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Abstract

Background: Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant
genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first
discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which
nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns
observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties.
Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to
RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA
degradation are involved in these phenomena has not been known. Here, we addressed this question using
deep-sequencing and bioinformatic analyses of small RNAs.

Results: We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in
transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has
naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the
second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that
RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in
cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these
plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems.
Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that
produced phased siRNAs were conserved.

Conclusions: The features of siRNA production found to be common to cosuppression and naturally occurring
silencing of the CHS-A gene indicate mechanistic similarities between these silencing systems especially in the
biosynthetic processes of siRNAs including cleavage of CHS-A transcripts and subsequent production of secondary
siRNAs in exon 2. The data also suggest that these events occurred at multiple sites, which can be a feature of
these silencing phenomena.
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Background

RNA silencing refers collectively to diverse RNA-mediated
pathways of nucleotide-sequence-specific inhibition of
gene expression. RNA silencing of genes is induced by the
presence of double-stranded RNA (dsRNA) homologous
to the genes. The dsRNAs are processed into small RNAs,
especially 21- to 24-nulceotide (nt) short interfering RNAs
(siRNAs), by a dsRNA-specific ribonuclease, Dicer or
Dicer-like (DCL) proteins [1,2]. In Arabidopsis, DCL2,
DCL3 and DCL4 produce 22-, 24- and 21-nt siRNAs,
respectively [3]. The siRNAs are incorporated into
Argonaute (AGO) proteins and serve as a guide for
sequence-specific cleavage of a target RNA, leading to
posttranscriptional gene silencing (PTGS) [4,5]. Tran-
scriptional repression can also be induced by dsRNA,
which contains a sequence homologous to a gene
promoter and can trigger cytosine methylation on the
promoter in the nuclear DNA resulting in transcriptional
gene silencing (TGS) [6-8]. Like siRNAs, small RNAs
called microRNAs (miRNAs) also negatively regulate the
expression of endogenous genes through either RNA
cleavage or the arrest of translation, which is another
pathway of RNA silencing [1,9]. Small RNA (miRNA or
siRNA)-mediated cleavage of an RNA can trigger the
production of 21-nt secondary siRNAs either upstream or
downstream of the original target site, a phenomenon
called transitivity [4]. In Arabidopsis, small RNA-mediated
cleavage can trigger conversion of the targeted RNA to
dsRNA by RNA-dependent RNA polymerase 6 (RDR6),
which is then cleaved into 21-nt phased siRNAs by
DCL4. These siRNAs can include those termed trans-
acting siRNAs (tasiRNAs), which silence other gene(s)
in trans [10-12]. Small RNAs of 22 nt trigger RDR6-
dependent secondary siRNA production [13,14]. A
recent study indicated that the presence of 22-nt RNA
in either strand of the small RNA duplex is sufficient for
this reaction [15].

Overexpression of the chalcone synthase-A (CHS-A)
gene under the control of the cauliflower mosaic virus
(CaMV) 35S promoter and the nopaline synthase (NOS)
terminator causes the production of white sectors or com-
pletely white flowers in transformed petunia (Petunia
hybrida) plants [16,17]. This system was the first example
of RNA silencing induced by a transgene. In these
transgenic petunia plants, silencing of both the CHS-A
transgene and endogenous CHS-A gene was induced,
so that the event was termed cosuppression [16]. The
production of the wild-type pigment is inhibited
because chalcone synthase performs an essential step
in the biosynthesis of anthocyanins. Various silencing
patterns in the petal tissues have been observed in the
petunia CHS-A silencing system [18,19]. Because it
induces visibly altered phenotypes, CHS-A silencing in
petunia is a model system to study RNA silencing [20].
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Based on the inhibition of pigmentation in flower
petals, Sijen et al. demonstrated that a transgene that
expresses dsRNA corresponding to the transcribed
region and the promoter region induced PTGS and
TGS, respectively [8]. In our recent study, we used a
virus vector and succeeded in inducing heritable TGS
of the endogenous CHS-A gene, thereby produced a
plant that does not carry a transgene but has altered
traits [21,22].

Some of the flower-color patterns observed in trans-
genic petunias having cosuppression of the CHS-A
genes resemble those in nontransgenic varieties [18].
One such variety is Red Star, which produces bicolor
flowers having a star-type red and white pattern. As
expected from the phenotypic similarity with the flowers
of CHS-A cosuppressed plants, the flower color pattern
in Red Star was in fact demonstrated to be due to
sequence-specific degradation of the CHS-A RNA in the
white sectors [23]. Petunia breeding was launched in the
1830s by crossing among wild species [18]. The gener-
ation of the star-type petunia flowers as a consequence
of hybridization between plant lines suggests that the
RNA silencing ability can be conferred via the shuffling
of genomes that differ slightly from each other [20].
Similar naturally occurring RNA silencing has been
reported for a picotee-type variety of petunia, which has
nonpigmented sectors in the outer edge of the petal
tissues [24], and for other plants such as rice [25],
soybean [26-29], maize [30] and dahlia [31].

Cosuppression has been thought to be caused by a
couple of mechanisms. It can be induced when multiple
transgenes are integrated into the same site in the
genome in an inverted orientation and fortuitous read-
through transcription over the transgenes produces
dsRNA homologous to an endogenous gene in the
genome, a pathway termed inverted repeat (IR)-PTGS.
When sense transcripts from a transgene trigger co-
suppression through RNA degradation, the pathway is
referred to as sense (S)-PTGS [4]. A model for S-PTGS
proposes that transgene-derived aberrant RNAs that
lack a poly(A) tail or 5" capping are used as a template
for RDR6 to produce dsRNA, thereby triggering PTGS
[4]. An alternative scenario is that nuclear-accumulated
sense transcripts form imperfect hairpin structures,
which resemble miRNA precursors, are processed into
small RNAs and function as a trigger for RNA degra-
dation via RDR-catalyzed synthesis of dsRNA, resulting
in PTGS [32].

Our previous data indicated that CHS-A cosuppres-
sion is induced by a high level of transcription of the
CHS-A transgene, shown by the fact that CHS-A
cosuppression is induced when the CHS-A transgene is
transcribed by the CaMV 35S promoter but not when
the transcription from the promoter is repressed by
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epigenetic changes involving spontaneous cytosine
methylation of the promoter [33]. These observations
are consistent with the threshold model for induction
of RNA degradation, which was first suggested on the
basis of a viral RNA analysis: viral RNA degradation is
triggered when the amount of viral RNA exceeds a
certain level in plant cells [34]. This notion is also con-
sistent with the fact that the frequency of cosuppres-
sion in petunia is correlated with the strength of the
promoter of the CHS-A transgene [35]. Thus, CHS-A
cosuppression can be triggered when a particular RNA,
e.g., CHS-A primary transcripts or some other RNA
molecule(s) derived from them, exceed a certain level.
However, neither the RNA molecule(s) nor the sensing
mechanism(s) of the threshold is known.

A potential trigger for CHS-A cosuppression in petu-
nia has been suggested on the basis of a deep sequen-
cing analysis of CHS-A siRNAs [36]. Two abundant
siRNAs in antisense polarity, termed phy-siR1 and phy-
siR2, were detected in a cosuppressed line. On the basis
of the presence of these siRNAs with phased siRNAs,
the authors proposed that these two siRNAs guide
CHS-A mRNA cleavage and initiate the generation of
phased siRNAs, leading to cosuppression. On the other
hand, CHS-A siRNA profiles in another cosuppressed
transgenic line having inverted repeat T-DNA [37] or a
petunia variety that produces picotee-type flowers [24]
indicated the presence of multiple abundant siRNAs. At
present, whether the population of siRNAs detected in
one CHS-A cosuppressed line is common to different
CHS-A cosuppressed lines or CHS-A naturally silenced
lines is not known. Moreover, no insight into a general
mechanism(s) of cosuppression in terms of siRNA
production has been presented in any plant species.

To address these questions, here we analyzed CHS-A
siRNA populations from silenced and nonsilenced tis-
sues of a transgenic line having CHS-A cosuppression
and a non-transgenic variety Red Star in detail. We
show that multiple abundant siRNAs from CHS-A exon
2 are produced in the silenced tissues in both silenced
lines. We also found profound commonality in siRNA
production in the silenced tissues of the cosuppressed
line and Red Star, which suggests the presence of a
common mechanism of RNA degradation that likely
depends on an evolutionary conserved feature in exon 2
of the CHS-A gene.

Results

We analyzed the mRNA and siRNAs of the CHS-A gene
in the white and pigmented portions of petal tissues of
petunia plants that have cosuppression or naturally oc-
curring RNA silencing of the CHS-A gene. The CHS-A
cosuppressed line contains a single copy of the CHS-A
transgene and produces petals with a white and purple
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pattern. The size of the white portions is variable, but
they are invariably centered on the junctions between
petals; hence, the pattern is called the junction pattern
[19] (Figure 1la, left). The bicolor petals of nontrans-
genic variety Red Star have a star-type white and red
pattern: the white sector forms along the veins in the
center of each petal (Figure 1a, right). In the white petal
tissues of both the junction-type (J-type) and Red Star
plants, CHS-A mRNA was barely detected (Figure 1b)
but CHS-A siRNAs accumulated (Figure 1c), confirming
the occurrence of CHS-A RNA degradation [23].

CHS-A
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a-tubulin (RT-)

c Jp Jw R-p Rw

CHS-A siRNA >

(short exposure) —2int

. —21nt

CHS-A siRNA >
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tRNA + 5S rRNA

H

Figure 1 Detection of CHS-A mRNA and siRNAs in J-type and
Red Star flowers. (a) Flower phenotypes of J-type (left) and Red
Star (right) plants. (b) Steady state mRNA levels of the CHS-A gene in
the white and pigmented petal tissues examined by RT-PCR. J-p,
pigmented portions of petals in J-type; J-w, white portions of petals
in J-type; R-p, pigmented portions of petals in Red Star; R-w, white
portions of petals in Red Star. Transcripts of a-tubulin gene were
amplified as a positive control. A reaction mixture without reverse
transcriptase was used as a control to confirm that no amplification
occurred from genomic DNA contamination of the RNA sample
(RT=). (c) Detection of CHS-A siRNAs by Northern blot analysis. Same
tissues were used as in the RT-PCR. Hybridization signals obtained
with two exposure durations are shown. Ethidium-bromide-stained
tRNA and 5S rRNA bands are shown below the panels to show that

an equal amount of the small RNA fraction was loaded.
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Table 1 Number of siRNA reads mapped in the CHS-A
gene region

Read statistic J-w J-p R-w R-p

21,138355 26817315 21318490 25612671

Total reads analyzed

Total reads mapped in
CHS-A region

Sense strand 78,684 3,672 33,958 2,716
Antisense strand 182,513 7,058 49627 1,812
Total 261,197 10,730 83,585 4,528

Abbreviations: J-p, pigmented portions of J-type petals; J-w, white portions of
J-type petals; R-p, pigmented portions of Red Star petals; R-w, white portions
of Red Star petals.

Mapping of siRNAs on the CHS-A gene in a CHS-A
cosuppressed line

We analyzed siRNAs in J-type plants by deep sequen-
cing technology. Of 21,138,355 reads, 261,197 reads
matched the CHS-A gene region in the white portions
of petals in J-type plants (Table 1). The size distribution
of siRNAs mapped in the CHS-A gene region revealed
the predominance of siRNAs of 21 nt and 22 nt, espe-
cially 21 nt, for both sense and antisense strands in this
plant line (Figure 2a). This result indicates that CHS-A
siRNAs are predominantly produced by the function of
DCL4 orthologue(s). The position and abundance of the
21-nt to 24-nt siRNAs mapped in the CHS-A gene
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region are shown in Figure 3. Almost all the siRNAs
were mapped to exon 2 of the CHS-A gene region (see,
for example, Figure 3a, b). There is uneven distribution
of siRNA within exon 2, indicating the presence of
multiple hot spots for siRNA production. CHS-A
siRNAs were also detected in the purple portions of
petals in J-type plants, although the level of siRNAs was
1/30 of the level in the white tissues (Figure 2a, b). The
presence of siRNAs at a low level in the pigmented petal
tissues was also shown by the Northern blot analysis
(Figure 1c, see “long exposure”).

The endogenous CHS-A gene and CHS-A transgene
have different nucleotide sequences in the 3" untrans-
lated region. siRNAs specific to the endogenous CHS-A
gene and those specific to the CHS-A transgene were
both detected (Figure 4), which indicates that mRNAs
derived from the endogenous CHS-A gene and CHS-A
transgene are both degraded via RNA silencing path-
ways. The number of siRNA mapped in this region was
higher for the CHS-A transgene than for the endogen-
ous CHS-A gene (Figure 4).

Mapping of siRNAs on the CHS-A gene in a non-
transgenic variety

The production of CHS-A siRNAs was also analyzed in
petal tissues of Red Star. In the white portions of petals,
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21-nt and 22-nt siRNAs were predominant (Figure 2c).
The production of siRNAs was confined to exon 2, which
included multiple highly abundant siRNAs (Figure 5), as
observed for the white portions of J-type plants. Simi-
larly, CHS-A siRNAs were also detected in red portions
of Red Star flowers at a very low level (1/20-1/40 of the
level in white tissues; Figure 2c, d). The read number
indicated that more CHS-A siRNAs were detected in
the white petal tissues of J-type plants than in those of
Red Star plants (Table 1; Figure 2a, c). These results are
consistent with the difference in the signal intensity in
the Northern blot analysis (Figure 1c).

The presence of siRNAs mapped in the vicinity of the
intron-exon 2 boundary

Because the distribution of CHS-A siRNAs was confined
to exon 2 in both J-type and Red Star plants, we had a
close look at the mapping of siRNAs in the boundary
between intron and exon 2. The 21-nt siRNAs mapped
closest to intron in exon 2 were 13 nt and 11 nt distant
from the intron—exon 2 boundary in the white portions
of J-type plants for sense and antisense strands, respect-
ively (Figure 6). Similarly, the siRNA mapped closest to
the boundary was 51 nt (data not shown) and 33 nt
(Figure 6) distant from the boundary in the white
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portions of Red Star for sense and antisense strands,
respectively. In addition, 22-nt siRNAs of both sense
and antisense strands were mapped at similar positions
(22 nt and 9 nt distant from the boundary, respectively)
in the J-type (Figure 6). Thus, the 5° end of siRNA
production in exon 2 was very close to the intron—exon
2 boundary in both J-type and Red Star plants.

Commonality in the abundance of siRNAs between J-type
and Red Star plants

We compared the read number of 21-nt siRNAs
between J-type and Red Star plants. We found that
siRNAs highly abundant in the white portions of J-type
plants were also highly abundant in the white portions
in Red Star, and vice versa. For example, 18 of the 20
most abundant siRNAs of the sense strand (in 682
siRNA species) detected in the white portions of J-type
plants were found within the 24 most abundant siRNAs
(in 469 siRNA species) detected in the white portions of
Red Star flowers (Figure 7a). Similarly, 16 of the 20 most
abundant siRNAs of the antisense strand (in 670 siRNA
species) detected in the white portions of J-type plants
were found within the 23 most abundant siRNAs (in
451 siRNA species) in the white portions of Red Star
plants (Figure 7b). Most strikingly, the same siRNA of

antisense strand was most abundant in both J-type and
Red Star plants (Figure 7b).

To compare the overall feature of siRNA production
between J-type and Red Star plants, we analyzed the
correlation in the rank of siRNAs based on the number
of reads between J-type and Red Star plants. We calcu-
lated Spearman’s rank correlation coefficient using
siRNAs that had more than five reads, which cover 97—
99% of all siRNA reads (see “value B / value A” in
Table 2); 214 sense and 180 antisense different siRNA
species, which were detected in both J-type and Red
Star plants, were used for the calculation. The results
indicated that the siRNA ranks in J-type and Red Star
plants are highly correlated with each other for both
sense and antisense strands (for the sense strand,
re=0.723, P<0.01; for the antisense strand, r,=0.852,
P <0.01) (Table 2). Taken together, these results indicate
commonality between J-type and Red Star plants in
terms of siRNA production.

A similar correlation in the rank of siRNAs between
J-type and Red Star plants was also detected for 22-nt
siRNAs (Additional file 1: Figure S1). For example, the
two most abundant siRNAs were common to J-type
and Red Star plants for both sense and antisense
strands.
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Figure 5 Position and abundance of siRNA mapped on the CHS-A gene region in Red Star plants. For more details, see Figure 3 legend.

Commonality in the production of phased siRNAs

In Arabidopsis, cleavage of transcripts by a small RNA
can result in in-phase generation of 21-nt secondary
siRNAs by DCL4 after production of dsRNA by RDR6
[11,12]. To detect phased siRNAs in the J-type and Red
Star plants, we mapped siRNAs of the CHS-A gene
independently in 21 different phases. Figures 8 and 9
show the distribution of 21-nt phased siRNAs that are
contiguous for three or more units in each phase in
exon 2. These phased siRNAs were detected in all 21
phases in both J-type and Red Star plants for both
sense (Figure 8) and antisense (Figure 9) strands except
for “phase 2” of the antisense strand in Red Star
(Figure 9).

Phased siRNAs were distributed more widely in
J-type plants than in Red Star plants: the 5° end of
phased siRNA-producing region in J-type was 151-nt
and 254-nt upstream of that in Red Star for sense and
antisense strands, respectively, while the 3" end of
phased siRNA-producing region encompassed the 3’
end of the CHS-A coding region in both J-type and Red
Star plants. Both siRNA reads and phasing scores were
consistent with a wider distribution of phased siRNAs
in J-type than in Red Star (Figures 10 and 11). The
maximum number of contiguous units was 19, which
covers a 399-nt region (in J-type antisense strand,
phase 10) (Figure 9). Some of the 5" ends or 3" ends of
the regions that produced phased siRNAs in Red Star
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Figure 6 Position and abundance of siRNAs mapped in the boundary region between intron and exon2 of the endogenous CHS-A
gene. Data for 21-nt and 22-nt siRNAs in the white petal tissues of J-type (J-w) and Red Star (R-w) plants are shown. DNA sequence in the
intron-exon 2 boundary (20 nt of intron and 40 nt of exon 2; nucleotide positions 2731-2790) is shown. Bars above and below the x-axis indicate
siRNAs mapped on the sense and antisense strands, respectively. Nucleotide positions of the 5" end of exon 2, and those of the 3" ends of
antisense siRNAs mapped in this region are indicated. No 22-nt siRNA was mapped in this region in R-w.

plants were conserved in J-type plants; of the 62 regions
that produced phased siRNAs for sense strand in Red
Star plants (Figure 8, indicated by blue lines), 21 of the
5" ends and 16 of the 3" ends were conserved in J-type
plants (Figure 8, indicated by red dots). Similarly, of the
50 regions that produced phased siRNAs for antisense
strand in Red Star plants, 19 of the 5" ends and 12 of
the 3" ends were conserved in J-type plants (Figure 9).
We also found that 21-nt siRNAs mapped in the vicinity
of intron—exon 2 boundary in the antisense strand in
J-type plants (Figure 6) were phased siRNAs (Figure 9;
phase 10).

Overall, these data indicate that phased siRNAs were
produced in multiple phases at multiple sites over exon
2 in both J-type and Red Star plants. The presence of
common ends of phased siRNAs suggests that the
mechanism(s) of the production of phased siRNAs,
including the sites of RNA cleavage to initiate phased
siRNA production, is considerably conserved between
these plants for both sense and antisense strands.

Discussion

Small RNA profiles suggest a common mechanism of RNA
degradation in cosuppression and naturally occurring
RNA silencing of the CHS-A gene

We found that various features of small RNA produc-
tion in white petal tissues are common to J-type and
Red Star plants: predominant size class, exon-2-specific
production, the highly abundant species, and in-phase
production of siRNAs. Multiple abundant 21-nt or
22-nt siRNAs can be produced from DCL cleavage of
secondary-structured nascent CHS-A transcripts. They
may cleave CHS-A RNA with AGO orthologue(s) to
trigger secondary siRNA production. Alternatively,
these abundant siRNAs can be a product of DCL cleav-
age of dsRNAs synthesized by an RDR6 orthologue(s)
from the nascent transcripts or AGO-cleaved tran-
scripts (Additional file 2: Figure S2). It is also possible
that the dsRNAs are formed by intermolecular RNA
interaction [38]. In these scenarios, differences in the
abundance of siRNAs reflect differences in the efficiency
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a J-w sense strand R-w sense strand
Rank Read number  Nucleotide sequence (5' to 3') Position Rank Read number  Nucleotide sequence (5' to 3) Position
1 8605 UUGGAUGAAAUGAGAAAGGCC 3608 —> 3628 1 2764 AAUAAAGUUGGGCCUAAAGCC 3514 —> 3534
2 6267 CAUUUGGAUAGUUUAGUUGGC 3185 —> 3205 2 2167 UUUGGAUGAAAUGAGAAAGGC 3607 —> 3627
3 5740 UUUGGAUGAAAUGAGAAAGGC 3607 —> 3627 3 1765 UUGGAUGAAAUGAGAAAGGCC 3608 —> 3628
[ 4 3660  AGAAGGUUUAGGAACUACUGG 3637 -> 3657 [ 4 1043 AGAAGGUUUAGGAACUACUGG 3637 > 3657
5 2663 AAUAAAGUUGGGCCUAAAGCC 3514 -> 3534 5 988 UUAAGUGACUAUGGUAACAUG 3563 —> 3583
6 1807 UUUGUUCGAGCUGCGUUUCAGC 3277 -> 3297 {6 830  AUUUCUGAUUGGAACUCUCUA 3446 -> 3466
7 1709 UAGGAACUACUGGUGAAGGGC 3645 —> 3665 7 785 CAUUUGGAUAGUUUAGUUGGC 3185 —> 3205
8 1226 ACAGUUGAGACUGUUGUCCUC 3704 -> 3724 [ '8 646 GCAUUUCUGAUUGGAACUCUGC 3444 -> 3464 |
9 1187 CUUACUCAAAGAUGUUCCUGG 3370 —> 3390 9 530 CGAGAAACUUAAGGCUACAAG 3535 —> 3555
[[10 1027 UGCGGUUAGCCAAGGAGCUUGGG 3085 > 3105 | 10 530 UUUGUUCGAGCUCGUUUCAGG 3277 > 3297
870 CGAGAAACUUAAGGGUAGAAG 3535 -> 3555 [11 523 GGGCAUUUGUGAUUGGAACUG 3442 -> 3462
12 505 UAGGAACUACUGGUGAAGGGC 3645 —> 3665
732 UUCGUCCAUCGGUCAAGAGGC 3021 —> 3041 13 425 ACAGUUGAGACUGUUGUCCUC 3704 —> 3724

342 CUUACUCAAAGAUGUUCCUGG 3370 —> 3390
324 UGAUUGGAACUCUCUAUUCUG 3451 -> 3471
UACUCAAAGAUGUUCCUGGGC 3372 —> 3392 290 ACAAGGAAUGUGUUAAGUGAC 3551 —> 3571
270 AAAUAAAGUUGGGCCUAAAGC 3513 —> 3533
254 UACUCAAAGAUGUUCCUGGGC 3372 —> 3392
21 437 UGAAGUUGGGCUUACAUUCCA 3349 -> 3369
22 410 UUGGGCAUUUCUGAUUGGAAC 3440 —> 3460 22 221 UGGGCUAACAGUUGAGACUGU 3697 —> 3717
23 398 CAAGUUGAAAUAAAGUUGGGC 3506 —> 3526 23 218 UGAAGUUGGGCUUACAUUCCA 3349 -> 3369
24 369 CUUUUUGGUGAUGGGGCAGGC 3212 -> 3232 24 204  GGCAUUUCUGAUUGGAACUCU 3443 -> 3463
25 361 UUCGGUUAGCCAAGGACUUGG 3084 —> 3104 25 186 UCUGAUUGGAACUCUCUAUUC 3449 -> 3469
682 1 CUACUGGUGAAGGGCUUGAGU 3651 -> 3671 469 1 GACAUGCCUGGGUGUGACUAU 2978 -> 2998
b J-w antisense strand R-w antisense strand
Rank Read number  Nucleotide sequence (5' to 3) Position Rank Read number Nucleotide sequence (5’ to 3) Position
1 30445 CUGAACAAACAACAAGGACUC 3126 —> 3146 1 3535 CUGAACAAACAACAAGGACUC 3126 —> 3146
2 11394 GAGAAGAGUUUGGGCUGCUGA 3293 —> 3313 2 2866 UGAAACGAGCUCGAACAAAGG 3275 —> 3295
3 7816 AAACGAGCUCGAACAAAGGCC 3273 —> 3293 3 2051 AAACGAGCUCGAACAAAGGCC 3273 —> 3293
4 7658 UGGGAGAAGAGUUUGGGCUGC 3296 -> 3316 4 1340 AAACAACAAGGACUCGAGCGC 3120 -> 3140
5 6150 UGAAACGAGCUCGAACAAAGG 3275 > 3295 5 1138 UCUGAACAAACAACAAGGACU 3127 —> 3147
6 5336 UCUGAACAAACAACAAGGACU 3127 -> 3147 6 981 AGUAGCAACACUGUGGAGGAC 3719 —> 3739
7 4283 GAAACGAGCUCGAACAAAGGC 3274 —> 3294 7 966 GAAACGAGCUCGAACAAAGGC 3274 —> 3294
8 3693 UCAAUAUUUUUUGAGAUCAGC 3391 —> 3411 8 662 UUUGGGCUGCUGAAACGAGCU 3285 —> 3305
9 3074 AAACAACAAGGACUCGAGCGC 3120 —> 3140 9 610 CCAGGAACAUCUUUGAGUAAG 3370 —> 3390
10 2004 ACCGCGGUGAUUUCUGAACAA 3139 > 3159 10 570 UUGAGUAAGUGGAAUGUAAGC 3358 -> 3378

11 1682 * UGAACAAACAACAAGGACUCG  3125-> 3145

13 1559 GGAGAAGAGUUUGGGCUGCUG 3294 -> 3314

1150 CCAGGAACAUCUUUGAGUAAG

3370 -> 3390

20 1117 UAAGUUUCUCGGGCUUUAGGGC 3525 —> 3545
21 1043 UGAGUAAGUGGAAUGUAAGCC 3357 —> 3377
22 995 UGGCUAACCGAAGAACCGUGC 3075 —> 3095
23 986 UUUGGGCUGCUGAAACGAGCU 3285 —> 3305
24 898 UUGAGUAAGUGGAAUGUAAGC 3358 -> 3378
25 800 AUGGCUAUCUGGGAGAAGAGU 3305 -> 3325
670 1 AAGUGAGACAUAGAACCCGUU 1928 —> 1948

13 522 GUUUGGGCUGCUGAAACGAGC 3286 —> 3306
15 465 GAGAAGAGUUUGGGCUGCUGA 3293 —> 3313
17 413 CUGAAACGAGCUCGAACAAAG 3276 —> 3296
18 381 UAAGUUUCUCGGGCUUUAGGC 3525 —> 3545
20 342 UGAGUAAGUGGAAUGUAAGCC 3357 —> 3377
21 338 * UGAACAAACAACAAGGACUCG 3125 -> 3145
22 322 UUAAGUUUCUCGGGCUUUAGG 3526 —> 3546
24 290 GGAGGACAACAGUCUCAACUG 3705 -> 3725
25 271 UGCUGAAACGAGCUCGAACAA 3278 -> 3298
451 1 CUCAAGCCCUUCACCAGUAGU 3650 —> 3670

Figure 7 (See legend on next page.)
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(See figure on previous page.)

Figure 7 Highly abundant 21-nt siRNAs in the white portions of petals in J-type and Red Star plants. The order of siRNAs of sense (a) and
antisense (b) strands was arranged according to the number of reads in deep-sequencing analysis. J-w and R-w refer to the siRNAs detected in
the white portions of J-type and Red Star plants, respectively. Twenty most abundant siRNAs in J-w are colored, and the siRNAs of the same
sequence in Red Star are colored the same. Note that most of the highly abundant siRNAs in J-type plants are also highly abundant in Red Star
plants. Phy-siR1 and phy-siR2 [36] are indicated by single and double asterisks, respectively.

of these biosynthetic processes or in the stability of
siRNAs possibly mediated by association with AGO
orthologue(s). The presence of common siRNAs sug-
gests that sequence and/or structural preference in
these processes is highly conserved in the two silencing
systems.

Phased siRNAs of multiple phases were detected in this
study. The presence of common ends of the regions that
produced the phased siRNAs between J-type and Red Star
plants suggests that the positions of the cleavages of CHS-A
transcripts and subsequent production of secondary
siRNAs are conserved. In addition, the mapping data
suggested that phased siRNAs were produced from neigh-
boring phases, the 5" or 3" end of which was mapped at
positions that differed by one nucleotide (Figure 12). A
mechanism that could allow this phenomenon is the
production of siRNAs of more than one phase by a single
cleavage, but no evidence for this scenario has been
reported. Alternatively, the primary siRNAs that determine
the initiation site of phasing might be produced from posi-
tions differed by one or a few nucleotides. The fact that
highly abundant siRNAs were mapped at positions that are
very close to each other (see below) is consistent with the
notion that the primary siRNAs may be produced from
such a limited place. Because of the presence of phased
siRNAs of various phases at various regions of exon 2, we
propose that, irrespective of the pathway of initial produc-
tion of dsRNA, RNA cleavage at various sites that initiate
production of secondary siRNAs can be a feature of both

Table 2 Reads and rank correlation of 21-nt siRNAs in
white tissues of J-type and Red Star petals

Read statistic Sense strand Antisense
strand
J-w R-w J-w R-w
Total number of siRNA reads (value A) 59,386 23,840 122,753 27,197

Total number of reads for siRNA
species with >5 reads (value B)

58,705 23,287 122,033 26,646

Value B / value A 0989 0977 0994  0.980
Total number of siRNA species 682 469 670 451
Number of siRNA species with >5 374 219 337 182
reads

Number of siRNA species with >5 214 180

reads in both J-w and R-w

Rank correlation coefficient (r, ) 0.723°% 0.852°

P <001
Abbreviations: J-w, white portions of J-type petals; R-w, white portions of Red
Star petals.

cosuppression and naturally occurring RNA silencing of
the CHS-A gene (Additional file 2: Figure S2).

Exon-2-specific production of siRNAs

In both J-type and Red Star plants, siRNA production
was almost always confined to exon 2. Moreover, the 5
end of siRNA production in exon 2 was very close to in-
tron. These observations suggest that the primary event
of CHS-A RNA degradation occurred in exon 2, and
subsequent transitive RNA degradation did not reach
the intron across the intron—exon 2 boundary.

It is possible that this phenomenon is associated with
splicing. In fact, the presence of intron and/or splicing
can suppress RNA silencing in plants [39,40]. In this
regard, binding of factors involved in splicing, e.g., U2
auxiliary factors that bind to the 3" splice site upon spli-
cing [41] or splicing factors that remain associated with
the exon—exon junction even after splicing is completed
[42], might inhibit progression of dsRNA synthesis
over the intron—exon boundary. However, in the white
tissues of J-type plants not only the endogenous CHS-A
gene transcripts but also the CHS-A transgene
transcripts were degraded, while very few siRNAs were
produced outside exon 2. These observations indicate
that exon 2-specific production of siRNAs occurred
even on transcripts lacking an intron. Therefore, there
may be mechanism by which siRNA production from
CHS-A transgene transcripts may be affected in trans, if
splicing or spliceosome formation is involved in the
exon-2-specific production of CHS-A siRNAs.

An alternative model to explain the exon-2-specific
siRNA production is that the 5" end of RNA degrad-
ation can be determined by an siRNA that targets a pos-
ition in the vicinity of the intron—exon 2 boundary. The
“two-hit trigger” model suggests that transitivity occurs
in an RNA segment between two positions that are
targeted by small RNAs [43]. According to this model,
the observed siRNA production can be explained by the
presence of siRNA that targets exon 2 in the vicinity of
the intron—exon 2 boundary and another siRNA that
targets a position downstream. Candidate siRNAs that
may terminate degradation are those mapped in the vicinity
of intron—exon 2 boundary (Figure 6).

Production of siRNAs that is essentially confined to
exon 2 has also been observed for naturally occurring
silencing of the CHS genes in soybean [28,44] and dahlia
[31]. These results, together with the observations
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Figure 8 Phased siRNAs from sense strand of CHS-A exon 2. Data in upper and lower panels were obtained from white portions of J-type
and Red Star petals, respectively. Presence/absence of 21-nt siRNAs was analyzed in 21 phases independently. The results of each phase are
marked 1-21: the first nucleotide of “phase 1" corresponds to the first and last nucleotides of the CHS-A reference sequence (see Methods) for
sense and antisense strands, respectively. Blue lines: regions producing phased siRNAs of three or more contiguous units. Red dots: 5’ or 3" ends
of phased-siRNA producing regions that are common to J-type and Red Star petals.

regarding the petunia CHS-A gene [24, 36, 37, this
study], suggest that a conserved feature in exon 2 of the
CHS gene across plant species, e.g., the secondary struc-
ture of transcripts and/or termination of transcription,
is a key element involved in the induction of CHS RNA
degradation. We mapped highly abundant siRNAs on
the secondary structure of CHS-A RNA predicted by
using m-fold software [45]. Some of the highly abundant
siRNAs were mapped within limited regions that
formed an incomplete dsRNA structure comprising
both a stretch of base-pairing and an unpaired loop
structure (Additional file 3: Figure S3). Such a structure
is reminiscent of the fact that the presence of bulges ad-
jacent to the cleavage site is important for processing
primary miRNAs [46]. It is tempting to speculate that
such a “partially opened” structure is preferred by DCL
or RDR6 orthologue(s) and leads to the production of
abundant siRNAs.

Potential triggers of cosuppression and naturally
occurring RNA silencing of the CHS-A gene

Among the cases of naturally occurring RNA silencing so
far reported, a triggering mechanism has been suggested

for only a few cases, all of which involve production of
dsRNA either through read-through transcription of
duplicated and rearranged genes [25,47,48] or through
convergent transcription of an overlapping gene pair
[49]. The presence of an inverted repeat comprising
CHS genes or gene segments is correlated with CHS
RNA silencing in soybean, and loss of such structures
suppresses its induction in spontaneous mutants
[28,29]. In petunia, the mechanism(s) responsible for
naturally occurring CHS-A RNA silencing is not known,
aside from the fact that the silencing occurs via RNA
degradation that involves siRNA production [23]. A
correlation between naturally occurring CHS-A RNA
silencing that results in the star-type or picotee-type
flower color pattern and the presence of two tandemly
linked CHS-A genes has been reported in petunia [24].
However, these two CHS-A genes are separated by a
long sequence (almost 7 kb), and a causative relation-
ship between RNA silencing and the presence of the
two copies of the CHS-A gene has not been presented.
For sense RNA-mediated silencing such as cosuppres-
sion in transgenic plants, a threshold sensing model, in
which aberrant single-stranded RNA that accumulates
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Figure 9 Phased siRNAs from antisense strand of CHS-A exon 2. The ends of phased siRNAs indicated by dotted lines are shown in detail in

3 units of phased siRNAs (63 nt)

beyond a critical level triggers its copying into dsRNA,
has been suggested [50]. In fact, previous observations
in CHS-A cosuppressed petunias are consistent with this
notion [33,35]. Meanwhile, De Paoli et al. reported the
presence of two extra-abundant 21-nt siRNAs of anti-
sense polarity of CHS-A, phy-siR1l and phy-siR2, in a
CHS-A cosuppressed petunia line and proposed that
these siRNAs may trigger subsequent degradation of
CHS-A transcripts [36]. On the other hand, we found
that there are 21-nt siRNAs of both sense and antisense
polarities that are more abundant than phy-siRl and
phy-siR2 (Figure 7; phy-siR1 and phy-siR2 are indicated
by single and double asterisks, respectively). Moreover,
no phased siRNAs whose end positions coincide with a
cleavage in the middle of phy-siR1l or phy-siR2 were
detected in this study (data not shown). These results,
together with the presence of siRNAs in multiple
phases, suggest that phy-siR1 and phy-siR2 are at least
not the sole trigger for RNA degradation in different
CHS-A cosuppressed lines, although circumstantial
evidence indicates that RNA cleavages with these
siRNAs can induce phased siRNA production [36]. The
reason for the difference between our data and that of
De Paoli et al. is not known at present, but we speculate
that a slight difference in the developmental stage of the

flowers could affect the composition of the siRNA
population. Such a possibility needs to be examined, but
can be excluded in the comparison between the J-type
and Red Star plants of this study because flower tissues
of an identical developmental stage were used for our
analysis. Our data suggest that the CHS-A transcripts
are cleaved at multiple, conserved positions in both
J-type and Red Star plants. The siRNAs that guide these
cleavages may include a potential trigger of RNA silen-
cing. Whether a single cleavage of RNA can lead to
extensive RNA degradation through RNA silencing
pathways in these silencing systems is an issue to be
addressed.

The presence of siRNA at a low level in pigmented cells

We found that CHS-A siRNA was present in pigmented
portions in both J-type and Red Star plants at a low
level. On the other hand, an extremely low level (only 2
reads) of CHS-A siRNA was detected in 16,651,540 total
reads for line V26 (data not shown), a wild-type plant
that produces completely purple flowers and was used
to produce J-type plants through the introduction of the
CHS-A transgene. Therefore, the presence of CHS-A
siRNAs in the pigmented petal tissues in J-type plants is
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associated with cosuppression that occurred in other
cells of the petal tissue.

A likely explanation for the presence of CHS-A siRNA
in pigmented cells is that RNA is degraded at a low rate
in the pigmented cells. Alternatively, the siRNAs may
migrate from cells that underwent PTGS through
plasmodesmata. In either case, these results raise a
novel possibility that a threshold level of CHS-A siRNAs
might be associated with extensive RNA degradation in
addition to the previous idea that an aberrant CHS-A
primary transcript level constitutes such a threshold
level. It would not be surprising that, taking into
account the observed commonality in siRNA profiles
between these two silencing systems, they share a com-
mon sensing mechanism for trigger RNAs.

Conclusions

The present study revealed common features in siRNA
production of the CHS-A gene between cosuppression
in transgenic plants and naturally occurring silencing in

nontransgenic plants of petunia. In both silencing
systems, 21-nt and 22-nt siRNAs were the first- and the
second-most abundant size classes, respectively. CHS-A
siRNA production was confined to exon 2, indicating
that CHS-A RNA is degraded through processes includ-
ing cleavage and secondary siRNA production in this
exon. Common siRNAs were detected in cosuppression
and naturally occurring RNA silencing, whose ranks,
according to the number of siRNAs in these plants,
were correlated with each other. Highly abundant
siRNAs were produced from multiple sites, many of
which were common to the two silencing systems.
Phased siRNAs were detected in multiple phases, and
some of the ends of the regions that produced phased
siRNAs were conserved. These results indicate mecha-
nistic similarity between cosuppression and naturally
occurring RNA silencing of the CHS-A gene, especially
in the biosynthetic processes of siRNAs including cleav-
age of CHS-A transcripts and subsequent production of
secondary siRNAs, which presumably depend on the
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nucleotide sequence and/or structural features of exon
2 RNA.

Methods

Plant materials

Petunia hybrida variety Red Star (Takii Seed Co., Japan)
and a transgenic petunia line that produces junction-
type flowers (J-type) [33] were used for analyses. The
transgenic line is a descendent of the CHS223 line
[19,51] and contains a single-copy CHS-A transgene.
The white and the pigmented petal tissues of these
plants were analyzed separately. Petal tissues were used
at the developmental stage when the mRNA level of the
CHS-A gene is highest [52].

Isolation of total RNA and RT-PCR

Isolation of total RNA from flower tissues, cDNA syn-
thesis, and RT-PCR were done as described previously
[37]. The following primer pairs were used for the
PCR: for the CHS-A gene, 4246 (5'-GGCGCGATCA
TTATAGGTTC-3") and 5003 (5'-TTTGAGATCAG
CCCAGGAAC-3"); for the a-tubulin gene, tub 125 F

(5'-CAACTATCAGCCACCAACTG-3") and tub 267R
(5"-CACGCTTGGCATACATCAGA-3").

Northern blot analysis of siRNA

Low-molecular-weight RNA was isolated, and CHS-A
siRNAs were detected by Northern blot analysis using a
digoxigenin-labeled probe essentially as described by
Goto et al. [53]. The following modifications were
applied: RNA extraction buffer contained 100 mM
Tris—HCI (pH 8.8), 20 mM EDTA, 200 mM NacCl and
4% N-lauroyl sarcosine; an RNA probe specific for CHS-
A antisense RNA was labeled by in vitro transcription of
the plasmid carrying a 0.44-kb region of the CHS-A
gene [53] using DIG RNA labeling kit (Roche Applied
Science, Basel, Switzerland) for use in hybridizations.

Deep sequencing analysis of siRNA

Low-molecular-weight RNA was extracted from the
petal tissues of flower buds before the buds opened
(~4.5 cm long for J-type and ~5.0 cm long for Red
Star). Tissues were frozen with liquid nitrogen and
extracted with RNA extraction buffer containing
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were very close to each other in Red Star petals. Nucleotide sequences of siRNAs located at the 5’ end of phased siRNAs are shown. Open boxes:
observed phased siRNA units next to the sequences. Differences in the number of nucleotide between neighboring phases are indicated to

21 nt phased siRNA

<<

10 mM Tris—HCI (pH 7.5), 100 mM NaCl, 1 mM
EDTA, and 1% (w/v) SDS. After extraction with
phenol/chloroform, high-molecular-weight RNA was
precipitated by mixing the aqueous phase with 1/3
volume of 8 M LiCl. After the solution was kept on ice
overnight, the solution was centrifuged, and the
nucleic acids in the supernatant were precipitated with
ethanol. After centrifugation, the pellet was dissolved
in water, and an equal amount of 20% polyethylene
glycol (MW =8000) was added to the solution to
separate high-molecular-weight nucleic acids. The
solution was held on ice for 1 h, then centrifuged, and
low-molecular-weight RNA in the supernatant was
precipitated with ethanol. After centrifugation, the pel-
let was dissolved in water and used for the following
reactions. Low-molecular-weight RNA was ligated to
5'- and 3'-RNA adapters, reverse transcribed, and
amplified by PCR using a Small RNA Sample Prep Kit
(Ilumina, San Diego, CA, USA) according to the man-
ufacturer’s protocol except that we separated small
RNAs by electrophoresis on a 3% agarose gel instead of
an acrylamide gel. Nucleotide sequence of the ampli-
fied ¢cDNA was analyzed using an Illumina Genome
Analyzer. The adapter sequence was trimmed from the
raw short-read data, and the resulting short reads
(15-45 nt) were mapped to the nucleotide sequence of
the CHS-A gene region (EMBL/GenBank/DDB] data-
base accession X14591), allowing only perfect matches.
Nucleotide positions in this study correspond to those
on this sequence. The secondary structure of CHS-A
sense and antisense RNAs was predicted by m-fold

software [45]. Correlation between the rank of the
siRNA of J-type and Red Star plants was evaluated by
Spearman’s rank correlation coefficient. Phased siRNAs
were detected by independently mapping siRNAs of the
CHS-A gene in 21 different phases. Calculation of phas-
ing scores and assignment of scores to cycle position
were done according to Howell et al. [54]. Nucleotide
sequence data have been deposited in NCBI's Gene
Expression Omnibus and are accessible through GEO
Series accession number GSE42965.

Additional files

Additional file 1: Figure S1. Highly abundant 22-nt siRNAs in white
portion of J-type and Red Star petals. The siRNAs of sense (a) and
antisense (b) strands were ordered according to the number of reads in
deep-sequencing analysis. J-w and R-w refer to the siRNAs detected in
white portions of J-type and Red Star petals, respectively. The 10 most
abundant siRNAs in J-w are colored, and the siRNAs of the same
sequence in Red Star are colored the same. Note that most of the highly
abundant siRNAs in J-type plants are also highly abundant in Red Star
plants.

Additional file 2: Figure S2. RNA cleavage at various sites that initiate
production of siRNA can be a feature of sSiRNA production common to
cosuppression and naturally occurring RNA silencing of the CHS-A gene.
siRNAs are produced from DCL cleavage of secondary-structured nascent
CHS-A transcripts or dsRNAs produced by RDR6 orthologue(s) from the
nascent transcripts. These siRNAs then cleave the CHS-A RNA at the
target site with AGO, which triggers RDR6-mediated dsRNA production
and subsequent DCL cleavage that produces phased siRNAs.

Additional file 3: Figure S3. Commonality of the siRNA hot spots
between J-type and Red Star petals. Abundant siRNAs in the white
tissues of J-type and Red Star petals are mapped on a secondary
structure (a) and antisense (b) strands predicted by m-fold. Close ups of
major hot spots are shown in windows, in which positions of nucleotides
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corresponding to siRNAs are marked by circles. Darker colors represent
more total reads of siRNAs that contain the nucleotide. Mapped positions
of siRNAs often overlapped, so that neighboring nucleotides had
different colors. Nucleotide positions of abundant siRNAs mapped in
each region are listed in the corresponding windows. Ranks of siRNA
according to read number (see Figure 7) are in parentheses.
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