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Abstract

Background: It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists.
However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these
organisms remain largely unknown.

Results: Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed
phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired
genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from
algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally
acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic
gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional
information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters
and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may
also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids.

Conclusions: Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially
to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal
evolution of phagotrophic eukaryotes.
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Background
While horizontal gene transfer (HGT) in prokaryotes has
been extensively studied and its significance in prokaryotic
evolution is well known, our knowledge about HGT in
eukaryotes is relatively limited [1-4]. In eukaryotes, a
large number of genes are of bacterial origin, many of
which are derived from mitochondria or plastids through
endosymbiotic gene transfer (EGT), whereas some others
are from independent HGT events. A gene ratchet
mechanism “you are what you eat” has been proposed
to explain frequent gene transfer events in protists,
especially those of phagotrophic lifestyles [5]. The list of
HGT-derived genes in diverse protists becomes increasingly
longer thanks to recent studies [6-9].
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Monosiga brevicollis is a unicellular member of choa-
noflagellates, a group of free-living and phagotrophic
microbial eukaryotes. Characterized by a central flagellum
surrounded by a ring of 30–40 microvilli, choanoflagel-
lates resemble sponge choanocytes morphologically [10].
Molecular phylogenetic analyses show that choanofla-
gellates form a distinct lineage that is closely related to
animals [11,12]. Because of their unique evolutionary
position, choanoflagellates bear great significance in
understanding the origin of animals. Genome of M.
brevicollis has been sequenced and annotated [13], thus
offering a good opportunity for comparative genomic
studies to understand the evolution of choanoflagellates.
Monosiga brevicollis has structures to facilitate swimming

and feeding. Its flagella can cause water current when
in motion, which in turn propel itself to swim freely. Its
microvillar collar helps hold bacteria and other detritus
from water flow and then engulfs them as foodstuff.
. This is an open access article distributed under the terms of the Creative
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Because of their high feeding efficiency, M. brevicollis
and other choanoflagellates play a critical ecological
role in marine ecosystems, particularly related to global
carbon cycle [14]. Previous studies identified over 100
algal genes in M. brevicollis genome, and it has been
suggested that many of these genes were likely acquired
from food sources and might have benefited M. brevicollis
in food digestion and adaptation to environmental stresses
[15-18]. Although these studies identified an impressive
number of acquired genes in M. brevicollis, the major
sources of these genes were all from eukaryotic groups, and
those from prokaryotes were not extensively investigated.
Currently, several computational programs, including

PhyloGenie [19], DarkHorse [20] and AlienG [21], are
available for genome screening of horizontally acquired
genes. PhyloGenie predicts acquired genes by extracting
generated gene trees that match specific topological
constraints [19], and it has often been used in HGT
identification [16,22-25]. DarkHorse is a similarity-based
tool for rapid identification of HGT candidates at genome
level. This program predicts acquired genes by re-ranking
the matches in BLAST search based on their species
relationships with the query [20]. This approach alleviates
the over-reliance on top-scoring BLAST hits for HGT
identification and has been used in several studies [16,26,27].
AlienG is a newly developed computational program
for HGT identification [21]. Based on an assumption that
sequence similarity is correlated to sequence relatedness,
AlienG detects candidates of acquired genes by comparing
sequence similarities of the query to distantly related
organisms versus those to close relatives. This program
has recently been used in detecting acquired virulence
effector gene homologs in chytrids [28], algae-related
genes in animals [29] and HGT-derived genes in the
basal land plant Physcomitrella patens [30]. In this study,
we performed a comprehensive analysis to identify acquired
genes in M. brevicollis based on predictions from these
three computational programs. Through this extensive
study, we aim to understand the overall scope and role of
HGT in the evolution of Monosiga.

Results and discussion
Genome screening for foreign genes in M. brevicollis
Although both PhyloGenie [19] and DarkHorse [20] have
been successfully used in some studies [16,27,28,31], their
limitations are obvious. Because PhyloGenie samples top
hits of BLAST search for phylogenetic tree construction, a
large database may lead to biased taxonomic sampling
when the top hits are from the same or closely related
taxonomic groups. Likewise, DarkHorse only accepts the
NCBI non-redundant (nr) database, and genomes absent
from nr would be missed in the analysis, thus leading
to a large pool of candidates with many false positives.
To obtain more reliable prediction results, we created a
customized database covering representative species for
prediction of foreign genes using PhyloGenie. Additionally,
other available eukaryotic genomes were added to the
NCBI nr database for AlienG analyses.
Identification of HGT is always complicated by multiple

issues, such as differential losses, insufficient taxonomic
sampling, and phylogenetic artifacts due to data quality
or long-branch attraction [23,32-34]. For each predicted
foreign gene, we performed additional manual inspection
for shared indels, conserved amino acid positions, unique
gene structure, alignment quality, and potential contamin-
ation [16,31]. The possibility of potential contamination
was largely eliminated by checking whether the adjacent
genes on genomic scaffolds showed metazoan/fungal affili-
ation. We also considered phyletic distribution of the gene
(e.g., distribution only in choanoflagellates, prokaryotes
and/or algae) and performed further manual phylogenetic
analyses. A potential HGT event was inferred if the subject
choanoflagellate gene forms a monophyletic group with
homologs from prokaryotes and/or algae (with 70% or
higher bootstrap support), to the exclusion of sequences
from fungi/metazoans. Here, the term “algae” is loosely
defined to include organisms with primary, secondary or
tertiary plastids. Because oomycetes and ciliates are often
considered to be of photosynthetic ancestry [35], they
were also deemed as algae in this study. These measures
would effectively reduce the artifacts associated with the
gene tree construction.
Determination of HGT direction is not always straight-

forward. Other than gene tree topologies, we also con-
sidered additional lines of evidence when determining the
direction of HGT, such as behavioral ecology of transfer
partners and phyletic distribution of the transferred genes.
For genes that are only distributed in prokaryotes and
Monosiga, or only in algae and Monosiga, HGT from
prokaryotes or algae toMonosiga was concluded; for genes
with algal affiliation and sometimes broad distributions in
diverse eukaryotic lineages, HGT from algae to Monosiga
was inferred. Such inference of HGT direction can be
justified based on: 1) Monosiga is phagotrophic and con-
sumes algae and bacteria as food [36,37]; 2) bacteria and
many algal groups are more ancient than Monosiga; HGT
in reverse directions would require ancestors of some
major bacterial or algal groups as recipients, or it might
entail multiple secondary transfer events among bacteria
and algae; both are less likely scenarios. We should note
here that some previously defined autotrophic algae are
actually mixotrophic [38,39] and, therefore, the possibility
that these mixotrophs acquired genes from Monosiga
cannot be excluded. However, given its highly efficient
feeding activities, Monosiga may far more frequently be
predators than being prey.
In addition to the algal and bacterial affiliations,

anomalous relationships among other taxa can be
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Figure 1 Molecular phylogenies of bacterial or algal genes in M. brevicollis. A. L-threonine 3-dehydrogenase (GenBank accession number:
XP_001746273). B. D-beta-hydroxybutyrate dehydrogenase (GenBank accession number: XP_001744068). C. Metallo-beta-lactamase (GenBank
accession number: XP_001747251). D. L-galactono-1,4-lactone dehydrogenase (GenBank accession number: XP_001748157). Numbers associated
with branches show bootstrap values from maximum likelihood and distance analyses, respectively. Asterisks indicate bootstrap values lower than
50%. Taxonomic affiliations are shown after genus names, with choanoflagellates bolded.
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observed in most gene trees in our analyses, where
multiple eukaryotic sequences sporadically branch with
prokaryotic homologs (Figure 1; Additional file 1). Such
anomalous relationships are somewhat expected, given the
frequent HGT within and between domains [1,40], EGT
from mitochondria, plastids and other endosymbionts
[41], as well as homologous replacements [42]. In theory,
differential gene loss can always be invoked as an
explanation alternative to HGT. Although we cannot
confidently exclude the possibility of differential gene loss,
the patchy distribution of most putatively transferred
genes in distantly related taxa would otherwise invoke
many gene losses in other groups, a less parsimonious
scenario. It should be cautioned, however, that this list of
putatively acquired genes in Monosiga will likely change
when improved phylogenetic methods and larger taxo-
nomic samplings become possible in future.
Upon further manual curation, 405 genes inM. brevicollis

were found to be more closely related to sequences
from prokaryotes and/or algae (Additional file 1), more
than 80% of which contain introns (Additional file 1:
Table S1). Interestingly, after comparing with our previous
studies [31] and unpublished data, we found that 17
genes were absent from the candidate lists predicted by
all three programs. Three of these genes were identified
when we studied the evolutionary history of the branched
aspartate-derived pathway [31]; 14 other genes were
identified when we performed analyses on other candidates.
Most of these missed genes have an alien index score (bit
score ratio between the top hit from distantly related taxa
and that from closely related taxa) less than 1.2, which is
the default setting of AlienG. Increasing alien index would
Figure 2 Evaluation of three computational programs on
prediction of prokaryotic and algal genes in M. brevicollis. For
AlienG, the alien index threshold was set to 1.2. For PhyloGenie,
bootstrap value threshold for interested branches was set to 50%.
Prediction results from three programs are shown in three different
colors. The percentages in white ovals indicate positive rates (before
hyphen) and false negative rates (after hyphen). The percentage in
colored background indicates the positive rate for each part and is
shown above. The numbers of foreign genes identified by manual
curation (before slash) and originally predicted (after slash) are
shown below.
produce fewer false positives in the prediction, but might
miss true positives [21].
Of the 388 remaining genes, 358 (92.3%) were predicted

by AlienG, and 345 (88.9%) and 204 (52.6%) by DarkHorse
and PhyloGenie, respectively (Figure 2). The positive
rate of AlienG in HGT prediction (43%) is also higher
than those of PhyloGenie (34%) and DarkHorse (24%)
(Figure 2). Other than the algorithmic difference, the better
performance of AlienG may be attributed to the larger
customized database used in the analyses. Because these
three programs are based on different algorithms, analyses
using a combination of two or all three programs would
increase the total number of acquired genes identified.
It is also important to note that some transferred genes
could still be missed due to the balance between prediction
sensitivity and specificity [21], which is reflected in the
parameter settings.

Active feeding and gene acquisition in Monosiga
Of all 405 genes identified in our analyses, 240 were
likely acquired from algae, 139 from bacteria, and 26
from either bacteria or algae. Because gene duplication
may occur after HGT, we also estimated the number of
HGT events by counting the acquired genes clustering
together in the phylogenetic trees as a single event. The
results suggested about 210 HGT events from algae, 100
from bacteria, and 20 from either bacteria or algae.
Therefore, HGT from algae occurred nearly twice as fre-
quently as those from bacteria. This raises an interesting
question whether these algal genes resulted from past
plastid (or algal) endosymbioses or from other sources.
It is theoretically possible that the large number of algal
genes detected in this study might have resulted from a
historical plastid in Monosiga or choanoflagellates, even
though no plastids or algal endosymbionts have ever
been found in them. On the other hand, M. brevicollis is a
protozoan species feeding on bacteria and microscopic
algae. Based on the hypothesis “you are what you eat” [5],
it is also likely that M. brevicollis acquired a large number
of foreign genes from food sources.
Circumstantial evidences for the mechanism of gene

acquisition may come from the details of HGT events and
the lifestyles of recipient organisms. Although both active
feeding and historical plastids (or algal endosymbionts)
may explain the impressive number of algal genes in
M. brevicollis [16], the numbers and sources of acquired
genes through these two processes are different. Because
any specific endosymbiont (including the plastid) will have
a fixed gene pool, the number and sources of genes
acquired from this endosymbiont are limited. By contrast,
gene acquisition through feeding activities has no such
strict limitation. Theoretically, phagotrophic protists could
acquire a large number of foreign genes from diverse food
sources over time, and their diet may be reflected in the
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sources (or donors) of acquired genes. The proportion of
acquired genes in Monosiga genome (4.4%) is considerably
higher than reported in many protozoan eukaryotes
[8,9,40,43,44], but is in line with those reported in some
other free-living microbial eukaryotes such as the red
alga Galdieria sulphuraria [45] and bdelloid rotifers [46].
The potential donors for these acquired genes include
diverse microscopic algal lineages such as green algae
(Micromonas and Ostreococcus), diatoms (Thalassiosira and
Phaeodactylum), haptophytes (Emiliania and Isochrysis),
pelagophytes (Aureococcus), as well as numerous bacterial
taxa, all of which are abundant and coexist in the same
marine habitat with M. brevicollis. Given these consid-
erations, we reason that many of the algal and bacterial
genes identified in Monosiga are likely derived from food
sources. However, because of the complication related to
HGT identification (see above section), other scenarios
cannot be definitely excluded. Such scenarios may include
transfer events associated with parasites or other patho-
gens, viruses, mobile gene elements, phylogenetic artifacts,
and misinterpretation due to insufficient taxon sampling.
Acquired genes and the adaptation of Monosiga
HGT in prokaryotes has been extensively studied [1,47]
and its role in eukaryotic evolution has gained increasing
appreciation. Like in prokaryotes, HGT in eukaryotes can
confer adaptive traits to recipient organisms and allow
them to utilize new resources or explore new niches.
For instance, it has been suggested that anaerobic
diplomonads were derived from an aerobic ancestor,
and their adoption of an anaerobic lifestyle was facilitated
by the acquisition of anaerobic metabolism-related genes
from prokaryotes [8]. Comparative genomic analyses also
identified 84 foreign genes in the diplomonad parasite
Spironucleus salmonicida, suggesting an important impact
of HGT on diplomonad genome evolution [48]. The role
of algal genes in the adaptation of M. brevicollis has been
discussed in previous studies [15,16,49]. A more complete
list of acquired genes identified in this study allows better
Figure 3 Functional categories for genes acquired from algae and ba
understanding of HGT in the evolution and adaptation
of Monosiga.
Of all 405 genes identified in this study, 212 have un-

known biological functions, but 89 of them do contain
known domains. We categorized the remaining 193 genes
according to their putative biological functions (Figure 3).
About one third of them (32.1%, 62 genes) are related to
carbohydrate metabolism, 28 of which were also identified
in earlier analyses [15,16,31,49] and 34 are newly reported
in this study (Additional file 1). Because of the importance
of carbohydrates as basic energy sources and structural
components, carbohydrate metabolism is interwoven
with multiple other biochemical processes. Thirteen genes
identified in our analyses encode glycoside hydrolases,
which are common enzymes and involved in nutrient
uptake and plant cell wall degradation. Acquisition of
genes encoding glycoside hydrolases has also been reported
in other organisms including rumen ciliates and the rumen
fungus Orpinomyces, where the acquired genes are critical
for the recipient organisms to adapt to an anaerobic,
carbohydrate-rich environment [50,51]. Likewise, acquisi-
tion of multiple carbohydrate metabolism-related genes
might allow M. brevicollis to digest diverse food sources.
The second largest functional category includes genes

related to amino acid metabolism and protein degradation
(Additional file 1). Among them, 12 acquired genes are
related to proteolysis. Twenty-two genes are involved in
the metabolism of amino acids, such as the biosynthesis
of lysine, glutamate, histidine, and aspartate. In particular,
acquired genes in Monosiga contributed greatly to the
establishment of the branched aspartate-derived pathway
that is responsible for the biosynthesis of methionine,
isoleucine, threonine, and lysine [31]. All Monosiga genes
specific to the diaminopimelic acid (DAP) pathway of
lysine biosynthesis were acquired from either bacteria
or algae [31]. By acquiring or improving capabilities of pro-
tein degradation and amino acid metabolism, M. brevicollis
might ensure sufficient supply of amino acids. Ten other
genes identified in our analyses are related to fatty acid and
lipid metabolism (Additional file 1). In total, 106 acquired
cteria in M. brevicollis.
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genes are related to metabolism of carbohydrates, proteins,
or lipids, indicating foreign genes might have played an
important role in basic and essential biological processes
of M. brevicollis.
Some other HGT-derived genes are related to the biosyn-

thesis of important metabolites. For example, L-galactono-1,
4-lactone dehydrogenase (Figure 1D) and 1, 4-dihydroxy-
2-naphthoate octaprenyl-transferase are involved in the
biosynthesis of vitamins C and K12, respectively. Given the
antioxidant activities of vitamin C, acquisition of genes
related to vitamin C biosynthesis might allow M. brevicollis
to tolerate oxidative stress. Five other acquired genes are
involved in oxidative stress response, two of which encode
ascorbate peroxidase and have been reported previously
[15] (Additional file 1). Because oxidative stress may
damage cellular contents such as DNA, lipids and proteins,
organisms developed various antioxidant defense mech-
anisms [52,53]. Of the above six antioxidant-related
genes, the osmotically inducible protein C (OsmC) and
alkyl hydroperoxide reductase/thiol specific antioxidant
(AhpC/TSA) protein families encode antioxidant enzymes
as part of the enzymatic defense systems [54,55], while
the remaining four genes are involved in the biosynthesis
of ascorbate, the ionized form of ascorbic acid (vitamin
C), and belong to the non-enzymatic defense systems
[56-58]. Additionally, several other identified genes are
functionally related to resistance to heavy metal toxicity,
osmotic stress, and pathogen infection (Additional file 1).
For example, mercuric reductase might allow M. brevicollis
to reduce mercury to nontoxic forms, and enterotoxin
may be important in defense against pathogen infection.
Acquisition of genes related to stress response would
potentially facilitate M. brevicollis to adapt to various
habitats, which might partly explain the wide distribution
of Monosiga in marine ecosystems.
For protists engaging phagocytosis such as ciliates,

food particles are firstly digested in phagolysosomes,
and nutrients are then released and transported to the
cytosol to be utilized in other metabolic processes [59].
Consequently, a complex transporter system is important
for phagotrophic protists to shuffle metabolic products
(e.g., amino acids, nucleotides, phosphates and sugars)
and release nutrients from the phagolysosomes to the
cytosol. For instance, genes encoding UDP-galactose
translocator identified in our analyses are responsible
for nucleotide and sugar transport [60,61]. Thirteen of the
27 acquired transporter genes in Monosiga are responsible
for ion transfer, such as the Ca2+/cation antiporter (CaCA)
family participating in Ca2+ homeostasis and signaling
[62] and the potassium inwardly-rectifying channel for
maintenance of K+ homeostasis [63]. Intriguingly, a gene
encoding multidrug efflux transporter, which confers
resistance to toxins in bacteria and plants [64], was also
found in Monosiga and may allow Monosiga to pump out
toxic compounds. These transporter-related genes might
represent an adaptation of Monosiga to a phagotrophic
lifestyle and marine environments, where variable ion
concentrations and toxic substances may be common.
Acquired genes may either introduce novel functions

or replace pre-existing homologs. Introduction of novel
functions or phenotypes may potentially aid the adaptation
of recipient organisms to their environments [15]. Of
the 405 identified genes, 192 have no identifiable homologs
in another choanoflagellate Salpingoeca rosetta, repre-
senting HGT events after the divergence of Monosiga
and Salpingoeca, or alternatively, HGT events prior to
the divergence of the two organisms followed by gene loss
in the latter. The remaining 213 genes in M. brevicollis are
also present in S. rosetta (Figure 1A-D; Additional file 1),
indicating that most genes identified in our analyses
were acquired prior to the divergence of Monosiga and
Salpingoeca. Many of these acquired genes fall into dif-
ferent categories discussed above, suggesting a possibly
profound impact of HGT on the evolution of M. brevicollis
and other choanoflagellates.
The scale of HGT in Monosiga
Prokaryotic genomes are usually fluid as a result of perva-
sive and dynamic HGT events [65]. Such fluid genomes are
often linked to the widespread distribution and tremendous
metabolic variation of individual species. It has been
suggested that individual prokaryotic organisms sample
genes from a large global gene pool or pan-genome in
response to shift in niches and resources [66,67]. In
eukaryotes, although acquired genes have been reported
in many studies [7-9,16,44,51,68,69], the overall scale of
HGT in eukaryotes remains elusive. Because the evolu-
tionary impact of HGT is largely correlated to the number
of acquired genes, such a scale is critical for understanding
genome evolution and speciation of recipient organisms.
To date, numerous cases of HGT have been reported in

microbial eukaryotes, particularly phagotrophic microbes
[3,5,70]. For example, about 20% of genes encoding
plastid-targeted proteins in the chlorarachniophyte
Bigelowiella natans were likely acquired through HGT
events [7]. Fifteen HGT-derived genes were identified
in diplomonad parasites [8] and 96 genes of prokaryotic
origin in the parasite Entamoeba histolytica [9]. About
4.1% of ESTs from rumen ciliates were interpreted as
derived from prokaryotes, most of which are related to
the degradation of plant cell wall [51]. Several recent
studies also indicate that up to 3.34% of protein-coding
genes in the root-knot nematode Meloidogyne incognita
[61], at least 5% in the red alga G. sulphuraria [45] and
8-9% in the bdelloid rotifer Adineta ricciae were acquired
from other organisms [46]. Although the methods and
criteria used in above analyses might be different, available
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data indicate that the rate of HGT may vary among
eukaryotic lineages.
Our analyses identified 405 putatively HGT-derived

genes, which account for approximately 4.4% (405/9,200)
of the Monosiga genome. This number is among the high-
est HGT frequencies reported for protozoan eukaryotes,
but still substantially lower than that reported in bdelloid
rotifers. It should be noted here that our analyses are
largely based on initial genome screening using three
computational programs, none of which predicts all the
identified genes. This indicates that available computa-
tional programs may not be able to identify all acquired
genes in a genome. Several other factors may lead to
possible underestimation of the HGT scale in this study.
For instance, many genes of patchy distribution, which
is frequently associated with gene transfer [44], are not
considered in our analyses. Additionally, anciently acquired
genes, such as those acquired by the common ancestor
of choanoflagellates and animals, and genes acquired from
many other eukaryotic lineages are also not included in
our data. In fact, the very dynamic nature of HGT can be
evidenced by the ultimately bacterial origin of many algal
genes in Monosiga, which suggests recurrent HGT among
different lineages (i.e. HGT from bacteria to algae and then
to Monosiga) [16]. This mirrors the suggestion that the
patchy distribution of many genes may be attributed to
frequent HGT and gene losses [44]. Therefore, we expect
that the overall scale of HGT in Monosiga would be higher
than our current finding, even though the evolutionary
histories depicted for some identified genes may be differ-
ent with more data becoming available.

Conclusions
Based on the performance comparison of three common
computational programs (i.e., PhyloGenie, DarkHorse, and
AlienG) in HGT prediction, we recommend that a
combination of two or all three programs be used to
identify acquired genes. HGT contributes approximately
4.4% of the Monosiga genome. Many of the acquired genes
in Monosiga are probably derived from food sources.
Acquired genes are involved in different metabolic pro-
cesses and stress responses, and they might have played
a significant role in the adaptation of M. brevicollis to
its environments.

Methods
Database selection
Predicted protein sequences of the choanoflagellate M.
brevicollis were downloaded from the Joint Genome
Institute (http://genome.jgi-psf.org/Monbr1/Monbr1.down-
load.ftp.html). The NCBI nr protein sequence database was
used in DarkHorse analyses, and two customized databases
were constructed for PhyloGenie and AlienG analyses,
respectively. The database for PhyloGenie analyses
contained genomic or EST sequences of 260 represen-
tative taxa from all three domains of life, of which 15
were from archaea, 126 from bacteria, and 119 from eu-
karyotes. For AlienG analyses, the NCBI nr database was
combined with genomic or EST sequences of 59
eukaryotic representative taxa that are absent from nr.
Complete genome sequences of heterokont Aureococcus
anophagefferens, haptophyte Emiliania huxleyi, and het-
erolobosean Naegleria gruberi were downloaded from the
Joint Genome Institute. Annotated protein sequences of red
algal Cyanidioschyzon merolae were downloaded from its
genome project (http://merolae.biol.s.u-tokyo.ac.jp). ESTs
were downloaded from the Taxonomically Broad EST Data-
base (TBestDB) [71] and the NCBI dbEST database, and
then translated into amino acid sequences over six frames
using transeq in EMBOSS package after removing redun-
dancy using miraEST [72].

Parameter settings for PhyloGenie, DarkHorse, and AlienG
Parameter settings for each of the three analyses were
determined after testing with multiple sample datasets.
For analyses using PhyloGenie, BLAST search was carried
out against the customized database. The expectation
value (E-value) cutoff and the number for alignment
display were set to 10-10 and 250, respectively. Phylogenetic
trees were constructed using a maximum of 150 sequences,
with sequence length coverage over 60% of the query.
All trees showing a clade of choanoflagellates, prokaryotes
(bacteria and archaea) or/and algae (green plants, glau-
cophytes, red algae, alveolates, cryptophytes, euglenids,
haptophytes, chlorarachniophytes, and stramenopiles)
were retrieved using the program phat included in the
PhyloGenie package. Analyses using DarkHorse were
performed with BLAST results against nr database as
the input file; the filter threshold was set to 1% and the
self-definition to choanoflagellates. For analyses using
AlienG, BLAST search was performed against the compre-
hensive database described above. The default parameters
were used except that E-value cutoff and the number for
alignment display were set to 10-5 and 1,000 respectively.
The following three types of hits were excluded from
further analyses: 1) sequences from choanoflagellates,
which were used to exclude self-sequences; 2) sequences
with length coverage below 10%; 3) pseudo-sequences
annotated as “artificial sequences”, “synthetic construct”,
or “plasmids”.

Phylogenetic analyses
Each HGTcandidate predicted by the three computational
programs was subject to further manual phylogenetic
analyses. Homologous sequences were sampled from
representative groups of three domains of life (bacteria,
archaea, and eukaryotes). The comprehensive database
built for AlienG analyses was used for sequence sampling.

http://genome.jgi-psf.org/Monbr1/Monbr1.download.ftp.html
http://genome.jgi-psf.org/Monbr1/Monbr1.download.ftp.html
http://merolae.biol.s.u-tokyo.ac.jp
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Protein sequence alignments were performed using both
MUSCLE [73] and ClustalX [74], followed by cross-
comparison and manual refinement. Gaps and ambiguously
aligned regions were removed manually. The alignment
data are available upon request. The optimal model of
protein sequence substitution and rate heterogeneity for
each dataset were chosen using ModelGenerator based
on the AIC1 criterion [75]. Phylogenetic analyses were
performed with a maximum likelihood method using
PHYML 3.0 [76] and a distance method using neighbor
of PHYLIP version 3.69 [77], with maximum likelihood
distance calculated using TREE-PUZZLE [78]. Bootstrap
analyses used 100 pseudo-replicates.

Identification of acquired genes homologs in the
choanoflagellate S. rosetta
The genome of the choanoflagellate S. rosetta was not
available to the public when we initiated our analyses of
M. brevicollis. To investigate whether the genes identified
in M. brevicollis were also acquired by S. rosetta, we
downloaded a total of 11,731 predicted protein sequences
of S. rosetta from the Origins of Multicellularity Sequen-
cing Project (Broad Institute of Harvard and MIT, http://
www.broadinstitute.org) [79] and then identified the ho-
mologs based on sequence similarity comparison. The
acquired genes in M. brevicollis were used as queries
to search against the genome of S. rosetta with E-value
cutoff set to 1e-40. The genes shared by M. brevicollis
and S. rosetta were considered to be acquired prior to
the split of S. rosetta and M. brevicollis.

Additional file

Additional file 1: Table S1. Algal and prokaryotic genes (405)
identified in M. brevicollis. Figure S1-S109. Maximum likelihood trees for
the algal and bacterial genes identified in M. brevicollis. Genes identified
in our previous studies and some of those uniquely distributed in
prokaryotes and/or algae besides choanoflagellates are not included.
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