figure S2 shows RNA-seq distributions and corre-
sponding paired histone H3K4 trimethylation ChIP-seq
data. As with the Encode chromatin state data, the frac-
tion of genes with promoter-associated H3K4me3 is high
for genes expressed in the primary peak and drops to
negligible levels for transcripts detected at trace levels.

The zFPKM threshold is robust to changes in read depth
To evaluate the robustness of the zFPKM transform, we
applied it to RNA-seq data derived from different read
depths. Human CD4+ memory T cells were costimulated
with anti-CD3/CD28 beads for 48 hours and RNA-seq
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was performed using the Illumina platform, yielding a
total depth of ~120 million mapped reads (Mmr). Sub-
sets of reads, with depths at 6, 12, 24, 48, and 120 Mmr,
were analyzed using the same pipeline. Increasing read
depth has two main effects on the log2(FPKM) distribu-
tion: it increases the proportion of mass in the noisy left
shoulder (Figure 3a), and it subtly shifts the main peak
of the distribution (Figure 3b). This occurs because, as
deeper sequencing discovers new transcripts (Figure 3c),
each doubling of mapped reads is divided across a larger
number of genes, thus subtly lowering the inferred
FPKM of moderate-expression genes (which counte-
rintuitively right-shifts the curve fit). The zFPKM trans-
form normalizes this shift and captures essentially the
same set of active genes (12,475 +/− 176) across all read
depths, with a coefficient of variation of less than 1.5%.
As noted in this study and others [5], greater read

depth increases the total number of genes detected
(Figure 3c, solid curve), with newly discovered genes
tending to show very low expression (Additional file 2:
Figure S3). The corresponding fraction of newly detected
genes that are expressed in the active region drops rap-
idly with read depth (Figure 3c, dashed curve). Beyond
24 Mmr, though transcripts from over 1,000 new genes
are putatively detected, only 37 are observed in the ac-
tive region. This suggests 20–30 Mmr is a reasonable
target for RNA-seq studies of gene expression, as it cap-
tures virtually all active genes in a sample while allowing
sample multiplexing on sequencing machines to reduce
costs. This result is consistent with ENCODE recom-
mendations for RNA-seq best practices [16]; moreover,
at an expression level of log2(FPKM) of −2.8 (the lowest
expression level corresponding to our zFPKM threshold
Figure 3 The set of active genes is robust to read depth changes. (a)
sequencing increases the fraction of total mass in the low-expression regio
depth-induced variation in expression distributions. For gene expression di
and the mean plotted (y-axis) vs. read depth. Dashed line, linear regression
(x-axis), the cumulative number of detected genes increases (solid line, left
expressed in the active region drops (dashed line, right axis). Beyond 24 M
in the samples studied here), this read depth yields ~10
mapped reads per typical 3 kb transcript, the minimum
coverage recommended for analysis of differential ex-
pression using count-based statistics [17].
Other normalization methods have been proposed to

deal with the change in calculated FPKM induced by, e.g.,
changes in read depth and mapping quality. One such op-
tion is transcripts per million (TPM), implemented in the
RSEM software package [18] and used to compute gene
expression values in, e.g., The Cancer Genome Atlas [19].
While the TPM transform should in principle be more
stable than raw FPKM, the software implementation
(rsem-calculate-expression version 1.2.6 at time of writing)
calls Bowtie with lax mapping parameters that result in
dozens to hundreds of genes being called highly expressed
in one pipeline vs. trace or zero expression in the other.
Additional file 2: Figure S4 shows the Tophat/Cufflinks-
derived FPKM vs. RSEM-derived TPM for nine ENCODE
cell lines and highlights the genes unique to each pipeline.
Comparing the fraction of active and repressed promoters
among these genes suggests that the default Tophat/Cuf-
flinks pipeline delivers more accurate results (Additional
file 2: Table S5), and that end-users should carefully con-
sider the command line parameters when using RSEM as
a wrapper for Bowtie.

Conclusions
Second-generation sequencing technology has provided
a detailed view of the transcriptome. Assays that previ-
ously required multiple platforms, or which were simply
not available, now can be performed from a single se-
quencing data set; e.g. transcript quantitation, isoform
identification, alternative splicing and transcription start
RNA-seq of CD4+ memory T cells at different read depths. Deeper
n of the log2(FPKM) distribution. (b) The Gaussian fit captures the read
stributions at each read depth (x-axis), the Gaussian fit was calculated
of log(read depth) vs. mean of Gaussian fit. (c) As read depth increases
axis). However, the fraction of newly detected genes which are
mr, only 58 new active genes are detected.
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sites, allele-specific transcription, and discovery of novel
transcripts. For common assays of gene expression, how-
ever, the remarkable sensitivity of RNA-seq has gener-
ated many questions regarding how to most efficiently
design an experiment and analyze the resulting data.
Previous transcriptome studies have suggested that many

rare transcripts may be the product of biological noise,
although few have provided evidence that these products
are non-functional. We show that low-abundance tran-
scripts are associated with chromatin signatures consistent
with repressed promoters, and we provide the zFPKM
normalization method that accurately determines the ex-
pression regime defined by genes controlled by active
promoters. The method provides several advantages over
widely used heuristic approaches of accepting expression
values above a fixed threshold, typically FPKM values ~ 1.
We show that, while most human RNA-seq experiments
yield similarly shaped distributions of gene expression
values, different samples and experimental protocols
can result in pronounced changes in the location and
scale of these distributions that add variability to the
results from the application of such heuristics. In the
more extreme cases, however, it would be worth care-
fully re-evaluating the quality of the primary data before
applying any normalization techniques.
With a finite population of biologically active transcripts

in a cell, it stands to reason that experimental methods can
be optimized to provide requisite coverage of those tran-
scripts while maximizing the multiplexing capability of a
sequencer. Our work shows that 20–30 million mapped
reads are sufficient to detect virtually all active transcripts
in a cell line, and provides deep enough coverage to under-
take analysis of differential expression across the bulk of
the active transcriptome. RNA-seq at ever greater depth
continues to detect new transcripts, but the overwhelming
majority are expressed at trace levels and, in the ENCODE
data, are associated with repressed promoters, indicating
that these are not biologically active genes.
It is worth noting that these results are derived primarily

from homogeneous samples of human cell lines. Heteroge-
neous samples present their own set of challenges. A gene
that is moderately expressed in a small fraction of cells in a
sample might be indistinguishable from the background
transcripts of the whole sample. At the other extreme, an
equal mix of two or three cell types would likely result in a
similar top-end distribution of constitutively expressed
genes but an enlarged left shoulder of tissue-specific genes
whose observed expression is reduced by averaging over
the whole sample. While none of these issues are unique
to RNA-seq—microarray studies have long faced the same
problems—there may be an opportunity to formally quan-
tify this behavior by in silico combinations, across a range
of proportions, of the ENCODE matched transcript and
chromatin state data from different samples.
More broadly, the ENCODE data provides a unique
and comprehensive data set from which to evaluate the
quality of RNA-seq studies generally. Having independent
chromatin state data for multiple cell lines provides a vital
"ground truth" against which to measure the performance
of RNA-seq analysis tools. We point to the differences be-
tween RSEM and Tophat/Cufflinks quantitation presented
here as a case study for using this framework to evaluate
computational methods against real-world data.
Sequencing technology has evolved significantly since

the early proof-of-concept RNA-seq studies. Through a
combination of bioinformatic and biochemical advances,
modern RNA-seq data represents a deeper and more ac-
curate sampling of the transcriptome than the moderate-
depth, short-read data from which many current rules of
thumb for analysis were derived. Improved library prep
techniques have increased the fraction of total sequenced
bases that map to mRNA and reduced the bias toward
reads mapping at the 3′ end of known transcripts, while
splice-aware mappers align longer reads with greater ac-
curacy and less likelihood of multiple hits. The net result
is that many of the features of early RNA-seq data which
drove the development of heuristics in use today are not
always applicable. We evaluate latest-generation data and
offer an updated framework for extracting relevant gene
expression information from RNA-seq experiments.

Methods
Data sources
ENCODE RNA-seq data were downloaded fromNCBI GEO
(Accession no. GSE30567). Jurkat RNA-seq and ChIP-seq
and CD4+ RNA-seq data generated in the Salomon lab were
submitted to GEO. From EMBL-EBI, we downloaded Illu-
mina BodyMap reads [E-MTAB-513] and Geuvadis FPKM
values [E-GEUV-1]. Other sequence data were acquired
from NCBI SRA: HeLa RNA-seq, SRR309265; HeLa ChIP-
seq, SRR037862; HCC1954 RNA-seq and ChIP-seq, SRX
061987-SRX061997. ICGC pancreatic cancer RNA-seq
FPKM values were downloaded from ftp://data.dcc.icgc.org/
current/Pancreatic_Cancer-OICR-CA/.

Cell culture
For isolation of total CD4 T cells and memory CD4 T
cells, peripheral blood mononuclear cells (PBMCs) were
first enriched by density gradient centrifugation of per-
ipheral blood from healthy human donors through a
Ficoll-histopaque gradient (Sigma). For total CD4 T cell
purification, cells were positively selected from PBMCs
on anti-CD2 beads (Miltenyi) followed by positive selec-
tion on anti-CD4 beads (Invitrogen). CD4+ memory T
cells were purified from PBMCs by negative selection
with magnetic beads (Miltenyi). Purified cells were cul-
tured in RPMI (Mediatech) supplemented with 10% FBS,
100 U/ml Penicillin (Gibco), and 100 μg/ml Streptomycin

ftp://data.dcc.icgc.org/current/Pancreatic_Cancer-OICR-CA/
ftp://data.dcc.icgc.org/current/Pancreatic_Cancer-OICR-CA/
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(Gibco) for 48 hours with and without stimulation by
anti-CD3/CD28 beads (Invitrogen) at 37C in 5% CO2. Jur-
kat cells were obtained from ATCC (clone E6-1) and cul-
tured in the same medium as the primary cells.

RNA-seq
Cells were harvested and resuspended in TRIzol (Invi-
trogen). RNA was isolated following a standard TRIzol
extraction protocol. RNA-seq libraries were prepared as
described [20]. Briefly, 100 ng total RNA was amplified
using the Ovation RNA-seq kit (NuGen). 100 ng ampli-
fied cDNA was digested with 50 U/µl endonuclease S1
(Promega) for 30 min at room temperature. Digested
cDNA was end repaired and sequencing adapters were
annealed following standard protocols (Illumina). Se-
quencing of total CD4 T cell RNA was conducted on an
Illumina GAIIx instrument with 60-base paired-end reads.
Ultradeep sequencing of activated CD4 memory T cell
RNA was conducted in 5 lanes of the Genome Analyzer
IIx instrument, generating 80-base single-end reads.

Sequence mapping and gene expression quantitation
RNA-seq reads were mapped to hg19 with TopHat version
1.4.1. No junctions file (−j) or GTF file (−G) was specified.
FPKM values were calculated per gene with Cufflinks ver-
sion 2.0.2, using the Gencode v.14 GTF file downloaded
from the Human Genome Browser at UCSC. Cufflinks
output was filtered for protein coding genes as annotated
by the HUGO Gene Nomenclature Committee (www.gen-
enames.org). The matrix of raw FPKM values is included
as Additional file 1: Table S1.

Gaussian fit and zFPKM normalization
For protein-coding gene expression values for each cell
line, log2(FPKM) values less than −15 were set to not-
detected. An empirical distribution of log2(FPKM) values
was calculated by kernel density estimate in Python
using scipy.stats.gaussian_kde with default parameters. A
half-Gaussian curve was fitted to the right half of the
main peak by setting μ at the kde maximum. The stand-
ard deviation is then determined by:

σ ¼ U−μð Þ
ffiffiffi
π

2

r

where U is the mean of all log2(FPKM) values > μ The
half-Gaussian was then mirrored to a full Gaussian dis-
tribution with parameters (μ, σ). Log2(FPKM) is then
transformed to zFPKM:

zFPKM ¼ log2 FPKMð Þ−μ
σ

A matrix of all calculated zFPKM values is included as
Additional file 1: Table S2.
Promoter chromatin state
Files containing the results of chromatin state analysis in
[14] were downloaded in .bed format from the Human Gen-
ome Browser at UCSC at http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/encodeDCC/wgEncodeBroadHmm/. In a
given cell line, a gene was labeled as having an active
promoter if a locus was classified as State 1 ("Active
Promoter") or State 2 ("Weak Promoter") within 2 kb of
the transcription start site of any annotated transcript
associated with the gene in the Gencode gene models. A
gene was labeled as having a repressed promoter if any
TSS was within a locus classified as State 12 ("Poly-
comb-repressed") or State 13 ("Heterochromatin"). In
rare cases genes were labeled with both active and re-
pressed promoters. A list of all active and repressed
genes in each sample is included as Additional file 1:
Tables S3 and S4.

ChIP-seq
ChIP-seq reads were mapped to hg19 with Bowtie, and
peak finding was performed using sissrs [21]. H3K4me3
peaks within 1 kb of a gene transcription start site were
identified based on the GTF file described above.
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Additional files

Additional file 1: Tables S1-S4. containing FPKM, zFPKM, and
promoter classification for each gene.

Additional file 2: Figure S1. Encode cell line log2(FPKM) distributions
(blue), Gaussian fits to the major peak (red), fraction of binned genes
with active promoters (green), and fraction of binned genes with
repressed promoters (black). Figure S2. Cell line log2(FPKM) distributions
(blue), mirrored half-Gaussian fits to the right side of the major peak (red),
and fraction of binned genes (n=500) with H3K4me3 within 1kb of a
promoter (green; right axis). Figure S3. With increasing read depth (x-axis),
RNA-seq of CD3/CD28 costimulated memory CD4+ cells detects an increasing
number of transcripts (red; left axis). Figure S4. Tophat/Cufflinks vs RSEM
quantitation. Table S1. Tophat/Cufflinks vs. RSEM quantitation.
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