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Abstract

transcript patterns were found.

Background: Recent discoveries on bacterial transcriptomes gave evidence that small RNAs (sRNAs) have important
regulatory roles in prokaryotic cells. Modern high-throughput sequencing approaches (RNA-Seq) enable the most
detailed view on transcriptomes offering an unmatched comprehensiveness and single-base resolution. Whole
transcriptome data obtained by RNA-Seq can be used to detect and characterize all transcript species, including
small RNAs. Here, we describe an RNA-Seq approach for comprehensive detection and characterization of small
RNAs from Corynebacterium glutamicum, an actinobacterium of high industrial relevance and model organism for
medically important Corynebacterianeae, such as C. diphtheriae and Mycobacterium tuberculosis.

Results: In our RNA-Seq approach, total RNA from C. glutamicum ATCC 13032 was prepared from cultures grown in
minimal medium at exponential growth or challenged by physical (heat shock, cold shock) or by chemical stresses
(diamide, H,0O,, NaCl) at this time point. Total RNA samples were pooled and sequencing libraries were prepared
from the isolated small RNA fraction. High throughput short read sequencing and mapping yielded over 800 sRNA
genes. By determining their 5'- and 3"-ends and inspection of their locations, these potential SRNA genes were
classified into UTRs of mRNAs (316), cis-antisense sRNAs (543), and trans-encoded sRNAs (262). For 77 of trans-
encoded sRNAs significant sequence and secondary structure conservation was found by a computational
approach using a whole genome alignment with the closely related species C. efficiens YS-314 and C. diphtheriae
NCTC 13129. Three selected trans-encoded sRNAs were characterized by Northern blot analysis and stress-specific

Conclusions: The study showed comparable numbers of sRNAs known from genome-wide surveys in other
bacteria. In detail, our results give deep insight into the comprehensive equipment of sRNAs in C. glutamicum and
provide a sound basis for further studies concerning the functions of these sRNAs.
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Background

Corynebacterium glutamicum is a non-pathogenic and
non-sporulating gram-positive soil bacterium which be-
longs to the order Actinomycetales. This microorganism
has a long history of applications in the production of
various amino acids and other industrially relevant
compounds [1,2]. Furthermore, it serves as a model
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organism for close relatives with medical significance
such as C. diphtheriae or Mycobacterium tuberculosis.
The genome sequence established a decade ago [3,4]
comprises a circular chromosome with a length of almost
3.3 Mb and harbors more than 3000 annotated protein-
coding sequences (CDS). Based on the complete genome
sequence, transcriptional regulation in C. glutamicum
has been studied extensively [5] and revealed a com-
plex regulatory network including 97 transcriptional
regulator proteins with so far 1443 regulatory interac-
tions [6]. However, only very little is known about
small RNAs (sRNA) and their potential regulatory
actions in this organism. Information on RNA species
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beside ribosomal RNA (rRNA) or transfer RNA (tRNA) is
absent from the current genome annotation. It can only be
deduced from the genome sequence that C. glutamicum
lacks a sequence homologue of the RNA chaperone
Hfq, similar to other Actinomycetales [7]. So far, the
only experimentally defined sRNA in C. glutamicum
(ArnA) was detected upstream of the GntR-Regulator
¢g1935 and is located in antisense direction [8].

Recently, regulatory RNAs have been detected in all
three domains of life with unexpectedly large numbers,
in the range of hundreds per bacterial and thousands
per eukaryotic genome. In most cases, these transcripts
do not encode proteins and so the term non-coding
RNA (ncRNA) is often applied synonymously. All hith-
erto identified RNA families are collected in the RNA-
families (Rfam) online database [9], fRNAdb [10], and
sRNAdb [11]. Beyond trans-encoded sRNA genes, these
databases also include RNA motifs from mRNA leader
transcripts of protein-coding genes, some of which
regulate translation initiation or cause transcriptional at-
tenuation. Elements such as RNA thermometers are
structures sensitive to temperature shifts and control the
accessibility of the Shine-Dalgarno sequence of the
mRNA leader (reviewed in [12]). The classes of attenu-
ation mechanisms are diverse and include amongst
others small molecule-mediated riboswitches (reviewed
in [13]) as well as classical attenuators regulated by
translation of a small leader peptide.

The length of bacterial SRNAs is generally between 50
and 300 nt [14] and can be up to 500 nt [15]. In addition
to RNAs with housekeeping function, in-depth analyses
of several sSRNAs led to the discovery of various novel
regulatory functions. These functions modulate a wide
range of responses to stresses and other environmental
stimuli (reviewed in [16]) including RNA processing and
RNA degradation as well as translation control. Different
mechanisms of action have been described, the majority
representing interactions through basepairing between
sense RNA and regulating antisense RNA. Direct tran-
scriptional regulation through sRNAs seems to occur
rarely, and was first discovered for 6S RNA of E. coli
[17]. The much more frequent post-transcriptional regu-
lation by trans-encoded sSRNAs works through imperfect
basepairing with target mRNAs (reviewed in [16]). These
sRNAs show stable secondary structures and their genes
are generally located in the “intergenic regions” between
protein-coding sequences. In contrast, cis-antisense SRNAs
(asRNA) genes are located directly in the antisense direc-
tion with respect to their target genes and thus show full
complementarity (reviewed in [18]).

To date, different strategies have been applied for the
systematic genome-wide search for sRNAs. In the
enterobacterium E. coli, a number of sSRNAs have been
predicted by computational methods (reviewed in [19]).
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Such in silico analyses are usually based on common
features of sRNAs such as thermodynamic stability,
structure conservation, or sequence similarity between
species [20], as well as the existence of Rho-independent
terminators at their 3'-ends [21]. The Rfam database
provides sSRNA predictions for organisms with known
genome sequences calculated from sequence covariance
models. In C. glutamicum, four sRNAs are predicted by
Rfam, including 6C RNA and the housekeeping RNAs
tmRNA, RNAse P, and SRP/4.5S RNA.

Experimental strategies for the discovery of sSRNAs in
bacteria started with systematic genome-wide screens by
shotgun cloning and sequencing of cDNA [22] or by
using tiling microarrays (reviewed in [23]) and detected
large numbers of sRNAs in all tested organisms. Un-
doubtedly, new high-throughput sequencing techniques
enable the most detailed view on a cellular transcrip-
tome. Thus, RNA-sequencing has emerged as a powerful
tool for the detection of bacterial sSRNAs [24-26]. The
creation of RNA-sequencing libraries can vary between
different platforms in high throughput sequencing [27]
but there are similarities between the procedures. An
important step to increase the coverage of mRNA or
sRNA in transcriptome sequencing data is the depletion
of highly abundant ribosomal RNAs. Another is to en-
sure that the strand-information of the RNA is kept in
the cDNA sequence. This can be done by using adapters
of known sequence to be ligated to the RNA before
c¢DNA synthesis. In addition, various specific enzymatic
treatments of the RNA samples can be used for mapping
of transcriptional starts [26] or for detection of process-
ing sites [28].

Here, we present the first deep sequencing study of
sRNAs in C. glutamicum. Sequencing libraries were cre-
ated by the “differential” RNA-sequencing (dRNA-Seq)
approach [26] with RNA samples from exponential
growth phase and stress conditions such as heat and
cold shock, salt stress, H,O, and diamide stress to gain
a broad spectrum of transcription of potential SRNA
genes in response to these conditions. Supported by pro-
moter searches, RNA-Seq data were analyzed and led to
the detection of novel sRNA genes in C. glutamicum
ATCC 13032. In addition, sSRNA genes were classified
and compared with bioinformatic sRNA predictions
based on secondary structure stability and sequence
conservation.

Results

Detection of potential sSRNA genes in C. glutamicum ATCC
13032 by transcriptome sequencing and read-mapping
Transcription of sRNAs in bacteria is highly variable
under different environmental conditions [16,29]. Hence,
for a comprehensive survey of sRNAs in C. glutamicum,
we isolated total RNA from C. glutamicum cells grown
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to exponential phase and from cells after a variety of
stress treatments and pooled the total RNA samples
(Figure 1). The stress treatments were heat shock (50°C),
cold shock (10°C), oxidative stress (1% H,O,), diamide
stress (2 mM), and salt stress (1.5 M NaCl). To enrich
small RNA for a transcriptome sequencing (RNA-Seq),
the pool of total RNAs was size-selected for transcripts
smaller than 250 nucleotides (nt) by precipitation and
further depleted of ribosomal RNAs (rRNA) using a
hybridization procedure that selectively binds rRNA spe-
cies with biotinylated probes (Figure 1). The probe:rRNA
hybrids were then captured by magnetic beads and re-
moved using a magnet. After this step, the sSRNA frac-
tion was split into two samples as in the differential
RNA sequencing (dRNA-Seq) approach [26]. Hereby,
one sample was treated with a 5’-monophosphate-spe-
cific exonuclease which degrades specifically transcripts
that are processed or undergoing degradation, thus leav-
ing primary transcripts with native 5’-triphosphate ends.
The second sample was left untreated as a representa-
tion of the whole small transcriptome of the cell. The
small RNA samples were then separately committed to
strand-specific sequencing library preparation using the
standard Illumina TruSeq Small RNA kit. Both ¢cDNA li-
braries were sequenced on an Illumina GA IIx sequen-
cer, obtaining 35 bases long single reads from their 5'-
ends. Reads were mapped to the chromosome sequence
of the C. glutamicum ATCC 13032 wild-type strain [3]
using the SARUMAN algorithm implemented in CUDA
programming language and run on computer graphics
cards [30] allowing for up two mismatches per read. In
total, 7,869,859 reads were uniquely mapped for the
primary transcripts sample (library 1; Table 1) and
22,752,379 reads were uniquely mapped in case of the
total small RNA sample (library 2; Table 1). The rRNA
was found to be more efficiently depleted in the
enzyme-treated library 1, yielding a proportion of only
3% of total reads mapping to ribosomal RNA genes. It
also became apparent that the enzyme treatment had de-
pleted residual mRNA as seen by the lower fraction of
reads attributable to the sense direction of CDS. The
remaining set of reads were mapped either cis-antisense
to CDS or to regions with no annotated genome features
(potential sSRNA fraction). The cis-antisense reads made
up 3% and less in both libraries. Interestingly, the major-
ity of read mappings belong to regions with no anno-
tated features, particularly in the library enriched for
primary transcripts (59%), indicating a high number of
potential SRNAs in C. glutamicum.

Characterization of potential SRNA genes with the help of
bioinformatic promoter analysis

After filtering of mappings to tRNA and rRNA genes
and to putative mRNAs (inside CDS, sense direction),
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Figure 1 Workflow for a small RNA-Seq approach in

C. glutamicum ATCC 13032. Before cDNA library preparation, the
small RNA fraction was split into two samples for creation of two
different sequencing libraries. The first sample was treated with a 5'-
monophosphate-specific exonuclease to degrade transcripts that are
processed or undergoing degradation. The second sample was left
untreated and represents the whole of sSRNA transcripts within the cell.
After cDNA library preparation, both samples were then separately
committed to strand-specific high-throughput sequencing.
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Table 1 Distribution of mapped reads to annotated features in the C. glutamicum 13032 genome in two different

sequencing libraries

Annotated feature category

sRNA primary transcripts® (library 1)

Whole sRNA transcripts (library 2)

Reads [%] Reads [%]
rRNA genes 255,591 32 5,230,021 230
tRNA genes 1,050,962 134 2,130,360 93
mMRNA genes (CDS, sense) 1,686,575 214 7,134,344 314
Potential sRNA fraction (remaining set of mapped reads)

cis-antisense (CDS, antisense) 242,429 3.1 450,589 20
Regions with no annotated features 4,634,302 589 7,807,065 343

Total 7,869,859 22,752,379

#sRNA primary transcripts were obtained using a 5-monophosphate-specific exonuclease which degrades specifically transcripts that are either processed or

undergoing degradation.

the potential SRNA fraction from the library 1 (primary
transcripts enriched) was utilized for the definition of
sRNA transcript starts (Figure 2a). A number of reads
that start at a distinct genomic position normalized to
the previous position was defined as read stack and a
transcriptional start site (TSS) was assumed at the 5'-
position at each of these stacks (Figure 2b). For the ex-
periment performed here, the number of read starts
used in stringent filtering was determined to be 20. This
analysis yielded a number of 2899 stacks (1304 stacks
cis-antisense to CDS and 1595 stacks in regions lacking
annotated features). As a further filtering step, the 5'-

upstream sequences of the assumed TSS were analyzed
for promoters. Using the tool Improbizer [31,32], we
searched for matches to the consensus promoter se-
quences recognized by the primary housekeeping sigma
factor SigA [33] or the stress-related ECF-family sigma
factor SigH [34], which is known to play a major role
under oxidative stress [35] and heat stress conditions
[36]. Thus, 1267 putative TSS were found to exhibit an
upstream SigA-recognized promoter sequence (Figure 2c)
(531 cis-antisense to CDS and 736 SigA-dependent pro-
moters in regions lacking annotated features). The
search for SigH promoter sequences was successful in
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Figure 2 Definition of start and stop positions of potential SRNA genes. (a) Workflow for characterization of sRNA genes with the help of
bioinformatic promoter analysis at transcriptional start sites (TSS) in library 1 (primary transcripts enriched). All TSS without promoters were

removed and the 3'-ends of potential SRNA genes were determined with sequence data from library 2. (b) Library 1 (primary transcripts enriched)
was used for definition of transcriptional start sites at 5'-ends of read stacks. The 5'-end of a read stack is defined as a number of read starts that
exceed the number of read starts at the previous position by a factor of 20. (c) Weblogo [37] presentations of the consensus sequences of —35
and —10 core regions. In detail, 1267 SigA and 44 SigH promoter sites were detected by the Improbizer tool. The percentage of occurrence of a
nucleotide at a particular position is represented by the size of the nucleotide symbol (A, C, G, T).




Mentz et al. BMIC Genomics 2013, 14:714
http://www.biomedcentral.com/1471-2164/14/714

case of 44 TSS (11 cis-antisense to CDS and 33 in re-
gions lacking annotated features). For 14 transcripts,
promoters of both types were detected, indicating SRNA
variants with different 5'-ends.

To determine the 3'-ends of sSRNAs, we mapped reads
from the two libraries and followed each of the initial
stacks up to a point where the number of read starts fell
below the chosen cut-off of 10 reads and defined 3"-ends
from these data (Figure 2c). In addition, we searched
for Rho-independent transcription terminators since
these have been reported for numerous of bacterial
sRNAs [38]. This search was performed with the tool
TransTermHP [39] targeting thymine-rich stretches of
DNA following a hairpin loop within 60 nt around the
assumed 3’ends. Thereby, Rho-independent terminators
were found at 69 of these sSRNAs (4 cis-antisense to CDS
and 65 in regions lacking annotated features).

In 136 cases, the predicted TSS were within close
distance to each other, indicating multiple promoters.
Proposed multiple starts located within 100 bp at the 5'-
end and with the same 3'-end were merged to a single
region and annotated as such.

Classification of potential SRNA genes by their positions
relative to annotated protein-coding sequences

In order to identify putative untranslated regions (UTRs)
of mRNAs that are included in the set of potential SRNA
genes, these were then grouped according to their pos-
ition and direction relative to an adjacent CDS (Figure 3).
In total, 298 transcripts that had a downstream CDS
in less than 100 nt distance from their 3'-ends were
designated as “mRNA leader”, (Additional file 1). By
comparison with the RNA-families database (Rfam [9]) we
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could additionally assign the well conserved mraW motif
(at cg2377), the cspA motif (at ¢g0215), and nine predicted
riboswitches which are part of 5'-UTRs longer than 100
nt (Additional file 2). This way we validated the Rfam-
predicted thiamine pyrophosphate (TPP)-dependent
riboswitches upstream of genes from the thiamine
biosynthesis pathway, ThiC (cg1476), ThiM (cgl655),
and ThiE (cg2236). Two TPP-riboswitches were found
upstream of ¢g0825 (putative beta-ketoacyl acyl carrier pro-
tein reductase) and c¢gl227 (putative membrane protein).
One flavin mononucleotide (FMN)-dependent riboswitch
was detected at the putative nicotinamide mononucleotide
uptake permease (cg0083) and one S-adenosyl methionine
(SAM)-dependent type IV riboswitch upstream of cgI478
(annotated as hypothetical protein). Together with the two
riboswitch related RNA-motifs (both yybP-ykoY) [40] and
seven additional transcripts putatively encoding small pro-
teins, we ended up with 316 regions in the class “mRNA
leader”.

The class “antisense transcripts” comprises 543 regions
(Additional file 3) and includes three sub-types (i) cis-
antisense RNAs (asRNA) that start in antisense orienta-
tion within an opposing CDS, (ii) transcripts antisense
to a 5'-UTR, starting within 100 nt from the 5'-end of
an opposing CDS (as5'-UTR) and (iii) transcripts anti-
sense to a 3'-UTR, starting within 60 nt from the 3"-end
of an opposing CDS (as3'-UTR). This analysis defined
464 sRNA regions as asRNAs, 63 as as5'-UTRs, and 16
as as3’-UTRs. Eight as5'-UTRs were also counted as3'-
UTRs and 48 mRNA leader were also counted
as5'-UTRs due to special arrangements of CDS. All
remaining 262 regions were designated as trans-encoded
sRNAs (Additional file 4). For preparation of an updated
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Figure 3 Classification of potential SRNA genes by their positions relative to annotated protein-coding sequences. Transcripts with a
downstream CDS in less than 100 nt distance from their 3'-ends were designated as “mRNA leader”. The class also includes riboswitches and ORF
containing transcripts already predicted and stored in the Rfam database [9]. The class “antisense transcripts” comprises three sub-types (i) cis-
antisense RNAs (asRNA) that start within a CDS, (i) transcripts antisense to a 5'-UTR, starting within 100 nt from the 5'-end of a CDS (as5'-UTR)
and (iii) transcripts antisense to a 3'-UTR, starting within 60 nt from the 3'-end of a CDS (as3'-UTR). All remaining intergenic transcripts were
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C. glutamicum genome annotation, only antisense tran-
scripts and trams-encoded RNAs were assigned with
locus-tags. In the new nomenclature the locus tag of
each CDS will be extended by a trailing zero (e.g. old:
¢g0001; new: cgb_00010). The last digit of the number
is used to number novel features in between of old
features.

Detection of small C. glutamicum genes encoding

small proteins

Some of the sRNAs might actually represent mRNAs
and encode small proteins. We applied the “ORFfinder”
online tool to extract ORFs from sequences in multiple
FASTA format and subsequently searched for ribosomal
binding sites (RBSs) upstream of the extracted ORF
sequences with RBSfinder [41] using a window size of
15 bp and the standard RBS settings. Only ORFs with a
minimum length of 15 amino acid residues showing
either a RBS (4) or leaderless transcripts (4) were taken
into account, and in total eight small mRNAs were
retrieved (Additional file 5). Next, we searched for con-
servation of these peptide sequences in other bacterial
genomes using the TBlastX algorithm at the NCBI web
portal (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and found
conservation in seven cases (Additional file 5). Similar
small proteins with E-values less than 10™* were found
in other Corynebacterium species and also outside
Corynebacteria. More widely conserved proteins com-
prise the well conserved peptide-tag encoded by the
tmRNA that was identified with 12 amino acids length
(AEKSQRDYALAA) in C. glutamicum. Beside the pep-
tide encoded by tmRNA, only one other peptide,
cgb_08775 (cg4014), was detected to be conserved in
species beyond Corynebacterium. The smallest of all
conserved peptides with 15 amino acids length was
found to be cgb_14345 (cg4016). This peptide is already
known as valine-containing leader peptide in front of
the ilvBNC operon [42]. Further putative leader peptides
of attenuator structures were detected at cgh_ 33575
(cg4012) located upstream of trpE of the tryptophan op-
eron, at cghb_03035 (cg4015) in front of the leuA gene
(cg0303), encoding isopropylmalate synthase, the first
step in leucine biosynthesis, and at aroF (cgl129).
Supporting their functional assignment is the occurrence
of three consecutive tryptophan residues in the putative
leader peptide upstream of the tryptophan operon, four
consecutive leucine codons in the presumed leuA leader
peptide and the amino acids phenylalanine-tyrosine-
phenylalanine in the case of the aroF leader peptide.

Analysis of cis-antisense RNA genes, located within
protein-coding genes

In our study, more than half of the sRNA regions (543
of 807) fall into the class “antisense transcripts” (Figure 3,
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Additional file 3). For the sub-type of asRNAs (464),
which are located directly opposite to a CDS, the mean
length was calculated to be 55 nt. This very small size
particularly for asRNAs is shown in a box plot diagram
(Additional file 6). The asRNAs are distributed to 409
different CDSs with 44 CDS having more than one
antisense transcript. It is noteworthy that antisense
transcription is not only observed at the 5'-ends of the
corresponding CDS, but often also at the 3'-ends or in
the middle of a coding region. To correlate the functions
of encoded proteins with observed asRNAs, the respect-
ive proteins were classified according to the eggNOG
functional classification system [43]. Thereby, 264 of 464
asRNAs match to CDS with eggNOG classification
(Figure 4). In case of the remaining 200 asRNA, either
no category or categories with poor characterization
were retrieved. A normal distribution of 464 asRNAs
over all currently annotated CDS would result in about
15% of the genes of each eggNOG class to contain a
asRNA. We considered classes containing a asRNA in
more than 20% or less than 10% of the members of
the class as over- or underrepresented. The lowest
proportions of asRNAs were observed for genes within
the classes’ cell cycle control/cell division (“D”, 0%),
coenzyme transport and metabolism (“H”, 1%), transcrip-
tion (“K”, 7%), and inorganic transport and metabolism
(“P”, 9%). On the other hand, we observed a higher
proportion of asRNAs within genes from the functional
class cell envelope biogenesis (“M”, 35%). Moreover, a
higher proportion of genes which are involved in secretion
processes (“U”, 32%) seem to have transcription in anti-
sense direction (Figure 4). Among the genes involved
in protein secretion there were both protein secretion
mechanisms represented, with secY (cg0647) encoding a
preprotein translocase subunit of the Sec secretion
system and tatC (cgl684) encoding a twin-arginine
(Tat) secretion translocase subunit. The fatC antisense
RNA (cgb_16835) is apparently transcribed from a SigA-
dependent promoter, whereat the secY asRNA (cgh_06475)
seems to be transcribed from a SigH-controlled promoter.

In this context, we tested also the proportions of
asRNAs at genes encoding transmembrane helices or
signal peptides for secretion. By bioinformatic search
165 of 464 asRNAs (~35%) were detected at the corre-
sponding genes. Statistically, this proportion is not sig-
nificantly different from a normal distribution since 974
genes (~ 32% of all annotated C. glutamicum genes)
encode a signal peptide for secretion or at least one
transmembrane helix.

The occurrence of asRNAs includes also two of the 13
two-component regulatory systems in C. glutamicum,
namely the sensory histidine kinase genes cgtS4 (cg0483)
and cgtS6 (cg3060) that sense a specific environmental
stimulus at the membrane and the corresponding
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Figure 4 Functional classification of C. glutamicum genes having cis-antisense RNAs (asRNAs) according to eggNOG. Occurrences and
frequencies of asRNAs at genes with assigned eggNOG [43] classes (264 of 464) are shown. Classes with cis-antisense RNA frequencies between
10% and 20% reflect a normal distribution. Red lines represent limits for classes that are underrepresented (<10%) or overrepresented (>20%).

response regulators genes cgtR4 (cg2888) and cgtR6
(cg3061) that mediate the transcriptional regulation by
binding to operators [44]. The c¢gtSR4 genes are involved
in phosphate starvation [45] and cgtR4 seems to be es-
sential [46]. Further asRNAs are located opposite to
transcriptional regulator genes (within eggNOG class K)
such as cysR (cg0156) and sufR (cgl756) which are
involved in assimilatory sulphate reduction [47]and
thiol-oxidative stress defense [48], respectively. Beside
this, we detected asRNAs at the acnR gene (cgl738) [49]
and other members of the TetR family (cg2686; cg1308).
The following transcriptional regulators were also identi-
fied to have antisense transcription, SugR (cg2115) as
regulator of the PEP:sugar phosphotransferase system
genes [50,51], NdrR (cg2112) the regulator of deoxyribo-
nucleotide reduction [52], PcaO (cg2627) the transcrip-
tional activator of the ketoadipate metabolism genes
[53], FarR (cg3202) a transcriptional regulator involved
in nitrogen metabolism [54], and two members of the
HTH_3-family (¢g1392; ¢g2040).

Bioinformatic analysis of sequence and structural
conservation of trans-encoded sRNAs in C. glutamicum
ATCC 13032

In bacteria sRNAs often have characteristic structures
that are conserved stronger in evolution than their
primary sequences. Hence, structure conservation analysis
is integrated in a number of SRNA prediction tools. In our
approach, we used the RNAz tool [20] to detect secondary
structure conservation in a multiple genome alignment
between the closely related species of C. glutamicum
ATCC 13032, C. efficiens YS-314 and C. diphtheriae

NCTC 13129. RNAz predictions made under stringent
conditions (p >0.9) overlap with 45 trans-encoded sRNA
genes detected with RNA-Seq (Table 2). Moreover, the
sequencing results were compared with a less stringent set
of RNAz predictions (p =0.5) which resulted in 77 of 262
trans-encoded sRNAs matching to loci predicted by RNAz
(~ 30%) (marked in Additional file 4). Hereby, all three
housekeeping RNAs, tmRNA (cgb_09183), M1 RNA
(cgb_24535), and 4.5S RNA (cghb_02933) were predicted at
positions very similar to those of the Rfam database entries
that were calculated by covariance models [9]. This was
the case also for 6C RNA (cgh_03605), which is known
to be present in many Actinomycetales genera [55]. The
6C RNA was named from its two stem-loops, each typic-
ally containing six cytosine (C) residues. Interestingly, in
C. glutamicum the 6C RNA has two stretches of eight
cytosines. However, the function of these cytosine homo-
polymers is not known and therefore the relevance of this
difference is unclear.

Experimental validation of three trans-encoded sRNAs by
Northern blotting of stress-specific RNA samples and
detailed structure analysis

For the total set of detected trans-encoded sRNAs we
retrieved a mean length of 90 nt (Additional file 6). To
validate the sequencing approach, three SRNAs were se-
lected and subsequently analyzed by Northern blotting:
the highly conserved 6C RNA (cgb_03605) (Figure 5a)
and two sRNAs with high read counts at their TSS
(> 1000). We chose cgh_00105 (upstream of ¢g0010) as
an example of a SRNA with strong secondary structure
conservation as shown above (Table 2; Figure 5b) and
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New locus tag Strand Sequencing start Sequencing stop

Adjacent genes

RNAz Prediction start RNAz Prediction end RNAz max.

p-score
cgb_00105 - 10053 9921 €g0010(-)/cg0012(-) 10073 9921 095
cgb_00925 + 74286 74320 €g0092(+)/cg0095(+) 74297 74476 099
cgb_03505 - 307582 307548 €g0350(-)/cg0352(-) 307558 307474 095
%egb_03605 + 314679 314787 €g0360(-)/cg0362(+) 314611 314792 099
cgb_03995 - 346945 346882 €g0399(~)/cg0400(-) 346922 346590 096
cgb_05085 + 452359 452408 €g0508(~)/cg0510(+) 452321 452622 099
cgb_05716 + 509744 509990 €g0571(+)/cg0572(+) 509724 509981 099
cgb_05756 + 512702 512814 €g0575(+)/cg0576(+) 512744 512906 099
cgb_08496 + 782757 782836 €g0849(+)/cg0850(+) 782647 782889 099
cgb_08785 - 807467 807331 €g0878(-)/cg0879(+) 807563 807292 092
cgb_09095 - 842812 842715 €g0909(~)/cg0910(~) 842945 842791 097
cgb_09097 - 842983 842911 €g0909(-)/cg0910(-) 842945 842791 097
begh_09185 + 848500 848922 €g0918(+)/cg0919(+) 848444 848993 090
cgb_09483 + 878863 878996 €g0948(~)/cg0949(+) 878852 879125 099
cgb_13305 - 1237440 1237333 €g1330(+)/cg1332(-) 1237507 1237208 0.90
cgb_14495 + 1351975 1352041 q1449(+)/cg1451(+) 1351833 1352246 099
cgb_17355 - 1626662 162659 g1735(-)/cg1736(-) 1626885 1626583 095
cgb_17735 + 1665705 1665791 cg1773(=)/cg1774(+) 1665657 1665835 099
cgb_17805 - 1672717 1672673 cg1780(+)/cg1781(-) 1672744 1672565 092
cgb_18405 - 1734383 1734304 €g1840(~)/cg1841(-) 1734440 1734264 099
cgb_18415 - 1736390 1736347 cg1841(-)/cg1842(+) 1736478 1736333 096
cgb_21516 - 2039580 2039466 €g2151(=)/cg2152(-) 2039656 2039493 098
cgb_21673 - 2055867 2055764 €g2167(~)/cg2168(-) 2055929 2055750 099
cgb_22185 - 2108839 2108800 €g2218(-)/cg2221(-) 2109027 2108748 098
cgb_22215 - 2110108 2109924 €g2221(-)/cg2222(-) 2110102 2109913 099
cgb_22285 - 2116294 2116236 €g2228(-)/cg2229(-) 2116297 2115998 096
cgb_22405 - 2124418 2124384 €g2240(+)/cg2241(-) 2124504 2124285 092
cgb_23783 - 2267593 2267546 €g2378(-)/cg2380(-) 2267720 2267551 093
cgb_24455 - 2331195 2331116 €g2445(-)/cg2446(-) 2331257 2331109 099
‘cgb_24535 - 2343003 2342592 €g2453(-)/cg2455(-) 2343050 2342650 095
cgb_24775 - 2362678 2362640 €g2477(~)/cg2478(-) 2362704 2362548 094
cgb_25636 + 2447380 2447441 €g2563(+)/cg2564(-) 2447231 2447490 094
cgb_25955 - 2476453 2476419 €g2595(-)/cg2597(~) 2476484 2476295 092
cgb_26475 - 2530082 2530004 €g2647(~)/cg2648(+) 2530150 2529972 091
cgb_28315 + 2693243 2693292 €g2831(~)/cg2833(+) 2692958 2693349 099
cgb_28685 - 2730160 2730126 €g2868(+)/cg2869(-) 2730432 2730065 097
cgb_29606 - 2816731 2816535 €g2960(+)/cg2962(-) 2816711 2816532 099
cgb_30116 - 2863994 2863960 €g3011(-)/cg3012(-) 2864045 2863846 095
cgb_30685 - 2928726 2928634 €g3068(-)/cg3069(-) 2928804 2928585 099
cgb_31375 - 2997519 2997485 €g3137(~)/cg3138(+) 2997679 2997500 094
cgb_31785 - 3041252 3041154 €g3178(-)/cg3179(-) 3041427 3041124 097
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Table 2 Trans-encoded sRNA genes with overlapping RNAz- prediction (p > 0.9) and their prediction details (Continued)

cgb_33045 3156331 3156287 €g3304(-)/cg3306(-) 3156621 3156254 091

cgb_33325 + 3179928 3180066 €g3332(-)/cg3334(+) 3179728 3180003 0.99

cgb_34325 3282122 3282086 €g3432(-)/cg3434(+) 3282124 3281877 0.95
?RF01066; 6C.

PRF00023; tmRNA.
“RF00010; RNaseP.

¢gb_20715 (downstream of ¢g2071) as an example lacking
secondary structure conservation (Figure 5c). Secondary
structures of all presented sRNAs were determined by
minimum free energy folding and RNA shape analysis
[56] which achieved high shape probabilities (~90%) in
all cases, respectively. Here, the total RNAs obtained
from different growth conditions were analyzed separ-
ately to monitor stress-specific transcription patterns.
The sizes of these SRNAs determined by Northern blot
are as follows: ~100 nt for 6C RNA, ~130 nt for
¢gb_00105, ~90 nt and ~70 nt for cgb_20715. In each
case, the Northern blot signal of the longest sSRNA cor-
related well with the length determined by sequencing.
Compared with the Rfam prediction, the 6C RNA had a
27 nt 5'-extension (Figure 5a). This extended 5'-region
seems to be conserved in the Corynebacterium species,
since a longer 5'-region for 6C RNA was also predicted
by our RNAz approach (data not shown).

The 6C RNA showed no change in transcript abun-
dance in the Northern blots (Figure 5a). Probably due to
a regulatory mechanism, ¢gb_00105 appeared to be ab-
sent under heat stress conditions (Figure 5b). The sSRNA
cgb_20715 also does not appear to be differentially tran-
scribed at a tested condition. Interestingly, the Northern
blot revealed a shorter second band of at ~70 nt, indicat-
ing a second RNA species possibly generated by RNA
processing, since no additional promoter was observed
in this region.

Discussion
RNA sequencing is a novel approach to characterize
transcriptomes of bacteria comprehensively. This tech-
nique is especially useful for detection of novel sSRNAs.
Here, we present the first small RNA-Seq approach for
C. glutamicum, a member of the genus Corynebacterium,
which represents also a model organism for the
closely related genera within the Corynebacterineae,
e.g. Mycobacterium, Nocardia etc. In comparison to the
knowledge of regulatory sRNAs in the class of Gamma-
Proteobacteria, especially in E. coli and Salmonella
species, information about sRNAs is marginal in Acti-
nobacteria. Until now, deep sequencing of transcriptomes
in this class has only been reported for Mpycobacteria
[57,58] and Streptomyces species [7].

Since sRNAs might be differentially transcribed under
stress, a mixed sample of various conditions should

ensure the transcription of as many sRNAs as possible.
The isolation of small RNAs, however, yielded not only
“true” sSRNAs but also a lot of RNAs that are processed
or in the process of degradation. Therefore, a number
of filtering steps were performed on the cDNA reads
achieved. Besides using a chosen cut-off for the increase
in the number of read starts relative to the preceding
position for calling a transcript start, the 5'-ends were
validated by promoter searches, and from these validated
5'-ends, 3'-ends of transcripts were determined by an-
other chosen cut-off of ten reads. It has to be stated that
these cut-offs were arbitrary and adjusted to the size of
the data set.

As the next step, transcripts were classified by their
relative positions to annotated protein-coding sequences
(CDS). The length of 5'-UTRs of coding sequences is
variable, zero for leaderless transcripts and especially
long for genes regulated by cis-regulative elements such
as riboswitches. The difficulty of UTR length definition
was also reported in other studies [59,60]. Interestingly,
we observed a short transcript length particularly for
asRNAs. As expected, the class of leader mRNAs repre-
sents the longest transcripts, resulting from transcription
into the adjacent CDS. This difference was not obtained
for the different types of sRNAs in Sinorhizobium
meliloti [60]. Generally, a shorter average size of SRNAs
compared to sRNAs from other bacteria was also
reported from Streptomyces coelicolor [7].

Cis-antisense sRNAs are abundant in C. glutamicum
and located in ~15% of all annotated protein-coding
genes. High-resolution tiling arrays and RNA sequencing
led to the discovery of extensive antisense transcription
in several other bacteria (reviewed in [18,61,62]). In
these previous studies, the reported percentage of genes
within a genome which are targeted by asRNA varies up
and is >46% in Helicobacter [26]. The first asRNA in
C. glutamicum was detected upstream of ¢gl935 [8],
thereby overlapping the mRNA of the transcriptional
regulator of the GntR family in antisense direction. In
our study, we detected four more asRNAs which are
located opposite to already known transcriptional
regulatory genes and further five asRNAs at putative
regulatory genes. So far, it has been investigated that
asRNAs can modulate the level of transcriptional regula-
tors, metabolic, toxic and virulence proteins or repress
transposases (reviewed in [61]). For C. glutamicum, our
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Figure 5 Secondary structure prediction and experimental validation by Northern hybridizations of three selected sRNAs. For each of
the three sRNA genes, the left column shows the sequence coverage profile derived from library 1 (grey color). The y- and x-axis represent
coverage and sequence localization. Grey arrows represent flanking genes, white arrows represent the sRNAs and brown stem-loop structures
represent Rho-independent terminators. The middle column displays Northern blot results of all tested conditions at time point of harvesting of
C. glutamicum cells, respectively. Exp = Exponential phase (ODggo 10), unstressed. Further conditions were heat, cold, diamide, NaCl, and H,0,
stresses, all applied for 15 minutes at an ODgqo 10. The right column presents the secondary structure with lowest minimum free energy (MFE).
Structure, MFE and shape probabilities determined with RNAShapes [56]. Sequence code: blue, A; green, G; red, G; yellow, U. Validated intergenic
sRNAs by Northern hybridizations are (a) cgb_03605 (6C RNA), (b) cgb_00105 and (c) cgb_20715.

analysis of antisense transcripts based on the eggNOG
classification system revealed that asRNAs seem to
occur frequently at genes encoding proteins with
functions in cell envelope biogenesis and protein secre-
tion processes. However, there are hundreds of short

transcripts in antisense direction of coding sequences in
C. glutamicum the functions of which remain to be elu-
cidated. In general, antisense transcripts often influence
RNA stability of their target mRNA either by promoting
or blocking ribonucleases [63-66]. Furthermore, asRNAs
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can induce a structural change in their target mRNA
that effects transcription attenuation [67]. Other studies
showed that asRNA can also hinder RNA polymerase
extending the transcript encoded in the opposite strand
by transcription interference (reviewed in [68]) or can
affect translation of the target gene by regulation of
ribosome binding [69].

Further classification, especially of trans-encoded sRNAs,
can be done by sequence and structural analysis. The
comparison of candidates predicted by the RNAz tool
[20] and by the Rfam database [9] with sequencing results,
allowed us to detect sRNAs that are conserved in all
bacteria (housekeeping genes), in Actinomycetales (6C
RNA) or within the closely related species C. efficiens and
C. diphtheriae. However, more than the half of sRNAs
seems to be specific for C. glutamicum. At this point we
want to note that our study did not detect two widely con-
served elements known to be involved in bacterial SRNA:
6S RNA [70] and short palindromic repeat (CRISPR) loci
(reviewed by [71]). Interestingly, at least one CRISPR locus
has been identified in the genomes of almost all other
Corynebacterium species (CRISPRAB) [72,73].

Many bioinformatic prediction tools were developed
for sSRNA research during the last decade. The compari-
son of the actual in vivo expression of sRNAs with
bioinformatic prediction results often revealed only
little correspondence [7,74,75]. Apart from the RNAz
program [20] which was utilized in this study, the
sRNAPredict algorithms [21,38,76] are prominent bio-
informatic tools which have been used in various bacter-
ial sRNA studies. As implemented in sRNAPredict,
the analysis on Rho-independent terminators is often
integrated in tools for sRNA detection. However, more
than 75% of the trans-encoded sRNAs detected by our
sequencing approach are not followed by a Rho-
independent terminator and especially the number of
asRNAs with Rho-independent terminators is marginal.
A similar observation was obtained within in a search
for sSRNAs in Vibrio splendidus [77]. The correct termin-
ation of one sRNA (cgh_00105) at a site without an obvi-
ous terminator structure was proven by Northern blot
analysis.

RNA-Seq analyses deliver an unmatched single nucleo-
tide resolution. However, confirmatory methods are re-
quired, such as Northern blotting and are used in the
present study, to look at stress-specific transcription. An
example is presented with ¢gb_00105: under heat shock
we detected no transcription of this sSRNA whereas cold
shock and chemically induced stresses had no influence
on the amount of transcript. Heat shock condition was
also observed to trigger a different transcription start
site for ArnA cis-antisense RNA [8]. In the case of
cgb_20715, two transcripts of different length are
detected in each case. Here, rather SRNA maturation or
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degradation by endo- or exoribonucleases is likely. For
6C RNA no change by one of the chosen stress treat-
ments was observed. At this point, there is no hint for
the function of 6C RNA in C. glutamicum. Currently,
the 6C RNA was reported to be involved in the GIxR
regulatory network in C. glutamicum [78]. GIxR is
known as a global regulator of carbon source metabol-
ism and energy conversion. In Streptomyces coelicolor,
6C RNA showed an increased transcription during
sporulation [79].

In bacteria there is an additional group of transcripts,
comprising RNAs that act as both, regulatory RNAs and
mRNAs. RNA with dual properties is exemplified by
tmRNA, which combines the features of a tRNA and an
mRNA. This housekeeping RNA recycles stalled ribo-
somes by adding a proteolysis-inducing tag to unfinished
polypeptides [80]. Our results show that the tmRNA
peptide-tag in C. glutamicum corresponds well to known
sequences of a wide phylogenetic spectrum [81].

Short peptides encoded within 5'-UTRs of mRNA se-
quences are known as characteristic feature in a mech-
anism called transcriptional attenuation. In our study,
we detected attenuator transcripts at different genes and
operons involved in amino acid synthesis, each encoding
a suitable leader peptide. Such RNAs are also included
as cis-regulatory motives in the Rfam database. Tran-
scriptional attenuation was first described for the trypto-
phan (¢rp) operon in E. coli [82] where terminator
formation is associated to a leader sequence and is
influenced by the availability of tRNA™™ (RF00513). Ac-
cordingly, it has been observed for the ilvBNC operon in
C. glutamicum [42] and different amino acid operons in
other microorganisms (reviewed in [83]. With our ana-
lyses, we could predict further genes and operons in-
volved in the biosynthesis of different amino acids to be
regulated by the availability of uncharged tRNAs. These
were detected upstream of trpE of the tryptophan op-
eron, in front of the leuA gene (cg0303), encoding
isopropylmalate synthase, the first step in leucine bio-
synthesis, and at aroF (cgl129), encoding one of the two
DAHP Synthases [84] in C. glutamicum, responsible for
the first step of shikimate pathway in the biosynthesis of
aromatic amino acids. Since C. glutamicum is a well-
known industrial producer of amino acids, these findings
might become relevant for future engineering of amino
acid producer strains.

Conclusions

Our present study represents the first comprehensive
screening for small RNAs in Corynebacteriaceae, a fam-
ily that comprises important bacteria of industrial and
medical relevance. High-throughput sequencing tech-
niques are often applied for the search and investigation
of sRNAs in bacterial genomes. Similar to sRNA studies
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in other bacteria, we detected hundreds of SRNA genes
in C. glutamicum ATCC 13032. In C. glutamicum, more
than half of all small RNAs genes was classified as
antisense transcripts. Cis-antisense sRNA genes were
detected at CDS with various functions. However, CDS
specifying proteins from the functional classes ‘cell
envelope biogenesis’ and ‘secretion processes’ appear to
be overrepresented. Trans-encoded sRNA genes were
found distributed over the entire genome and showed
secondary structure conservation among corynebacteria
in about 30%. The 6C RNA, already known from other
Actinomycetales genera showed strong transcription at
unstressed exponential growth and all tested stress con-
ditions. The 6S RNA, highly conserved in bacteria, was
not found in C. glutamicum. Additionally, we detected
riboswitches, transcriptional attenuators and other cis-
regulatory motives, demonstrating the potential of our
study for unraveling novel regulatory processes by small
RNAs in C. glutamicum.

Methods

Preparation of cDNA libraries for RNA-Sequencing
Bacterial growth conditions and total RNA-isolation

C. glutamicum ATCC 13032 was grown in CGXII min-
imal medium at 30°C until exponential phase (ODggg
10). Cells were treated in five different stress experi-
ments by heat (50°C), cold (4°C), diamide (N,N,N’,N"-
tetramethylazodicarboxamide, 2 mM), NaCl (1.5 M), and
H,0, (0.33 M ) for 15 minutes. After harvesting 2 mL
bacterial culture, pellets were resuspended in 1 mL TRIzol®
reagent (Life Technologies Corporation, Darmstadt,
Germany) followed by ethanol precipitation. After-
wards, crude RNA samples were treated with DNase I
(Roche Diagnostics, Penzberg, Germany). After purifi-
cation using phenol/chloroform/isoamyl alcohol (ratio
25:24:1), RNA was precipitated with 0.3 M sodium
acetate. Purified total RNA pellets were dissolved in
50 pL RNase-free ddH,O. Afterwards, the purified total
RNA was qualified by Agilent RNA Nano 6000 Kit on
Agilent 2100 Bioanalyzer (Agilent Technologies, Boblingen,
Germany).

Preparation of two different cDNA libraries for
sequencing

The purified total-RNA samples were pooled in equal parts
(each condition 16 pg) and precipitated for sSRNAs < 250 nt
with (2.5 M sodium acetate, 25%; PEG 8000). Afterwards,
rRNAs were depleted by Ribo-Zero for Gram-Positive
Bacteria (Epicentre, Madison, USA). The sRNA-pool was
then divided into two samples (each 5 pg). One sample
(library 1) was enriched for primary transcripts by enzym-
atic treatment with Terminator 5’-Phosphate-Dependent
Exonuclease and RNA-5"-Polyphosphatase (both enzymes
from Epicentre, Madison, USA) while the second sample
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was prepared as whole small transcript library (library 2).
The two sequencing libraries were then prepared according
to the manufacturer’s instructions of TruSeq, Small RNA
Kit (Illumina, San Diego, USA). Single-stranded cDNAs
were created with SuperScriptll Reverse Transciptase (Life
Technologies GmbH, Darmstadt, Germany). Following this,
double-stranded c¢cDNAs were generated by PCR using
adapter specific primers. Afterwards, the purified libraries
were quantified and qualified by Agilent High Sensitivity
DNA Kit on Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Boblingen, Germany). The sequencing of the libraries
was carried out at the Center for Biotechnology, Bielefeld
University, utilizing the Cluster Station and the Genome
Analyzer [Ix (Ilumina, San Diego, USA). Each sample was
sequenced on one separate lane and obtained 35 bases long
single reads from the 5'-ends. Data analysis and base calling
were accomplished using the Illumina instrument software.

Bioinformatics analysis

Read mapping and data visualization

Reads were mapped to the C. glutamicum ATCC 13032
genome sequence [3] with SARUMAN ([30] allowing for
up to two errors per read. For the visualization of short
read alignments, Read Explorer (Hilker et al., manu-
script in preparation) was used. The Read Explorer soft-
ware enables the import and visualization of a reference
sequence and appropriate mapping data as so-called
tracks. It is possible to scroll through the reference gen-
ome, to zoom in at each position and to look at the
mapped reads at base pair level.

Detection of transcription start sites

To automatically and systematically detect TSS, the
mapping data of the library 1 enriched for primary tran-
scripts was analyzed. First, for each strand and position
of the genome, all mappings starting at the given pos-
ition were counted. As possible TSS all positions on a
strand were taken into account that satisfied the follow-
ing criteria: for a position i, the number of read starts x;
on that strand at this position exceeded a background
threshold T and the ratio x;/x; ; at this position had to
exceed a threshold R. After manual inspection of TSS, T
was set to 19 and R to 5 as these parameters were found
to result in a good signal to noise ratio.

Promoter search using primary 5-end data

Relevant stacks for promoter search were obtained
from the primary transcript enriched sequencing library.
For promoter search, the tool Improbizer [31,32]) was
trained with 158 published sequences from SigA binding
sites [33] and 45 SigH binding sites [34], respectively. In
both cases, -10 and -35 regions were correctly identified
by the expectation maximization (EM) algorithm. For
determination of the background significance score,
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control runs were performed as suggested by Improbizer.
This score (mean) was used as threshold in the Improbizer
runs. In each run, upstream sequences of sequencing stacks
were simultaneously tested with the training set at the ratio
of 1:10 which showed almost no influence on the motif
search and scoring. If the -10 and -35 region motif score
above the threshold and exhibit a spacer length between
16-20 bp, the test sequences were signed as TSS with
indicated promoter. Since well-conserved -35-regions
occur seldom in C. glutamicum, SigA promoters are also
indicated if the well conserved extended -10 region is calcu-
lated greater than or equal the maximum of determined
background significance scores, regardless of the score of
the poorly conserved -35 region.

If more than one stack with indicated promoter oc-
curred within 3 following nucleotides (278 instances),
the genomic position with the strongest relative read
count was selected as T'SS.

Rho-independent terminator search

The search for Rho-independent terminators in
C. glutamicum ATCC 13032 was performed with the
tool TransTermHP [39] at standard settings. Only hits
with a confidence level > 0.75 were rated as Rho-independ-
ent terminators. Afterwards, terminator hits were com-
pared with data from sequencing by search for matches
within 60 nt around the assumed 3’-ends of sSRNA regions.

ORF and RBS prediction

ORF search was set at a minimum protein length of 48
nt, which is known from the leader peptide of ilvB tran-
scriptional attenuator [42], up to 249 nt. The search was
performed with the online tool ORFfinder by application
of the following start codons: AUG, GUG, UUG and stop
codons: UAA, UAG, UGA (Uhmin, Osaka University
http://www.gen-info.osaka-u.acjp). In every case of a pre-
dicted OREF, except for leaderless transcripts, we looked
for ribosome-binding sites using RBSfinder [41] apply-
ing a window size of 15 bp and the standard RBS set-
tings (AGGAQG).

Prediction of secondary structure conservation

At first, a whole genome alignment of C. glutamicum
ATCC 13032, C. efficiens YS-314 and C. diphteriae
NCTC 13129 was created by MAUVE [85]. The search
for conserved secondary structures was then performed
with RNAz [20] in five different window sizes between
100-200 nt with a step size of 40 nt. According to
Washietl and coworkers (2005) we minimized false posi-
tives by application of a RNA-class probability p > 0.5 of
the binary classification support vector machine (SVM),
simultaneous with a mean pairwise identity (M.P.L) >
60%. Afterwards, accurate tRNA and rRNA predictions
were excluded vyielding in 1730 hits, some of them
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overlapping each other. Overlapping predictions were
combined and maximum RNA-class probabilities of the
combined predictions were recorded, ending up with
601 loci. In total, 339 predictions showed a more strin-
gent value of p=0.9.

Other tools and software

RNA secondary structure analysis was performed with
RNAShapes [56]. Rfam database hits for C. glutamicum
ATCC 13032 genome were taken into account at bits
scores > 90. WebLogos were created as frequency plots
with the online-tool at http://weblogo.berkeley.edu. All
data tables were processed with Microsoft Excel 2010,
box plot diagrams were created with Origin 8.5Pro.

Northern blot

Northern Blot analysis was performed with the total
RNA isolated with TRIzol® reagent (Life Technologies
GmbH, Darmstadt, Germany) obtained from different
growth conditions as described above. For detection of
transcripts, digoxigenin (DIG)-labeled RNA probes were
produced as described in [86]. The RNA probes were
synthesized with primers listed in the Additional file 7.

Additional files

Additional file 1: List of mRNA leader transcripts.

Additional file 2: List of Rfam predicted cis-regulative motifs in
C. glutamicum.

Additional file 3: List of cis-antisense RNAs (asRNAs and as3-UTRs/
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