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Abstract

Background: Nitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants.
Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained
by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-requlated genes, no

comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out.

Results: In this work, we employed the lllumina high throughput sequencing technology to perform an integrated
analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in
response to nitrate treatments. Our sequencing strategy identified new nitrate-requlated genes including 40 genes not
represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate
responsive MiRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3.

Conclusions: Sequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new
hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.
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Background

Nitrogen (N) is an essential macronutrient and a key factor
controlling plant growth and development. Nitrate is the
main form of N available in agricultural soils [1-3]. Nitrate
is taken up by the cell by specific nitrate transporters and is
reduced to nitrite in the cytoplasm by nitrate reductase. Ni-
trite is reduced to ammonium in the plastid by nitrite re-
ductase and is incorporated into amino acids by the
glutamate synthase/glutamine synthetase cycle (GS/
GOGAT cycle). Nitrate metabolism is tightly coordinated
with carbon metabolism, since carbon skeletons in the form
of 2-oxoglutarate are required for ammonium assimilation
[1,4]. One of the most striking examples of plant plasticity
in response to changing environmental conditions is root
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system architecture modulation by changes in nitrate avail-
ability (for reviews see [5-7]). In order to identify molecular
mechanisms underlying these changes, transcriptomics ana-
lyses of the nitrate response of Arabidopsis have been
performed, most of them utilizing the Affymetrix ATH1
GeneChip. Analyses with the ATH1 chip showed that ni-
trate is able to regulate more than 2,000 genes in roots,
some of them responding as fast as 3—6 minutes after ni-
trate exposure [8] and including genes involved in nitrate
transport, reduction and assimilation, hormone signaling
pathways, transcription factors, kinases and phosphatases,
among others [8-12]. However, a detailed view of the
transcriptomics changes triggered by nitrate has been lim-
ited by the representation of genes in the ATH1 microarray.
ATHI1 contains probe sets representing approximately
21,000 genes allowing for the detection of only 71% of the
genes annotated in the Arabidopsis genome v.10. Moreover,
these probes do not include important regulatory elements
of the genome such as small (SRNAs).

High-throughput sequencing technologies allow for
quantitative determination of RNA levels and RNA
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sequencing (RNA-seq) is becoming the technology of
choice to investigate the transcriptome. RNA-seq offers
several advantages over hybridization-based techniques
like microarrays [13-18]. RNA-seq is not limited to de-
tection of transcripts that correspond to annotated
genes, thus it allows for identification of new genes.
RNA sequencing can also be utilized to analyze the
sRNA component of the transcriptome when libraries
are prepared from low-molecular weight RNA fractions
[19-24]. microRNAs (miRNAs), short interfering RNAs
(siRNAs) and other types of sSRNAs have been shown to
play important roles in a broad range of biological pro-
cesses, such as plant development and response to biotic
and abiotic stresses [25-29], including plant responses to
various nutrients [30-37].

In plants, the SRNA transcriptome is primarily composed
of 23-24 nt siRNAs and 21-22 nt miRNAs [36,38,39].
Since miRNA precursors have distinctive secondary struc-
tures, many bioinformatics programs have been developed
to predict new miRNAs based on sequencing of a sRNA in
a library and inspection of the genome sequence contain-
ing this sequence for putative miRNA precursors [40-42].
Combination of deep sequencing approaches and bioinfor-
matics predictions have identified 19,724 miRNAs related
sequences across different phyla out of which 266 corres-
pond to Arabidopsis miRNAs in miRBase v.17 [43].

miRNA regulation of nitrate-responsive genes has been
shown to be a key mechanism of plant responses coordin-
ating nitrate availability and root developmental responses.
miR167 is down-regulated by nitrate treatments in peri-
cycle cells and this leads to an induction of its target, the
auxin response factor ARF8 [44]. Regulation of ARF8 by
miR167 causes a change in the ratio of initiating and emer-
ging lateral roots in response to nitrate [44]. Another ni-
trate regulatory module, consisting of miR393 and the
AFB3 auxin receptor has been shown to control root sys-
tem architecture in response to external and internal ni-
trate availability [37]. Microarray analysis suggests that
other miRNAs can be involved in root responses to nitrate,
since several miRNA targets are regulated by nitrate [45].

In this paper, we used Illumina sequencing technology
to characterize the poly-A + and sRNA component of
nitrate- and control-treated Arabidopsis roots to identify
new nitrate-responsive genes. Using bioinformatics ana-
lysis of our libraries and miRNA prediction algorithms
we were able to find new root expressed genes including
new mRNAs and miRNAs. We discovered a new
miRNA/target module that might act as an integrator of
N and carbon metabolism in Arabidopsis roots.

Results

Deep sequence analysis of the root transcriptome

In order to determine poly-A + and sRNA expression of
Arabidopsis roots and their changes in response to
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nitrate, we grew plants in hydroponic nitrate-free
medium with 0.5 mM ammonium succinate as the only
N-source for two weeks and treated them with 5 mM
KNOs, or 5 mM KCI as control, for 2 hours. These ex-
perimental conditions have been previously shown to
elicit robust gene expression responses to nitrate
[10,44,45]. Total RNA from two independent sets of
plants (biological replicates) was extracted from roots,
and poly-A + enriched and sRNA fractions were used to
construct libraries for Illumina sequencing (see Methods
for details). The sequencing yielded ~5 to 8 million
35 bp long (sRNA libraries) or 50 bp long (poly-A + li-
braries) raw reads per sample library. After quality con-
trol filtering and trimming adaptor sequences (see
Methods), the reads were mapped to the Arabidopsis
thaliana genome using the Arabidopsis genome annotation
available at The Arabidopsis Information Resource (TAIR)
v.10 (www.arabidopsis.org). Approximately two thirds of
the total Illumina reads perfectly matched the genome and
were used for further analysis (Additional file 1).

Analysis of the size distribution of sequences in the
sRNA libraries showed that 21 nt long RNA molecules
were the most abundant followed by 24 nt long sequences
(Additional file 2). The pattern of sRNA sizes reflects a
typical population of sSRNAs with abundant miRNAs and
tasiRNA (21-22 nt) and siRNAs (23-24 nt) (Additional
file 2). However, we did not find accumulation of tRNA
fragments as described in roots of phosphate-starved
plants [38] or nitrate-starved seedlings [33]. We did not
observe any obvious effect of nitrate provision on RNA
size distribution (Additional file 2), suggesting that nitrate
treatments under our experimental conditions do not
have a global effect on sRNA population structure. Next,
valid sequences were classified according to the genomic
regions they match. Most sRNA sequences matched
intergenic regions (8,415,076 sequences, 50%), followed
by miRNA (3,189,443 sequences, 19%) and rRNA genes
(2,469,734 sequences, 14% of the total valid reads)
(Figure 1A). We were able to detect 142 distinct mature
Arabidopsis miRNA sequences, corresponding to 98 dif-
ferent miRNA families, according to the miRBase data-
base v.17 (www.mirbase.org) (Additional file 3). The
number of miRNA sequences identified represents 66.7%
of the 212 miRNAs reported in miRBase v.17, indicating
that a considerable proportion of known miRNAs are
expressed in the root organ. This number greatly exceeds
the previously reported number of miRNAs expressed in
roots, that indicated expressed miRNAs are less than 40%
of the annotated total miRNAs [36,46]. We were also able
to identify sequences corresponding to trans-acting
siRNAs (ta-siRNA), including ta-siRNAs arising from the
TAS1, TAS2 and TAS3 genes (Additional file 3). It has re-
cently been shown that a significant number of miRNAs
have specific root developmental zone or root cell type
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Figure 1 Categories of genomic origins of sequenced RNAs. Valid reads were classified according to their annotation in TAIR10 database. We
show the percentage of the total valid reads mapping to these regions. The number of reads matching to multiple genomic regions were
weighted by the number of loci. A. SRNA reads, B. Poly-A + reads. C. Poly-A + reads that have a single match to the genome.

expression profiles [47]. Most root miRNAs showed low
expression levels under our experimental conditions
(Additional file 3), suggesting developmental control or
expression in specific cell-types of the Arabidopsis root.

For Illumina libraries made from poly-A + RNA, a consid-
erable amount of sequences map to intergenic regions
(9,542,618 sequences, 55% of the reads) (Figure 1B). Inspec-
tion of sequences matching intergenic regions showed that
most of them arise from telomeric or centromeric regions.
Transcription from intergenic zones has been reported in
previous high-throughput sequencing and tiling array exper-
iments [48-51]. When we considered sequences with a
unique match to the genome, only 732,226 sequences (22%)
mapped to intergenic regions (Figure 1C). A high propor-
tion of these sequences is supported by Arabidopsis ESTs or
¢DNAs (710,814 sequences, 97%) obtained from TAIR.

As shown in Additional file 4, most of these sequences
are located near the 5 or 3’ of annotated genes. We
found sequences matching intergenic regions from poly-
A + enriched libraries matching the same strand as an-
notated genes (Additional file 4 A,C). Interestingly, we
also found sequences near annotated genes in antisense
orientation (Additional file 4 B,D). These could repre-
sent novel transcripts that could have a role in control-
ling the expression of corresponding genes.

Reads matching protein coding genes (2,094,509 se-
quences) represent ~60% of the unique reads in poly-A + li-
braries (Figure 1C). The number of expressed protein coding
genes detected unambiguously (19,979 protein coding genes)
represents 73% of the total annotated in the Arabidopsis
genome. Similar to sRNAs, a considerable proportion of
genes are expressed in a cell-specific manner [52,53], thus
some of the low-expressed transcripts detected under our
experimental conditions might be developmentally con-
trolled and/or expressed in specific cell-types of the root.

To date, most transcriptomics studies on the root ni-
trate response have been performed using the Affymetrix

ATH1 GeneChip [8-11,44,45,54]. In order to determine
how our sequencing data compares with data obtained
with the Affymetrix ATH1 GeneChip, we used the same
RNA samples for Illumina library preparation and ATH1
microarray hybridization. We used the affy package library
from Bioconductor (www.bioconductor.org) to determine
the number of present calls in the ATH1 microarrays as a
measure of gene detection. We were able to find 13,964
probes with a present call, approximately 67% of the gene
specific probes that are present in the ATH1 microarray
(Additional file 5). The Illumina sequencing data detected
13,411 of these genes (96%, at least one read matching the
gene) and 3,022 annotated elements that were called ab-
sent in the ATH1 array. We found that these 3,022 ele-
ments had low expression values when compared with the
13,411 Tllumina-detected elements that had present calls
in Affymetrix (Additional file 6A,B). Additionally, Illumina
was able to detect 4,215 elements that had no probe on
the ATH1 microarray (Additional file 5).

In order to determine how data on nitrate-responsive
genes obtained with RNA-seq and Affymetrix ATH1 chips
correlated, we calculated the correlation between the
KNO3/KCl ratio for RMA normalized Affymetrix gene ex-
pression and the KNO3/KCl ratio obtained for normalized
libraries at different average gene coverages (AGCs). We de-
fined AGC as the number of reads matching a gene multi-
plied by read length and divided by gene length. We found
correlation between KNO3/KCI ratios increase hyperbolic-
ally as average gene coverage increases (Additional file 7).
This indicates correlation between the two techniques de-
pends on gene expression levels. We found excellent correl-
ation (r*>0.9) between RNA-seq and ATH1 arrays when
gene coverage was 0.8 or higher (reads matching the gene
represent 80% or more of the gene length) (Additional
file 7). These results highlight the potential of the sequen-
cing strategy to identify novel nitrate-responsive genes in
Arabidopsis roots.
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Deep sequencing reveals a new nitrate-responsive

component of the arabidopsis root transcriptome

In order to identify known miRNAs that are N-regulated
under our experimental N-treatment conditions, we used
the DESeq package in R to analyze digital gene expression
in the RNA-sequencing data [55]. Replicates were used inde-
pendently for statistical analysis of gene expression. Surpris-
ingly, we were not able to identify known miRNAs
(reported in miRBase v17) regulated by nitrate in roots
based on our RNA-sequencing data. In order to distinguish
between a technical and biological explanation for this re-
sult, we calculated an RNA rarefaction curve considering in-
creasing number of random sequences from our sRNA
libraries and the number of different sequences that could
be determined from each sample (Figure 2A). We found
that even when considering the total number of sequences
available in our experiments, almost 17 million reads, we
were far from saturation. This analysis indicates that most
molecules in our sRNA libraries were sequenced only a few
times, making it difficult to obtain accurate quantitative re-
sults. Using the same RNA samples and quantitative real
time PCR, we were able to corroborate induction of miR393
(Figure 2B), a miRNA previously identified as nitrate
responsive [37]. This result indicates that a significantly
higher depth of sequencing than the current standards
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[33,34,36,38] is required for quantitative comparison of the
sRNA fraction of the Arabidopsis transcriptome. In contrast,
when quantifying mRNAs a considerably lower number of
sequences is required to reach saturation (Figure 2C).

Among the poly-A + sequences, we found 505 regulated
genes, considering only sense sequences that have a unique
match to known genes. From these genes, 392 were in-
duced and 113 were repressed by the nitrate treatment
(Additional file 8). Regulated genes had an overrepresenta-
tion of genes belonging to the “nitrate response”, “nitrate
transport”, “nitrate metabolic process”, “nitrate assimila-
tion”, “nitrogen cycle metabolic process” and “cellular ni-
trogen compound biosynthetic process” Gene Ontology
annotation, indicating that RNA-seq was successful for
identifying nitrate responsive genes. Among these nitrate-
regulated genes, we found 40 protein coding genes without
probes in the ATH1 GeneChip (Table 1). We selected eight
genes and validated them using real time quantitative re-
verse transcription polymerase chain reaction (RT-qPCR)
(Additional file 9). Among the new nitrate-responsive
genes, we found transcription factors and components
of signaling cascades such as a y subunit of the
heterotrimeric G protein, AGG2. These genes may rep-
resent novel targets in the nitrate regulatory pathways
in plants.
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Figure 2 Analysis of the diversity of sequences suggests that a higher depth of sequencing is required for quantitative results for
sRNA libraries. A.Rarefaction curve represents the number of different reads found at the indicated number of reads. The Y axis represents the number
of different sequences that could be determined from each sample and the X axis represent the number of random sequences from our sRNA libraries.
B. miR393 is regulated by nitrate in qRT-PCR experiments. We show results for three biological replicates. We show standard errors for each bar. The
asterisk indicates means that differ significantly (p < 0.05). C. Rarefaction curve of unique reads that match annotated genes from poly-A + libraries.
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Table 1 lllumina sequencing of poly-A + RNA enriched fraction identifies new nitrate responsive genes

AGI identifier Description log, (KNO3/KCl)
AT5G63160 BT1, BTB and TAZ domain protein 1 52
AT1G11655 Unknown protein 43
AT5G65030 Unknown protein 4.2
AT1G70260 nodulin MtN21 /EamA-like transporter family protein 40
AT2G33550 Homeodomain-like superfamily protein 37
AT1G68238 Unknown protein 37
AT4G34419 Unknown protein 36
AT1G02030 C2H2-like zinc finger protein 3.1
AT4G34800 SAUR-like auxin-responsive protein family 30
AT5G03330 Cysteine proteinases superfamily protein 29
AT1G60050 Nodulin MtN21 /EamA-like transporter family protein 29
AT2G45760 BAL, BAP2, BON association protein 2 2.8
AT1G70800 Calcium-dependent lipid-binding (CaLB domain) family protein 28
AT4G29905 Unknown protein 2.7
AT3G22942 AGG2, G-protein gamma subunit 2 22
AT1G23149 CPUORF29, conserved peptide upstream open reading frame 29 2.2
AT1G23150 Unknown protein 22
AT5G65980 Auxin efflux carrier family protein 22
AT3G14260 Protein of Unknown function (DUF567) 2.1
AT3G48180 Unknown protein 2.1
AT3G25717 DVL6, RTFL16, ROTUNDIFOLIA like 16 2.1
AT2G41440 Unknown protein 2.1
AT1G13245 DVL4, RTFL17, ROTUNDIFOLIA like 17 20
AT1G68825 DVL5, RTFL15, ROTUNDIFOLIA like 15 20
AT5G58320 Kinase interacting (KIP1-like) family protein 20
AT3G29034 Unknown protein 19
AT1G22882 Galactose-binding protein 1.6
AT4G04745 Unknown protein 1.6
AT4G09180 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 13
AT1G45249 ABF2, abscisic acid responsive elements-binding factor 2 13
AT5G38200 Class I glutamine amidotransferase-like superfamily protein 1.2
AT2G18193 P-loop containing nucleoside triphosphate hydrolases superfamily protein 12
AT5G10200 ARM-repeat/Tetratricopeptide repeat (TPR)-like protein 1.2
AT5G52882 P-loop containing nucleoside triphosphate hydrolases superfamily protein 09
AT2G31141 Unknown protein 0.8
AT3G48340 Cysteine proteinases superfamily protein -10
AT2G23790 Protein of Unknown function (DUF607) -1.2
AT1G52120 Mannose-binding lectin superfamily protein -15
AT4G39795 Protein of Unknown function (DUF581) -19
AT3G06550 O-acetyltransferase family protein -20

Reads were mapped to the Arabidopsis genome and regulated genes were determined using DESeq. We identified protein coding genes that were not
represented on the Affymetrix ATH1 microarray. We show the log,(KNOs/KCl) value for 2 biological replicates.

Prediction of new genes

In order to identify regions of the Arabidopsis genome
that could encode new genes expressed under our ex-
perimental nitrate-treatment conditions, we searched for
clusters of sequences that match the genome uniquely in

regions without annotation (see Methods). These clus-
ters could overlap annotated genes but in anti-sense
orientation. Average exon length in the Arabidopsis gen-
ome (TAIRv10) is 298 nt, therefore we only considered
clusters of 300 nt or more. We found 17 clusters with
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these criteria (Additional file 10), 4 of which were lo-
cated in the complementary strand of annotated genes
and might represent natural antisense transcripts
(NATs). Two clusters have been previously reported as
cis-NATs in an analysis of Arabidopsis full-length
cDNAs, At5g49440 and At3g19380 [56]. We found that
one of the 17 clusters was induced by nitrate treatments.
We labeled this cluster TCP23as as it is antisense to the
TCP transcription factor TCP23 (Atlg35560) (Figure 3A).
We also found sRNAs matching the same region both in
sense and antisense orientation (Figure 3B), however we
did not find a correlation between their expression and
TCP23as regulation by nitrate, suggesting these sequences
most likely represent degradation products of TCP23 and
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TCP23as. TCP23 was found not to be regulated by nitrate
in our RNA-sequencing data (Additional file 5). In order
to validate expression of this putative antisense transcript,
we reverse-transcribed root RNA using strand-specific
primers for TCP23 and for its antisense transcript and
performed PCR with gene specific primers. As shown in
Figure 3C, both TCP23 and TCP23as are expressed in
roots, but only TCP23as is induced by the nitrate treat-
ment. Our data suggest TCP23as could represent a novel
nitrate-regulated transcript that might regulate TCP23 ex-
pression at the transcriptional or post-transcriptional level.
Given the low expression levels of TCP23 in whole root
sample, it is likely that its regulation by TCP23as occurs
only in a subset of root cells.
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Figure 3 TCP23as is a novel nitrate-regulated gene that is anti-sense to TCP23. A. We represent RNA poly-A + transcripts mapping the
TCP23 (AT1G35560) region. The black and grey bars represent reads sense or antisense to AT1G35560 respectively. We show the gene structure
of TCP23 in gray. Gray represents 5'UTR and 3'UTR and dark gray represents the coding region. B. We represent sRNA transcripts mapping the
TCP23 locus similar to panel A. C. cDNA was prepared using strand-specific primers for TCP23 and TCP23as. We quantified relative RNA levels of
both transcripts using RT-gPCR. We show the results of three biological replicates and standard error.
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Prediction of novel miRNA genes

Numerous approaches have been utilized to predict and
discover miRNAs [57,58]. However, few experiments
have been performed under contrasting N nutrient con-
ditions [33,34,36]. To generate a list of putative new
miRNAs that may be expressed under our experimental
conditions, we used the miRNA gene prediction tool
available in the University of East Anglia (UEA) sRNA
toolkit, miRCat (http://srna-tools.cmp.uea.ac.uk) [59].
We chose this prediction tool because it is optimized for
the identification of plant miRNA hairpins, and it has
been trained and tested with published Arabidopsis
thaliana high-throughput sRNA sequence data. We used
as input for miRCat the filtered sRNA sequences
obtained from our 4 sRNA libraries. miRCat was able to
predict 123 mature miRNA sequences corresponding to
87% of the known miRNAs identified in our samples, in-
dicating that the prediction algorithms implemented in
miRCat are highly efficient in identifying plant miRNAs.
The miRCat program was able to predict 51 new
miRNA sequences when compared with miRBase v17
(Table 2). From these 51 new miRNA sequences our
studies uncovered, 12 were recently cross-validated by
other groups, suggesting the veracity of our results
[47,60-63]. 21 putative new miRNA sequences were
found in intergenic regions, likely representing new tran-
scriptional units (Table 2). 10 miRNA sequences were
found inside introns and 2 were found in the 5UTR of
protein coding genes suggesting they are transcribed
along with the gene they overlap and 1 miRNA was
found in a pseudogene (Table 2). 17 new miRNA se-
quences were located inside the region coding for the
stem loop of known miRNAs (Table 2). Sequences that
map onto miRNA precursors and that do not corres-
pond to the mature miRNA or miRNA* sequences have
been previously reported in Arabidopsis and are poten-
tially functional miRNAs that are generated by the
miRNA pathway [64,65]. All these new miRNAs have
low expression levels, most of them being sequenced less
than 50 times in our libraries, which probably explains
why they have not been reported previously.

A novel nitrate-responsive miRNA/target regulatory
module (AtPPC3/miR5640)

In order to further characterize the role of the novel
miRNAs in the root nitrate response, we predicted target
genes for new miRNAs sequenced in our libraries using
the target prediction tool Target finder from the UEA
sRNA toolkit, (Additional file 11). The program is based
on a set of rules determined specifically for plant
miRNA/TARGET interactions [66,67]. We looked in the
target list for genes that could be related to N metabol-
ism or to root growth regulation and that were either in-
duced or repressed by nitrate based on our Illumina
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results. One of the predicted targets was the transcript
for PHOSPHOENOL PYRUVATE CARBOXYLASE 3
(AtPPC3, At3gl4940) (Additional file 11), an enzyme
that catalyzes CO, incorporation with phosphoenol
pyruvate to form oxaloacetate [68]. AtPPC3 is induced
in roots after nitrate treatment based on our sequencing
data (Additional file 8). The miRNA predicted to target
AtPPC3 has recently been reported as miR5640 [47].
miR5640 has been shown to be expressed in Arabidopsis
primary root in the apical half of the meristematic zone
(early meristematic zone), the elongation zone, and the
maturation zone, according to sequencing data, but no
additional validation on its expression or additional
characterization of its function or target prediction has
been performed [47]. In order to validate miR5640 as a
bona fide miRNA, we confirmed its expression and ex-
pression of its precursor in roots using RT-qPCR. In
addition, miR5640 precursor accumulated in the DCL1
(dcl1-9) mutant plants (Figure 4A), indicating that
miR5640 precursor is processed by DCL1 as most
miRNA precursors [69]. In order to experimentally con-
firm that AtPPC3 is a miR5640 target and to map the
miR5640 cleavage site, we performed a modified RLM-
RACE procedure [70]. We were able to detect and clone
an amplification product corresponding to the expected
size of a miR5640-cleaved AtPPC3 fragment. It has been
described that cleavage of the target transcripts occurs
near the middle of the base-pairing interaction [71,72].
As shown in Figure 4B, 30 out of 32 clones sequenced
had a cleavage site inside the miRNA complementary se-
quence, between the 8" and 9™ complementary bases
from the miRNA 5 end. This result suggests that
AtPPC3 is a target of miR5640 and further corroborates
miR5640 as a bona fide miRNA. Based on our sequen-
cing data, we did not find differential expression of
miR5640 2 hours after nitrate treatment, although
AtPPC3 is induced by this treatment. In order to deter-
mine if miR5640/AtPPC3 could represent a nitrate-
responsive miRNA/TARGET module, we analyzed the
nitrate response of the miR5640/AtPPC3 pair on a time
course using RT-qPCR. As shown in Figure 4C, AtPPC3
peak of induction by nitrate correlates with miR5640 re-
pression by nitrate. The reduction of AtPPC3 levels over
time also correlates with the de-repression of miR5640,
suggesting that AtPPC3 levels are post-transcriptionally
regulated by this miRNA in response to nitrate. Thus,
miR5640/AtPPC3 represents a nitrate-responsive mod-
ule that could be important for modulating carbon/N
balance for nitrate assimilation in Arabidopsis roots.

Discussion

High throughput sequencing approaches have become
powerful tools to identify the transcriptome of
Arabidopsis and other systems. Besides the ability to
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Table 2 lllumina sequencing identifies novel miRNAs

miRNA Chr miRNA Start miRNA End Mature Sequence miRNA* miRNA previoulsy reported miRNA located in

miR5640 1) 1653540 1653560 AUGAGAGAAGGAAUUAGAUUC YES ath-miR5640 [47] AT1G05570.1 intron

ath-MIR472-5p 1(=) 4182266 4182286 AUGGUCGAAGUAGGCAAAAUC NO Novel ath-MIR472 stem loop

ath-MIR8166 1(-) 4525316 4525337 AGAGAGUGUAGAAAGUUUCUCA NO Novel Intergenic region AT1G13240-AT1G13245
miR5654-3p 1(+) 11786350 11786371 GAAGAUGCUUUGGGAUUUAUUU NO miR5654-3p [47,63] AT1G32583.1, 5'UTR

ath-MIR829-5p 1) 11834153 11834173 ACUUUGAAGCUUUGAUUUGAA YES Novel ath-MIR829 stem loop

miR5014a 1(+) 24554009 24554029 UGUUGUACAAAUUUAAGUGUA YES ath-miR5014a [47,60] AT1G65960.1 intron

ath-MIR840-3p 1(=) 771385 771405 UUGUUUAGGUCCCUUAGUUUC YES Novel ath-MIR840 stem loop

ath-MIR398a-3p 2(+) 1040948 1040968 AAGGAGUGGCAUGUGAACACA YES Novel ath-MIR398a stem loop

ath-MIR8180 2(+) 2063980 2063998 UGCGGUGCGGGAGAAGUGC NO Novel Intergenic region AT2G05580-AT2G05590
ath-MIR8175 2(+) 3740938 3740957 GAUCCCCGGCAACGGCGCCA NO Novel Intergenic region AT2G09880-AT2G09890
ath-MIR396a-3p 2(=) 4142331 4142351 GUUCAAUAAAGCUGUGGGAAG YES Novel ath-MIR396a stem loop

ath-MIR8168 2(+) 5080690 5080710 AGGUGCUGAGUGUGCUAGUGC NO Novel Intergenic region AT2G12490-AT2G12500
ath-MIR5632-5p 2(-) 8392588 8392608 UUGAUUCUCUUAUCCAACUGU YES Novel ath-MIR5632 stem loop

ath-MIR8167a 2(+) 8894985 8895006 AGAUGUGGAGAUCGUGGGGAUG NO Novel Intergenic region AT2G20620-AT2G20625
miR5995b 2(-) 10026977 10026997 AAAGAUGCAGAUCAUAUGUCC YES ath-miR5995b [63]) Intergenic region AT2G23540-AT2G23550
ath-MIR831-5p 2(+) 10247259 10247280 AGAAGCGUACAAGGAGAUGAGG NO Novel ath-MIR831 stem loop

miR5637 2(-) 12270195 12270216 UAGAGGAAAAUAUAGAGUUGGG NO ath-miR5637 [47] Intergenic region AT2G28620-AT2G28625
ath-MIR8170.1 2(+) 14100020 14100040 AUAGCAAAUCGAUAAGCAAUG YES Novel AT2G33255.1 intron

ath-MIR8170.2 2(+) 14100079 14100099 UUGCUUAAAGAUUUUCUAUGU YES Novel AT2G33255.1 intron

ath-MIR160a-3p 2(+) 16340342 16340362 GCGUAUGAGGAGCCAUGCAUA YES Novel ath-MIR160a stem loop

ath-MIR8171 2(+) 16890466 16890486 AUAGGUGGGCCAGUGGUAGGA NO Novel AT2G40440.1 intron

ath-MIR166a-5p 2(+) 19176128 19176148 GGACUGUUGUCUGGCUCGAGG YES Novel ath-MIR166 stem loop

ath-MIR408-5p 2(+) 19319866 19319886 ACAGGGAACAAGCAGAGCAUG YES Novel ath-MIR408 stem loop

miR5650 2(+) 19686959 19686979 UUGUUUUGGAUCUUAGAUACA YES ath-miR5650 [47] AT2G48140.1 intron

miR173-5p 3(4) 8236161 8236182 UUCGCUUGCAGAGAGAAAUCAC YES ath-miR173-5p [62,63] ath-miR173-5p stem loop

ath-MIR8169 3(+) 8836359 8836379 AUAGACAGAGUCACUCACAGA NO Novel Intergenic region AT3G24340-AT3G24350
ath-MIR8183 3(-) 11747799 11747819 UUUAGUUGACGGAAUUGUGGC NO Novel AT3G30110.1, pseudogene

ath-MIR8165 3(-) 16538510 16538530 AAUGGAGGCAAGUGUGAAGGA NO Novel Intergenic region AT3G45170-AT3G45180
ath-MIR8174 3(-) 16589431 16589451 AUGUGUAUAGGGAAGCUAAUC NO Novel Intergenic region AT5G38460-AT5G38470
miR5651 3(+) 17178489 17178509 UUGUGCGGUUCAAAUAGUAAC YES ath-miR5651 [47] Intergenic region AT3G46616-AT3G46620
ath-MIR8167b 3(-) 8894985 8895006 AGAUGUGGAGAUCGUGGGGAUG NO Novel Intergenic region AT3G47410-AT3G47420
ath-MIR8167c 3(-) 17469946 17469967 AGAUGUGGAGAUCGUGGGGAUG NO Novel Intergenic region AT3G50700-AT3G50710
miR5633 3(+) 19544786 19544807 AUGAUCAUCAGAAAACAGUGAU NO ath-miR5633 [47]) Intergenic region AT3G52730-AT3G52740
ath-MIR393b-3p 3(+) 20691778 20691798 AUCAUGCGAUCUCUUUGGAUU YES Novel ath-MIR393 stem loop
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Table 2 lllumina sequencing identifies novel miRNAs (Continued)

ath-MIR8182 3(+) 22678166 22678187 UUGUGUUGCGUUUCUGUUGAUU NO Novel AT3G61270.1, 5'UTR

ath-MIR166b-5p 3(+) 22922212 22922232 GGACUGUUGUCUGGCUCGAGG YES Novel ath-MIR166 stem loop

ath-MIR8172 4(-) 7102572 7102592 AUGGAUCAUCUAGAUGGAGAU YES Novel Intergenic region AT4G11800-AT4G11810
ath-MIR8179 4(-) 7161930 7161950 UGACUGCAUUAACUUGAUCGU NO Novel AT4G1192.1 intron

ath-MIR8176 4(+) 11795199 11795219 GGCCGGUGGUCGCGAGAGGGA NO Novel Intergenic region AT4G22320-AT4G22330
ath-MIR8178 4(+) 18087285 18087305 UAACAGAGUAAUUGUACAGUG NO Novel AT4G38760.1 intron

ath-MIR8184 5(-) 3311974 3311994 UUUGGUCUGAUUACGAAUGUA NO Novel Intergenic region AT5G10504-AT5G10510
miR5629 5(+) 3802933 3802954 UUAGGGUAGUUAACGGAAGUUA NO ath-miR5629 [47] Intergenic region AT5G11790-AT5G11800
ath-MIR865.2 5(+) 5169992 5170011 UCUGGGAUGAAUUUGGAUCU NO Novel ath-MIR865 stem loop

miR1888 5(+) 7168879 7168899 UAAGUUAAGAUUUGUGAAGAA NO ath-miR1888 [61,62] AT5G21100.1 intron

ath-MIR8173 5(-) 7478572 7478592 AUGUGCUGAUUCGAGGUGGGA NO Novel Intergenic region AT5G22510-AT5G22520
ath-MIR8177 5(-) 9362634 9362655 GUGUGAUGAUGUGUCAUUUAUA NO Novel Intergenic region AT5G26617-AT5G26620
miR5638b 5(+) 14100017 14100037 ACAGUGGUCAUCUGGUGGGCU NO ath-miR5638b [47] Intergenic region AT5G35945-AT5G35950
ath-MIR160c-3p 5(=) 19009095 19009115 CGUACAAGGAGUCAAGCAUGA YES Novel ath-MIR160c stem loop

ath-MIR870-5p.1 5(-) 21395592 21395612 UUAGAAUGUGAUGCAAAACUU NO Novel ath-MIR870 stem loop

ath-MIR870-5p.2 5(-) 21395604 21395624 AAGAACAUCAAAUUAGAAUGU NO Novel ath-MIR870 stem loop

ath-MIR8181 5(-) 21641289 21641308 UGGGGGUGGGGGGGUGACAG NO Novel AT5G5333.1, intron

Sequences from the Illumina libraries were queried for sequences representing putative new miRNAs with the miRCat program from the UEA sRNA toolkit. We show the genomic location and sequences of these
miRNAs. Presence of reads corresponding to miRNA* are indicated (Yes or No). miRNAs that are not included in miRBase 17 but that have been cross-validated by other groups are indicated.

The name of mature sequences derived from the same arm of known hairpin precursor were named with the suffix .1 or .2. If the sequences derive from the opposite arm from the previously annotated sequence,
were named with the suffix -5p, -3p.
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Figure 4 lllumina sequencing identifies a novel miRNA/TARGET module consisting of miR5640 and its target, AtPPC3. A. We analyzed the RNA
levels of miR5640 predicted precursor using RT-gPCR in WT plants and in the dc/7-9 mutant. B. We used RLM-RACE to validate AtPPC3 as target of
miR5640. The arrows show the numbers of colonies found with the cleavage product. C. We determined the RNA levels of AtPPC3 and of mature
miR5640 after 1, 2 and 4 hours of nitrate (black bars) or KCI (white bars) treatments. We show the results of three biological replicates and standard error.
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profile novel genes expressed at low levels which could
not be identified by traditional cloning and sequencing
approaches, the high depth of sequencing obtained by
these techniques allows for the absolute quantification
of genes, and the comparison of gene expression under
different experimental conditions [38,73,74]. Our high
throughput sequencing results provided a detailed view
of poly-A + RNAs and sRNAs expressed in Arabidopsis
roots. We found that roots express a considerable por-
tion of known protein coding genes and miRNA genes.
However, most of these genes are expressed at low
levels. These transcripts might represent cell specific
transcripts whose expression is diluted when considering
the whole root. Transcriptomics analysis of specific root
cell types has shown that gene expression has an import-
ant cell-specific component that gives rise to functional
diversification of cells [52,53].

Even though the sequencing depth used to characterize
the sRNA component did not allow for accurate quantita-
tive estimates, we were able to discover novel miRNAs that
have eluded previous efforts. Our bioinformatics analysis
predicted 51 putative miRNAs expressed in roots under the
experimental conditions. Most of these sequences were

poorly expressed with less than 1 transcript per million
transcripts. A recent publication that analyzes miRNA
expressed in specific developmental zones and cell types of
the root shows that 9 of these new miRNAs have cell or de-
velopmental zone specific expression [47] which can explain
their low expression in the whole root samples. We were
able to validate one of the predicted miRNAs, miR5640, as
a putative miRNA expressed in roots. This miRNA is lo-
cated inside intron 23 of the CALLOSE SYNTHASE 1 gene
(CALS1, AT1G05570). Intronic miRNAs represent the ma-
jority of the miRNAs of animal systems but there are only a
few examples in Arabidopsis [75,76]. Characterized intronic
Arabidopsis miRNAs include miR162a and miR838 which
are involved in the regulation of DCLI [24,77,78]. However,
analyzing our sequencing results, we found that the CALS1
transcript was not regulated by nitrate, thus miR5640 could
have an independent nitrate-responsive promoter or pri-
miR5640 processing to generate the mature miRNA could
be a nitrate-regulated process.

We found miR5640 targeted the transcript that codes
for AtPPC3, one of the four phosphoenolpyruvate carb-
oxylase enzymes in Arabidopsis [79]. AtPPCs are im-
portant enzymes of carbon metabolism that catalyze the
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[B-carboxylation of phosphoenolpyruvate to yield oxalo-
acetate. In C3 plants and algae, it has been shown that
ATPPCs are important for the production of carbon
skeletons for nitrogen assimilation [68,80,81]. Although
there has been an extensive biochemical characterization
of the AtPPCs enzymes in Arabidopsis, there are no re-
ports of their function in N metabolism. AtPPC3 is a
root specific AtPPC [82] and we found that it was
nitrate-induced in our experiments, which is in agree-
ment with the positive effect on nitrate assimilation pre-
dicted for this AtPPC. We also found evidence indicating
that nitrate induction of AtPPC3 might depend on a
miR5640-mediated post-transcriptional —regulation of
AtPPC3 levels in response to nitrate. Although we found
AtPPC3 cleavage products that might be generated by
miR5640 action over this transcript, we need further ex-
periments to validate AtPPC3 as a miR5640 target (i.e. to
analyze AtPPC3 levels in a miR5640 overexpressor plant),
and to validate the role of this miRNA/TARGET module
in nitrate assimilation in roots.

An advantage of using high throughput sequencing is
the ability to interrogate gene expression without the
representation bias present in microarray experiments.
We discovered 40 protein-coding genes that have not
been reported to be nitrate-responsive in previous
transcriptomics analysis of Arabidopsis roots. Among
them, we found highly responsive genes such as BT1
(At5g63160), a calmodulin-binding scaffold protein that
acts redundantly with other BT proteins in female gam-
etophyte development [83]. The closest homolog of BT1,
BT2, has been reported to be responsive to multiple hor-
monal, stress and nutritional signals, including nitrate
[84]. Interestingly, BT1 is only expressed when nitrate is
supplied, suggesting that it might have a nitrate-specific
function in roots. The AGG2 gene, one of the two genes
encoding the gamma subunit of heterotrimeric G pro-
tein was also induced by nitrate. Heterotrimeric G pro-
tein in Arabidopsis has been involved in various
developmental processes. In roots, it is involved in lat-
eral root formation [85] and root apical meristem
growth [86]. We have found that nitrate has an effect in
primary and lateral root growth [37], thus nitrate regula-
tion of AGG2 might contribute to this response.

NATs are transcripts that fully or partially overlap with
other transcripts. These pairs can mediate production of
siRNAs to silence gene expression [87]. Additionally,
NATs can modulate transcription, can affect mRNA stabil-
ity and translation and can induce chromatin and DNA
epigenetic changes [88]. Computational predictions have
shown that the Arabidopsis genome potentially encodes
sense-antisense transcript pairs representing approxi-
mately 7% of the protein coding genes [56]. We were able
to identify 4 putative NATSs of >300 bp in our sequencing
data. One of these NATs was antisense to TCP23 gene
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and was induced by nitrate. TCP genes are transcription
factors that promote growth and proliferation [89]. TCP23
is predicted to contain a chloroplast-targeting peptide,
suggesting it might control transcription of chloroplast
genes [90]. Although TCP23 has no described function,
other class I TCP factors have been shown to be expressed
in meristematic tissues and to control cell cycle genes such
as PCNA and CYCBI;1 [91,92]. Thus, TCP23as induction
by nitrate might repress TCP23 expression, controlling
meristematic activity of the primary root. However, further
studies are needed to analyze TCP23as role over TCP23
expression on roots and on TCP23 regulation by nitrate.

Conclusions

In summary, the sequencing of small RNAs and mRNAs
uncovered new genes, and enabled us to develop new
hypotheses for nitrate regulation and coordination of
carbon and N metabolism. A highlight is the discovery
of a novel microRNA, miR5640 and its target, AtPPC3.
The data suggest that the nitrate-responsive miRNA/tar-
get module might be involved in controlling carbon flux
to assimilate nitrate into amino acids. These findings
suggest that microRNAs can have metabolic regulatory
functions, as well as previously described developmental
functions [37,44] in the nitrate response of Arabidopsis
roots.

Methods

Growth and treatment conditions

Approximately 1,500 Arabidopsis seedlings were grown
hydroponically on Phytatrays on MS-modified basal salt
media without N (Phytotechnology Laboratories, M531)
supplemented with 0.5 mM ammonium succinate and
3 mM sucrose under a photoperiod of 16 h of light and
8 h of darkness and a temperature of 22°C using a plant
growth incubator (Percival Scientific, Inc.). After 2 weeks,
plants were treated with 5 mM KNOj3; or 5 mM KCI as
control for 2 hours.

Preparation of illumina libraries

Total RNA from from nitrate-treated or control roots was
extracted using Trizol® (Invitrogen, cat. Number 15596—
026). For poly-A + libraries, poly-A + RNA was enriched
using the Poly(A)Purist™ MAG Kit (Ambion, cat, number
AM1922M). Poly-A + RNA was decapped using tobacco
acid pyrophosphatase and fragmented using RNA Frag-
mentation Reagents (Ambion, cat. Number AM8740).
Low molecular weight RNA (<40 nt) was isolated from
100 pg of total RNA by PAGE on a FlashPAGE™ fraction-
ator (Ambion, cat. Number AM13100). For construction
of the libraries, cloning linker (AMP-5p =5pCTG TAG
GCA CCA TCA ATdideoxyC-3’) was ligated to the 3" end
of the RNA followed by purification of the ligation prod-
uct on a 15% polyacrilamide/urea gel. The 3’-ligated
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product was ligated to the 5 Solexa linker (5-rArCrA
rCrUrC rUrUrU rCrCrC rUrArC rArCrG rArCrG rCrUrC
rUrUrC rCrGrA rUrC-3’). RNA with ligated adaptors was
reverse transcribed into DNA using Illumina specific pri-
mer (5- CAA GCA GAA GAC GGC ATA CGA TTG
ATG GTG CCT ACA G-3) and cDNA was then PCR
amplified using this primer and a specific primer (5- AAT
GAT ACG GCG ACC ACC GAA CAC TGT TTC CCT
ACA CGA CG-3). The libraries were gel purified using
the QIAquick gel extraction kit (QIAGEN, cat. Number
28704). Libraries were sequenced on the Illumina 1G Gen-
ome analyzer.

Sequence analysis

Raw sequences from the Illumina 1G Genome analyzer
in FASTQ format were analyzed with publicly available
tools. Low quality reads were extracted with fastq quality
filter by FASTX toolkit version 0.0.13 (http://hannonlab.
cshl.edu/fastx_toolkit/). The Phred quality score was set
to 20, a probability of incorrect base call of 1 in 100. 3’
adaptor sequences were trimmed from the Illumina
reads, and then were mapped to the Arabidopsis TAIR10
genome using Novoalign version 2.05.17 (www.novocratft.
com). Perfect match sequences having passed the quality
control, polynucleotide filter, and size filter (between 18
and 28 nt for SRNA libraries and 218 nt for poly-A + li-
braries) were selected for further analysis with custom
made PERL scripts.

Determination of differentially expressed genes

To evaluate differential gene expression between KNO3
and KCI treated samples, we used sequence counts cor-
responding to sSRNAs or annotated elements as input for
the DESeq package version 1.1.6 [55] available from
Bioconductor (www.bioconductor.org). This tool uses a
negative binomial distribution model to test for differen-
tial gene expression [55]. We found correlation values of
0.91 and 0.96 for controls and treatments respectively
for sRNA-seq and of 0.99 for controls and treatments
for RNA-seq data. Replicates were used independently
for statistical analysis of gene expression. We adjusted
for multiple testing using FDR correction [93] and fil-
tered genes whose expression changed with corrected
p-values > 0.05.

New miRNA and target predictions

Quality filtered Illumina sequences were used as input
for the MIRCAT tool [59], available at the University of
East Anglia (UEA) sRNA toolkit (http://srna-tools.cmp.
uea.ac.uk) using default parameters. To predict miRNA
targets, we used the target prediction tool available from
the UEA sRNA toolkit. The predicted targets, along with
the putative cleavage site on these targets, were further
validated using RNAhybrid version 2.1 [94].
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Predicting novel transcribed regions

Novoalign alignments that did not overlap with anno-
tated regions of the genome were pooled from all sam-
ples. Regions with continuous alignments in the same
strand greater than 300 bp were identified as candidate
novel transcribed regions.

Gene expression analysis using RT-qPCR

Gene expression analysis was carried out using the Bril-
liant® SYBR® Green QPCR Reagents on a Stratagene
MX3000P qPCR system (Agilent) according to manufac-
turer’s instructions. The RNA levels were normalized rela-
tive to the Clathrin adaptor complexes medium subunit
family protein (At4g24550). Quantification of microRNA
levels was carried out using the High-Specificity miRNA
QRT-PCR Detection Kit from Stratagene on a Stratagene
MX3000P qPCR system. The RNA levels were normalized
relative to U6 snRNA (At3g14735). A list of RT-qPCR
primers used in this work is provided in Additional file 12.

RLM-RACE

A modified procedure for RLM-RACE [70] was carried
out using the GeneRacer™ kit. The GeneRacer RNA Oligo
adapter was directly ligated to 250 ng of Poly-A + mRNA
and the GeneRacer OligodT primer was used to synthesize
first strand cDNA. This cDNA was subjected to a PCR
amplification procedure with the GeneRacer 5 Primer and
the GeneRacer 3'Primer to generate a pool of non-
genespecific RACE products. Gene-specific 5'RACE reac-
tions were performed with the GeneRacer 5'Nested Pri-
mer and a reverse gene-specific primer. The expected size
of the PCR amplicons was checked on a 3% agarose gel.
PCR products were cloned and sequenced to confirm pre-
dicted miRNA-mediated cleavage of the transcripts.

Availability of supporting data

The data sets supporting the results of this article are
available in the NCBI GEO database [95] repository,
under accession GSE44062.
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