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Abstract

Background: Divergence in gene structure following gene duplication is not well understood. Gene duplication
can occur via whole-genome duplication (WGD) and single-gene duplications including tandem, proximal and
transposed duplications. Different modes of gene duplication may be associated with different types, levels, and
patterns of structural divergence.

Results: In Arabidopsis thaliana, we denote levels of structural divergence between duplicated genes by differences
in coding-region lengths and average exon lengths, and the number of insertions/deletions (indels) and maximum
indel length in their protein sequence alignment. Among recent duplicates of different modes, transposed
duplicates diverge most dramatically in gene structure. In transposed duplications, parental loci tend to have longer
coding-regions and exons, and smaller numbers of indels and maximum indel lengths than transposed loci,
reflecting biased structural changes in transposed duplications. Structural divergence increases with evolutionary
time for WGDs, but not transposed duplications, possibly because of biased gene losses following transposed
duplications. Structural divergence has heterogeneous relationships with nucleotide substitution rates, but is
consistently positively correlated with gene expression divergence. The NBS-LRR gene family shows higher-than
-average levels of structural divergence.

Conclusions: Our study suggests that structural divergence between duplicated genes is greatly affected by the
mechanisms of gene duplication and may be not proportional to evolutionary time, and that certain gene families
are under selection on rapid evolution of gene structure.
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Background
Gene duplication is an important mechanism for evolu-
tion of functional novelty and increase of genome com-
plexity [1]. Gene duplication may occur by different
modes such as whole-genome duplication (WGD) [2]
and single-gene duplications [3-5]. For example,
Arabidopsis thaliana has experienced at least three
WGD events—two recent events (α and β) since its di-
vergence from other members of the Brassicales clade
and a more ancient event (γ) shared with most if not all
eudicots [6]. Single-gene duplications including local
(tandem or proximal) and dispersed duplications also
contribute to the origin of a substantial portion of
Arabidopsis genes [5,7,8]. Transposed gene duplications,
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which relocate duplicated genes to new chromosomal
positions via either DNA or RNA-based mechanisms
[7,9], may contribute to the widespread existence of dis-
persed duplicates in the Arabidopsis genome [5,7].
Since a likely consequence of gene duplication is rever-

sion to single copy (singleton) status [1], mechanisms
for the retention of duplicated genes have been exten-
sively studied. The ‘neo-functionalization’ model sug-
gests that each of two duplicated genes can be retained
if at least one evolves modified or novel functions [1].
The ‘sub-functionalization’ model suggests that both du-
plicated genes can be preserved if they partition the
functions of their ancestor, through accumulation of de-
generative mutations [10,11]. More recent models for
gene retention include genetic buffering [12], functional
redundancy [13-15], dosage balance constraints
[5,16,17], or need for enhanced expression levels [18,19].
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Figure 1 Ks distributions of different modes of gene duplication.
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Retention of duplicated genes does not occur ran-
domly. Following duplication, genes belonging to some
functional categories have been preferentially restored to
singleton status across different eukaryotic lineages [20].
In plants, modes of gene duplication retain genes in a
biased manner [5]. Genes related to transcription factors,
protein kinases, and ribosomal proteins are preferentially
retained following WGDs [4,21], while those genes related
to abiotic and biotic stress are more likely to be retained
following local duplications [22,23]. Gene transpositions
are more frequent in some families such as F-box, MADS-
box, NBS-LRR, and defensins than others [5,8].
Evolutionary consequences following different modes

of gene duplication have been widely investigated. Dupli-
cated genes retained from WGDs show lower levels of ex-
pression divergence [24-27], functional innovation [28,29],
network rewiring [29,30] and epigenetic changes [31] than
single-gene duplicates. Moreover, among single-gene du-
plications, transposed duplicates tend to evolve faster than
tandem or proximal duplicates [25-27,31].
Functional divergence between duplicated genes was

presumed to be driven by nucleotide substitutions in-
cluding enhancer/promoter mutations, and non-
synonymous and synonymous substitutions [24-27].
However, insertions/deletions (indels) between dupli-
cated genes, which may cause shifts of reading frame
[32], have greater effects on the divergence in protein
secondary structures [33-35]. In addition, duplicated
genes also diverge in exon-intron structures following
gene duplication, which was suggested to play an im-
portant role during the evolution of duplicated genes
[36]. These facts, taken together, suggest that divergence
in gene structures such as exon configuration and indels
may also drive the functional divergence between dupli-
cated genes.
In this paper, we study structural divergence between

duplicated genes in Arabidopsis thaliana. We describe
levels of structural divergence between duplicated genes
using four different measures. Structural divergence is
compared among different modes of gene duplication
including WGD, and tandem, proximal and transposed
duplications, and then related to duplication epochs, nu-
cleotide substitutions and expression divergence. Evolu-
tionary mechanisms for gene-structure divergence are
also investigated.

Results
Comparison of structural divergence among different
modes of gene duplication
Modes of gene duplication in Arabidopsis were classified
into WGD (α, β and γ events) and tandem, proximal and
transposed (<16 Mya, i.e. after Arabidopsis-Brassica diver-
gence, and 16–107 Mya, i.e. between Arabidopsis-Brassica
and Arabidopsis-Populus divergence) duplications, as
described in Methods. Divergence between duplicated
genes often increases with duplication age [24,26,27].
To compare the evolutionary effects of different modes
of gene duplication, it may be helpful to take duplication
age into account. Here, synonymous (Ks) substitution
rates are used as a rough proxy of duplication age. The
Ks distributions of different modes of gene duplication
are shown in Figure 1. The duplicated genes belonging to
α WGD, tandem duplication, proximal duplication and
transposed duplication after Arabidopsis-Brassica diver-
gence (<16 Mya) are relatively younger than those belong-
ing to β and γ WGDs and transposed duplication between
Arabidopsis-Brassica and Arabidopsis-Populus divergence
(16–107 Mya). Thus, to compare structural divergence
among different modes of gene duplication, we restricted
WGD duplicates to those retained from the α event, and
transposed duplications to those that occurred after
Arabidopsis-Brassica divergence (<16 Mya).
Structural divergence between duplicated genes was

measured by differences in coding-region lengths and
average exon lengths, and the number of indels and
maximum indel length in their protein sequence align-
ment. Comparison of structural divergence among dif-
ferent modes of gene duplication is shown in Figure 2.
When measured by differences in coding-region lengths
and average exon lengths and the maximum indel length,
structural divergence between duplicated genes shows the
following trend: WGD < tandem < proximal < transposed
(comparisons between consecutive gene duplication
modes are significant at α = 0.05, Wilcoxon test). When
measured by the number of indels, structural divergence
between duplicated genes follows a slightly different trend:



Figure 2 Comparison of structural divergence among different modes of gene duplication. To minimize the effects of duplication age,
WGD duplicates were restricted to those retained from the α event, and transposed duplications were restricted to those that occurred after
Arabidopsis-Brassica divergence (<16 Mya).
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tandem < proximal <WGD< transposed (comparisons be-
tween consecutive gene duplication modes are significant
at α = 0.05, Wilcoxon test). These comparisons, taken to-
gether, suggest that transposed duplications diverge more
dramatically in gene structure than any other mode of
gene duplication.

Transposed duplications are often associated with biased
changes in gene structure
In transposed duplications, duplicated genes are trans-
posed from ancestral (parental) loci to novel (trans-
posed) loci [7]. Transposed duplications may occur via
DNA or RNA-based mechanisms, and the latter mech-
anism, often referred to as retrotransposition, creates
intronless retrocopies [9]. Comparison of gene structure
between parental and transposed loci may help to better
understand the genetic mechanisms and evolutionary ef-
fects of transposed duplications. We note that in this
analysis we computed numbers of indels and maximum
indel lengths for parental and transposed duplicates sep-
arately. We found that parental loci generally have lon-
ger coding-regions and exons, and fewer indels with
smaller maximum indel lengths than transposed loci
(Figure 3), suggesting that transposed duplications tend
to be associated with biased changes in gene structure.
In other words, transposed duplication is a singular
mode of gene duplication in which gene structure not
only undergoes intensive changes but also is biased to-
ward smaller gene size and complexity. A trend toward
shorter exons, more indels and bigger maximum indel



Figure 3 Percentages of different relationships (greater, equal or less) of structural features between the parental copy (P) and the
transposed copy (T) in transposed duplications.
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lengths suggests that transposed duplications are not
perfectly copied and losses of DNA segments frequently
happen. This trend is contrary to the classical theory
that duplicated genes are fully redundant immediately
following gene duplication [1] but consistent with the
observation that various types of transposable elements
frequently only duplicate gene fragments [37,38].

Structural divergence and duplication epochs
To understand how structural divergence between dupli-
cated genes changes over evolutionary time, we com-
pared structural divergence among different epochs of
gene duplications for WGDs (i.e. among α, β and γ
events) and transposed duplications (i.e. between those
occurring <16 Mya and 16–107 Mya). Figure 4 shows
that the structural divergence between WGD duplicates,
based on all measures, consistently increases across α, β
and γ events; however, for transposed duplications, only
number of indels increases from <16 Mya to 16–107
Mya. Moreover, transposed duplications show a decrease
of maximum indel lengths from <16 Mya to 16–107
Mya. Compared with WGDs, transposed duplications
have a higher rate of gene losses, evidenced by an “L”
shaped distribution of duplication age [11]. It is possible
that the different changing patterns of structural diver-
gence over evolutionary time between WGDs and trans-
posed duplications are determined by the biased, high
rate of gene losses associated with transposed duplica-
tions, e.g. those duplicates that experienced extreme
structural changes are less likely to survive over long pe-
riods of evolutionary time than those that experienced
more moderate structural changes. It is also worth men-
tioning that transposed duplicates that have been pre-
served for long times (16–107 Mya) still shows higher
structural divergence than WGD duplicates retained
from the ancient γ event that occurred ~117 Mya.

Structural divergence and nucleotide substitutions
For duplicated genes, structural divergence and nucleo-
tide substitution are two major types of sequence diver-
gence [36]. We compared non-synonymous substitution
rates (Ka) among different epochs of gene duplication
within WGDs and transposed duplications, and found
the following trend: α WGD < β WGD < transposed (<16
Mya) < γ WGD < transposed (16–107 Mya) (comparisons
between consecutive gene groups are significant at α =
0.05, Wilcoxon test). However, structural divergence of
recent transposed duplications (<16 Mya) tend to be



Figure 4 Comparison of structural divergence between different epochs of gene duplications within WGDs and transposed duplications.
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higher (except being measured by numbers of indels)
than that of γ WGD (Figure 4), suggesting that gene
structure can evolve much faster than nucleotide
substitutions.
To further understand the relationships between struc-

tural divergence and nucleotide substitutions, we com-
puted the Pearson’s correlations between the four
Table 1 Correlations between structural divergence and nucle

Measure of structural
divergence Ka

Difference in coding-region lengths 0.425 (0)

Difference in average exon lengths 0.250 (0)

Number of indels 0.095 (0)

Maximum indel length 0.040 (3.316 × 10-5)
measures for structural divergence and nucleotide sub-
station rates including Ka and Ks, based on all dupli-
cated genes disregarding their modes (Table 1).
Differences in coding-region lengths are significantly,
positively correlated with Ka and Ka/Ks, indicating that
the evolution of gene lengths is related to selection. Dif-
ferences in average exon lengths are also positively, but
otide substitution rates for all duplicate gene pairs

Correlation (P-value) with

Ks Ka/Ks

−0.175 (1.841 × 10-75) 0.525 (0)

0.018 (0.067) 0.133 (0)

0.110 (0) −0.005 (0.619)

−0.016 (0.101) 0.035 (2.169 × 10-4)
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more moderately, correlated with Ka and Ka/Ks, indicat-
ing that the evolution of exon lengths is also related to
selection. However, the number of indels is more likely
to be related to Ks than Ka or Ka/Ks, indicating that
indels occur more or less randomly between duplicated
genes. The correlations between maximum indel lengths
and nucleotide substitution rates are generally trivial,
perhaps because duplicated genes losing long coding
segments are preferentially lost following duplication.
Structural divergence between duplicated genes were
previously suggested to occur more or less randomly, i.e.
correlated with evolutionary time [36]. However, we
show that structural divergence between duplicated
genes are related to both neutral evolution and selection,
indicating that structural divergence between duplicated
genes is a complicated process subject to both intrinsic
and extrinsic factors.

Structural divergence and gene expression divergence
Expression divergence between duplicated genes is pre-
sumed to be determined by their genetic divergence
such as regulatory sequence and coding sequence diver-
gence. Indeed, expression divergence between duplicated
genes was previously shown to be slightly correlated
with Ka and/or Ks [24-26]. To date, it is unclear whether
structural divergence between duplicated genes also
affects their expression divergence. We computed the
Pearson’s correlations between the four measures for
structural divergence and expression divergence based
on the pooled modes of gene duplication (Table 2). All
four measures of structural divergence are positively
correlated with expression divergence, indicating that
structural divergence between duplicated genes is related
to expression divergence. This analysis suggests that to
study the genetic mechanisms for expression evolution
between homologs, it is useful to look into changes in
their gene structures.

The NBS-LRR gene family shows higher-than-average
structural divergence
The NBS-LRR genes have experienced frequent gene
transposition in Arabidopsis [8]. As we have shown that
transposed duplications tend to result in dramatic and
biased changes in gene structure, we propose the hy-
pothesis that the structural divergence between
Table 2 Correlations between structural divergence and
gene expression divergence for all duplicate gene pairs

Measure for structural divergence Correlation P-value

Difference in coding-region lengths 0.130 0

Difference in average exon lengths 0.076 3.46 × 10-11

Number of indels 0.060 1.561 × 10-7

Maximum indel length 0.124 0
duplicated genes belonging to the NBS-LRR family is
higher than the genome average. We computed the
average structural divergence between duplicated genes
belonging to the NBS-LRR family and compared it to
that of the whole set of gene duplications using a t-test
(Table 3). The NBS-LRR gene family indeed shows
higher-than-average structural divergence based on all
four measures, suggesting that certain gene families may
be under the selection for rapid evolution of gene
structure.
Discussion
Ks increases approximately linearly with time only for
relatively low levels of sequence divergence [39], mean-
ing that there is great uncertainty in using Ks to repre-
sent evolutionary time. Thus, to ensure more accurate
analyses, we did not use the correlation between struc-
tural divergence and Ks to investigate how structural di-
vergence changes over time. Patterns of gene colinearity
conservation within and between genomes can be used
to estimate the epochs for WGDs and gene transposi-
tions as previously described [6,40,41]. After assigning
different epochs to gene duplication modes, we used
their Ks distributions only for confirming the order of
their relative ages.
Classical population genetic theories suggest that du-

plicated genes have identical sequences immediately fol-
lowing duplication, and then gradually diverge over
evolutionary time [1]. The observation that structural di-
vergence between WGD duplicates increases with time
is consistent with this classical theory. Due to the fact
that most tandem/proximal duplicates are relatively
younger than the most recent, Arabidopsis-specific α
WGD (Figure 1), comparison between different epochs
of tandem/proximal duplications are not feasible in this
work. However, the observation that transposed duplica-
tions show dramatic and biased structural changes is in-
consistent with the classical theory – but consistent with
the observation that various types of transposable ele-
ments frequently only duplicate gene fragments [37,38].
The observation that there is a decrease of maximum

indel lengths between the transposed duplications that
occurred <16 Mya and 16–107 Mya suggests that struc-
tural divergence between duplicated genes may not be
proportional to evolutionary time. More variations in
maximum indel lengths in recently transposed genes
could indicate that many transposed duplicates are
essentially pseudogenes and not performing important
functions [37], mixed in with the few that confer a strik-
ing, adaptive change that may render them finally
preserved. However, it should be noted that the striking
structural changes that are beneficial still require the in-
tactness of key biological functions, and the transposed



Table 3 Comparison of structural divergence of duplicated genes between the NBS-LRR gene family and all duplicate
gene pairs

Measure for structural divergence NBS-LRR gene family mean Population mean t-test P-value

Difference in coding-region lengths 119.7 76.0 2.862 4.984 × 10-3

Difference in average exon lengths 255.8 164.8 2.902 4.434 × 10-3

Number of indels 12.3 7.0 9.410 5.367 × 10-16

Maximum indel length 93.9 51.6 3.336 1.139 × 10-3
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genes with extreme structural changes seldom survive
over long evolutionary time.
This study reveals that structural divergence between

duplicated genes, measured in different ways, shows dif-
ferent patterns depending on modes of gene duplication,
and can be affected by both neutral evolution and selec-
tion. Changes in gene structure between duplicated
genes involve not only alteration of exon-intron struc-
ture [36,42] and gain/loss of introns [43], but also gain/
loss of DNA segments within coding-regions [37,38]
which occurs more extensively in transposed duplica-
tions. Certainly there can be more measures to describe
structural divergence between duplicated genes, and new
biological insights can be generated based on novel mea-
sures for structural divergence. For duplicated genes,
structural divergence seems more complicated than nu-
cleotide substitutions. Future studies toward better un-
derstanding of the evolutionary mechanisms for gene
structure changes are necessary.

Conclusions
In this work, we investigated structural divergence be-
tween Arabidopsis duplicated genes. We found that
transposed duplicates diverge more dramatically in gene
structure than genes duplicated by other modes, and
that the structural changes in transposed duplications
are biased toward shorter length and lower complexity.
Structural divergence increases with evolutionary time
for WGDs, but not transposed duplications, possibly be-
cause genes experiencing severe changes are preferen-
tially lost. Structural divergence between duplicated
genes is related to nucleotide substitution rates in differ-
ent manners, but consistently positively correlated with
expression divergence. The NBS-LRR gene family shows
higher-than-average levels of structural divergence. This
study suggests that structural divergence between dupli-
cated genes, greatly affected by the mechanisms of gene
duplication, may be not proportional to evolutionary
time, and that certain gene families are under selection
on rapid evolution of gene structure.

Methods
Genome annotations
Genome annotations for Arabidopsis thaliana, Brassica
rapa, Populus trichocarpa and Vitis vinifera were
obtained from Phytozome v8.0 (http://www.phytozome.
net). For genes with multiple transcripts, only the lon-
gest transcript was used in related analyses.
Identification of gene duplication modes in Arabidopsis
Transposable element-related genes in Arabidopsis were
excluded from analysis. Arabidopsis WGD duplicates
were initially obtained from a previous study [6]. Then,
α WGD duplicates were updated according to another
study [44], to exclude tandemly-duplicated WGD dupli-
cates which were shown to have very similar evolution-
ary patterns with tandem duplicates [45]. The WGD
duplicate pairs included 3181 α, 1451 β and 521 γ pairs.
Other modes of gene duplication were identified from
the BLASTP result [46] of the Arabidopsis thaliana gen-
ome (E-value < 10-10 & top five non-self hits for each
gene). A total of 2130 tandem and 784 proximal duplica-
tions were obtained based on the following criteria: tan-
dem duplications were BLASTP hits to consecutive
genes in the genome; proximal duplications were
BLASTP hits to nearby genes in the genome interrupted
by fewer than ten non-paralogous genes.
To identify Arabidopsis transposed duplications,

WGD duplicate pairs and tandem and proximal duplica-
tions were removed from the BLASTP result. In
Arabidopsis, ancestral loci were the colinear genes be-
tween Arabidopsis and its outgroups (related genomes
showing colinearity with Arabidopsis), and the non-
colinear genes were deemed to be novel loci.
Arabidopsis transposed duplications were the BLASTP
hits consisting of an ancestral chromosomal locus and a
novel locus. Note that based on different sets of
outgroups, transposed duplications that occurred within
different epochs can be inferred [40,41]. Using Brassica
rapa, Populus trichocarpa and Vitis vinifera as outgroups,
we identified 1701 transposed duplications which
occurred after Arabidopsis-Brassica divergence, i.e. <16
Million years ago (Mya). Using Populus trichocarpa and
Vitis vinifera as outgroups, we identified 2731 transposed
duplications which occurred after Arabidopsis-Populus
divergence, i.e. <107 Mya. By subtraction of the above two
sets of transposed duplications, the remained 1862 trans-
posed duplications were inferred to have occurred be-
tween Arabidopsis-Brassica and Arabidopsis-Populus

http://www.phytozome.net
http://www.phytozome.net
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divergence, i.e. 16–107 Mya. Arabidopsis duplicated genes
of different modes are listed in Additional file 1.

Indels between duplicated genes
The protein sequences of two duplicated genes were
aligned using Clustalw [47] with default parameters. The
Clustalw alignment was then transformed to a “fasta”
format alignment, in which, gaps, i.e. consecutive “-”,
were deemed to be indels.

Coding sequence divergence
Coding sequence divergence was measured by non-
synonymous (Ka) and synonymous (Ks) substitution
rates. The protein sequences of duplicate genes were
aligned using Clustalw [47] with default parameters.
Then, the protein sequence alignment was converted to a
coding sequence alignment using the “Bio::Align::Utilities”
module in the BioPerl package (http://www.bioperl.org/).
Finally, Ka and Ks were calculated using the Yang & Niel-
sen method [48] via the “Bio::Tools::Run::Phylo::PAML::
Yn00” module in the BioPerl package.

Gene expression data
Gene expression data generated from the Affymetrix
Arabidopsis ATH1 Genome Array (GPL198) were
obtained from previous studies [26,49]. The expression
divergence between duplicated genes was measured by
1-r, where r is the Pearson’s correlation coefficient be-
tween their expression profiles [26].

Additional file

Additional file 1: Arabidopsis duplicated genes of different modes.
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