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Abstract

Background: Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria,
studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed
that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie
to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence
of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and
nonribosomal peptide synthetases (NRPSs).

Results: We have used comparative genomics to provide an overview of the genomic features of a set of 102
closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We
have focused on well-represented genera and determine the occurrence of gene cluster families therein.
Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles
for natural products in the biology of each genus. The abundance of natural product classes is also found to vary
greatly between genera, revealing underlying patterns that are not yet understood.

Conclusions: A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis
formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the
diversity and ecology of natural products as the number of genome sequences available continues to grow.
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Background
The class Actinobacteria is the largest within the phylum
Actinobacteria and contains many bacteria relevant to
human health and industry (see [1] for review). These
bacteria are Gram-positive with genomic GC content
generally over 55%. Some of them, such as the Strepto-
myces, were originally mistaken for fungi, as evidenced
by the name of the group (myces is derived from the
Greek word for fungus) and were once considered rela-
tives of fungi based on morphology and life cycle. The
existence of a life cycle involving multiple, distinct stages
and morphologies has also made some actinomycetes,
such as “Streptomyces coelicolor” A3(2), important model
systems for studying differentiation and the signaling
pathways involved therein.
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The class Actinobacteria, or the actinomycetes, con-
tains both the most deadly bacterial pathogen and the
organisms that are the most important for antibiotic
production. Mycobacterium tuberculosis is the second
leading cause of death worldwide due to an infectious
agent (after HIV/AIDS [2]), while the genus Streptomy-
ces is the source of over half of the bioactive metabolites
from bacteria [3]. The genus Corynebacterium contains
deadly pathogens but also includes non-pathogens that
are the leading producers of L-amino acids, which repre-
sent some of the most important microbial products in
terms of both volume and value [4]. Numerous other
pathogens and pharmaceutical producers, as well as eco-
logically and industrially important taxa are also found
among this important microbial group.
Actinomycetes have historically been a leading source

for natural product discovery [5]. These compounds,
also called secondary metabolites, have a wide range of
industrial uses, including as antineoplastic, antifungal,
antimicrobial, herbicidal and plant growth promoting
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agents. They are also important components of iron-
acquisition systems and signaling molecules important
for development. Production of secondary metabolites
may also be important adaptations to environments such
as soil, and may aid competition for resources such as
plant matter. Whatever their use, the genes that are re-
sponsible for production of individual secondary metab-
olites are almost always located together in the genome
and are referred to as biosynthetic gene clusters. The co-
location and horizontal transfer of these gene clusters is
fascinating in and of itself, but is also a trait that aids in
discovery, characterization and comparison of the genes
responsible for secondary metabolite biosynthesis (see
[6,7] for an overview and discussion of evolutionary
implications).
Many researchers have voiced optimism that genome

mining for novel secondary metabolites will result in a
renaissance of discovery and fill the innovation gap that
has left the pipelines at low levels [8-10]. The main rea-
son for this is that Streptomyces and related genera, the
traditional focus of discovery, rarely express their full
inventory of chemical weapons when cultivated in the
lab. For example, “Streptomyces coelicolor” A3(2) was a
genetic workhorse for some 40 years before having its
genome sequenced and was known to make only four
secondary metabolites. The genome sequence revealed
an additional 18 biosynthetic gene clusters [11]. Bio-
synthetic gene clusters which are present but not
known to produce any secondary metabolites are re-
ferred to as cryptic clusters. There have been no sys-
tematic studies to date, however, on whether a cryptic
biosynthetic gene cluster in one species is also likely
to be cryptic in a second species, and therefore the
fraction of undiscovered secondary metabolites based
solely on genetic capacity may tend to overestimate
the number of pathways that are cryptic. With this in
mind, being able to classify and compare biosynthetic
gene clusters, and thus systematically catalog the ex-
tent of natural product diversity, is an important first
step towards a full exploitation of secondary metabo-
lites in bacteria. This is, however, a difficult bioinfor-
matics task for the two most common classes of
natural products, type I polyketide synthases (PKS),
and nonribosomal peptide synthetases (NPRS), due to
the multiple similar domains present in both (see [12]
for a review).
Currently, there are six actinomycete genera with suffi-

cient numbers of completed genomes to allow an in-
depth analysis of secondary metabolic diversity. We
compared the genomes within these six, Mycobacterium,
Corynebacterium, Rhodococcus, Arthrobacter, Frankia,
and Streptomyces, in detail to determine the extent to
which natural product gene clusters are conserved
within each genus. We also present a broad, genome-
scale comparison of complete genomes across the class
Actinobacteria.

Methods
All genomes were downloaded from NCBI on Septem-
ber 21, 2011. An attempt was made to include all species
for which publicly available closed genomes were avail-
able within the order Actinomycetales as shown within
NCBI taxonomy browser, although this taxonomic group
has been re-ordered recently to compose the class
Actinobacteria [1]. Plasmids were omitted from the ana-
lysis to prevent skewing long term evolutionary trends.
Predicted proteins were used as annotated, and an all-v-
all BLAST comparison was performed using BLAST
v2.2.26+ [13].

Phylogeny and whole genome comparisons
OrthoMCL version 2.0 with default settings was used for
further analysis of BLAST results [14]. OrthoMCL simi-
larity groups with “S. coelicolor” A3(2) genes annotated
as ribosomal proteins were used for phylogenetic ana-
lysis. Only ribosomal protein genes in similarity groups
containing a single gene from each species were used for
this analysis. The complete list of genes used is: L1, L2,
L3, L4, L5, L6, L7/L12, L9, L10, L11, L13, L14, L15, L16,
L17, L18, L19, L20, L21, L22, L23, L24, L25p, L27, L29,
L35, S1, S3, S5, S6, S7, S8, S9, S10, S11, S12, S13, S15,
S17, S19, S20. The amino acid sequences of these genes
were aligned with Clustal W 1.83 [15] and concatenated
for phylogenetic analysis. The concatenated gene tree
was made using FastTree 2.1.5 run with the Gamma20
model [16]. A NeighborNet network was created using
the same data in the program SplitsTree 4.11.3 [17].
Groups of similar genes as output by OrthoMCL were

parsed with custom Perl scripts to calculate pairwise
genome similarity. Similarity was calculated as Sij/Gi,
where Sij is the number of similar genes between ge-
nomes i and j, and Gi is the total number of genes in
genome i. When multiple genes from the organisms be-
ing compared appeared in one similarity group, the
count for number of similar genes was determined by
whichever genome has fewer copies. Dividing by the
total number of genes in only one genome means that
there are two similarity measures presented for each
pairwise comparison.

Biosynthetic gene cluster discovery and comparison
Signature enzymes for major classes of secondary metab-
olites were found using profile Hidden Markov Models
(pHMMs) and the program HMMER [18]. The pHMMs
used are a mixture of those reported by Medema et al.
[19] with the same cut-offs mentioned therein for PKS I,
PKS II, PKS III, NRPS, indolocarbazoles, aerobactin-
like siderophores, butyrolactones, aminoglycosides, and
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β-lactams, including screening for fatty acid synthases that
are hit by the PKS models. New pHMMs were made for
discovery of terpene synthases based on the sequences
published in [20], lanthipeptides based on the required
cyclase domain, see [21] for review, and thiazole-oxazole
modified microcins, or TOMMs based on the YcaO
domain [22]. The new pHMMs and alignments are
presented in a stand-alone website (see Additional file 1).
Phosphonates were found using a BLAST search and
screening for sequences containing the EDK-X(5)-NS
motif present in all verified PepM sequences (see [23] for
review). Gene clusters were defined by extending six
genes to either side of a significant pHMM hit (past the
specified cut-off ), joining additional hits within that win-
dow into the same cluster, and re-initiating the six gene
count after encountering additional hits. The six gene ex-
tension was a practical choice; when we defined gene
clusters with longer extensions the comparisons in-
cluded more noise (divergent genomic neighborhoods
not related to biosynthetic genes), and fewer genes in
each cluster resulted in too little data for comparisons.
This choice was made with future automation in mind.
Similar gene clusters were found using an array of tools
including phylogenetic comparisons and Mauve [24]
alignments after concatenation of all gene clusters in
each strain into one sequence. A website showing all
gene clusters are included as Additional file 1. Gene
cluster diagrams also include domain annotations, but
these are not manually curated and some domains are
incorrectly split in half. Gene annotation and domain
names are available on mouseover.

Results and discussion
102 closed actinomycete genomes were grouped into
seven broad categories according to isolation source,
smear-ripened cheese being the most narrowly defined
(Figure 1). The two most common isolation sources for
actinomycetes are animal hosts and soil, although re-
cently marine actinomycetes have garnered significant
interest. Obligate pathogens, which by definition live in
a well-defined and constant niche, tend to have under-
gone genome reduction, a trend not limited to actino-
mycetes [25]. Bacteria that dwell in soil, a very diverse
and changing habitat, may benefit from a larger reper-
toire of genes that allows acclimation, response and
adaptation to changing conditions and hence have much
larger genomes.
To provide context for the gene cluster comparisons, we

constructed a phylogenetic tree using concatenated amino
acid sequences from 41 ribosomal proteins shared by all
strains (Figure 1). This is tree in good agreement with the
phylogeny published by Gao and Gupta using 35 con-
served genes from 98 actinobacterial genomes [26],
although there are a couple of notable differences. In our
tree Nakamurella multipartita DSM 44233T is found
outside of the Pseudonocardiales, where it was within
Pseudonocardiales based on their tree. Geodermatophilus
obscurus G-20T was found to branch with Frankia,
whereas their analysis suggested that it lay outside of the
Frankiales. We also show that the groups they refer to as
Micrococcales I and II group together, from Leifsonia xyli
to Arthrobacter chlorophenolicus on our tree. Because it
has already been shown that there can be extensive
horizontal gene transfer within the actinomycetes [27,28],
and that genome-based trees can differ from 16S and
concatenated gene trees [29], we tested for recombination
in the data set using the PHI test implemented in
SplitsTree (p=1.0). A NeighborNet analysis was also not
largely reticulate (Additional file 2), as one would expect
for a data set impacted by homologous recombination.
The secondary metabolite classes examined are also
shown in Figure 1. While this is not an exhaustive list, it
does cover all common secondary metabolites of actino-
mycetes. As might be expected, genome size and number
of secondary metabolite biosynthetic gene clusters are
positively correlated, as larger genomes can accommo-
date more gene clusters devoted to secondary metabol-
ism (Figure 1 and Figure 2). This has also been noted in
genomes of anaerobic microbes [30]. Interestingly, for
genomes containing between 2000 and 6000 genes,
pathogens tend to have a larger number of secondary
metabolite biosynthetic gene clusters than free-living
isolates from soil. This trend may not continue as more
genomes from this order are sampled, however, as most
of the pathogen genomes supporting this trend are from
Mycobacterium. The same may be true with other pat-
terns relating to isolation source.
To examine the overall similarity of the genomes be-

tween these organisms, we performed an all-vs-all
BLAST search and grouped the results into sets of ho-
mologs using OrthoMCL. Two comparisons are shown
in Figure 3. Both axes are ordered in the same way,
based on the ribosomal protein tree. Each pairwise com-
parison is a tally of the homologs shared by two ge-
nomes. If multiple homologs were listed for each
organism (e.g. T. whipplei has two copies of a gene and
S. bingchinggensis has four) then the smaller number
was counted for that single comparison. The total num-
ber of homologs for each pair of organisms was then di-
vided by the total number of genes. This was done such
that every vertical column is divided by the correspond-
ing strain on the top, horizontal tree. For example,
Tropheryma whipplei has only 783 protein coding genes
due to reductive evolution as an intracellular pathogen.
Therefore, T. whipplei shares nearly all its gene set with
other strains (vertical column); while containing only a
fraction of the genes present in other strains (horizontal
row). In contrast, S. bingchenggensis has the largest
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Figure 1 Genome size, isolation source and number of secondary metabolite gene clusters. The phylogenetic tree shown is calculated on
concatenated ribosomal proteins and rooted with Bifidobacterium bifidum as an outgroup. The two bar plots are presented with species in the
same order as the phylogenetic tree, representing genome size in thousands of genes on the left, colored by habitat, and number of secondary
metabolite gene clusters on the right. Any combinations of cluster types found together count independently, e.g. an NRPS/PKS hybrid would be
counted once as an NRPS and once as a PKS. The colors corresponding to habitat type and secondary metabolite class are shown in the key
below the bar plots.
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number of protein-coding genes (10,022), so the many
smaller genomes contain only a small fraction of the
genes held by S. bingchenggensis, and this is reflected by
a dark-colored vertical column.
Overall genome similarity clearly reflects the organis-

mal phylogeny when distinguishing genera and large
branches within a genus; however, the taxonomic level
of genus is not uniformly applied. For example,
Salinispora, Verrucosispora, and Micromonospora strains
clearly show genomic similarities on the same degree as
the other genera analyzed here and, thus, could be con-
sidered a single genus. The oldest of these genera, and
therefore the one with precedence in naming, is
Micromonospora [31]. Verrucosispora was described as a
novel genus on the basis of a lack of arabinose in whole
cell sugars, the presence of 10-methyl C17:0 fatty acids,
and a 16S rRNA gene sequence not previously found in
the family Micromonosporaceae [32]. The genus
Salinispora was differentiated from other genera based
largely on 16S rRNA gene diversity, a unique combin-
ation of fatty acid type and major menaquinones, and
the requirement of sea water for growth [33]. It also ap-
pears that the genus Arthrobacter, which has long been
divided into two groups, should be represented by two
genera and Renibacterium should also remain separate.
The case for Arthrobacter groups remaining in the same
genus, however, was systematically considered and the
two groups were determined to be members of the same
genus with two “nuclei” [34]. A broader utilization of
genomic data by the taxonomic community would assist
in the creation of universal criteria for both species and
genera definitions [35,36]. The genomes generated for
research on natural products are very useful for improv-
ing actinobacterial systematics. Because taxonomy im-
pacts both research focus and the interpretation of
results, scientists with an interest in natural products
should in turn not ignore the impact their data can have
on taxonomy.
The whole genome comparisons also show a notice-

able, but somewhat uneven, difference between rapid
and slow-growing mycobacteria. It appears that the rate
of genomic change leading to the branch containing
Mycobacterium leprae and the M. tuberculosis strains
has affected genomic content more than the change
from rapid-growing nonpathogens to the slow-growing
pathogens Mycobacterium sp. JDM601, Mycobacterium
avium subsp. paratuberculosis K-10, Mycobacterium
avium 104, Mycobacterium ulcerans Agy99 and Myco-
bacterium marinum M. In other words, the switch to
pathogenicity itself did not require rapid genomic
change because such rapid change is isolated to the M.
leprae and M. tuberculosis branch of the tree. Unlike
with Mycobacterium strains, the Corynebacterium iso-
lates do not show such a large change between
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Figure 3 Whole genome similarity. The order for this comparison is the same as the phylogenetic tree in Figure 1, which has been shrunk and
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pathogens and nonpathogens. This is also reflected by
what is known about the evolution of pathogenicity in
Corynebacterium, as many pathogenicity factors ap-
pear to be acquired through recent horizontal gene
transfer [37].

Gene cluster diversity
Given the diversity of lifestyles and habitats of actinomy-
cetes it should be expected that discrete genera use sec-
ondary metabolites differently. For many of the genera
examined, the most conserved secondary metabolite
clusters are siderophores, whether they are NRPS prod-
ucts or NRPS-independent. 41 out of 102 genomes con-
tain at least one gene cluster for NRPS-independent
siderophore biosynthesis (aerobactin-like), but 31/34 in
the Corynebacterium, Mycobacterium, Nocardia group
do not have this class of siderophores. The Corynebac-
terium, Mycobacterium, Nocardia group (from Mycobac-
terium africanum to Segniliparus rotundus DSM 44985
in Figure 1), all contain the gene cluster for mycolic acid,
with the exception of Corynebacterium kroppenstedtii
(see Additional file 1, Conserved Clusters). In general,
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the genera with more pathogenic members, Corynebac-
terium and Mycobacterium, have higher proportions of
conserved secondary metabolite gene clusters than
the essentially saprophytic genera Streptomyces and
Rhodococcus (Figure 4). This may be due to the in-
creased homogeneity of environments inhabited by
pathogens compared to free-living bacteria. This pat-
tern based on host-association is broken with the
Frankia, however, as Frankia species have almost no
overlap in their secondary metabolic capabilities. All
gene cluster families (GCFs) are shown in Additional
file 3, and a stand-alone website is provided in Add-
itional file 1 that contains all gene clusters found in
the complete set of genomes. All conserved clusters
mentioned are also present on the website provided
under the “Conserved Clusters” link.
One use for GCFs is the potential for cluster boundary

delineation. Over evolutionary time natural product gene
clusters will change their location on genomes and
phylogenetic trees through horizontal gene transfer and
genome rearrangements [6,7]. This mobility changes the
Lanthipeptides PKS
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independent siderophores are shown for each genus. For example, in Arth
themselves and one type of PKS gene cluster that shows up four times. To
number 10 is highlighted in red on the y-axis when present.
surrounding genes, and if the GCF is found in enough
genomic backgrounds, then the genes surrounding the
cluster will change. The drop in gene content similarity
is used to determine gene cluster boundaries shown in
Figure 5. Knowing the genes involved in biosynthesis is es-
sential for synthetic biologists and geneticists attempting
to refactor pathways or to attempt heterologous expres-
sion of natural products in a new host.
Another use for GCFs is in correlating with molecular

families through MS analyses. The basis for this work is
that similar gene clusters should produce similar natural
products [38]. The gene cluster families presented here
can be correlated with the presence of such similar
products, or molecular families, to uncover novel associ-
ations and find new natural products that would other-
wise remain hidden in the analysis of a single sample.

Mycobacterium
Within Mycobacterium, many of the PKS gene clusters
are well conserved in large phylogenetic groups, Figure 6,
which are largely accounted for by differences in the
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complicated cell wall of the mycobacteria. For example,
the gene cluster for the production of mycolic acid is
shared by all strains, whereas the genes for production
of phthiocerol are only present in slow-growing, patho-
genic strains. In contrast, the NRPS clusters, with one
exception, are either unique or shared with only a single
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Figure 6 Distribution of abundant gene clusters in
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Mycobacterium. The tree is a subtree of that shown in Figure 1.
Strains shown in blue contain the gene cluster indicated and strains
shown in black do not. All strains above JDM601 are nonpathogenic
or rarely opportunistic pathogens; branches leading to pathogenic
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identical distribution patterns, the data suggest that some are
important enough to be conserved for pathogenesis and others
may be more useful in soil or aquatic habitats. Genome IDs used in
this figure are: MAB, Mycobacterium abscessus ATCC 19977T; MSMEG,
Mycobacterium smegmatis str. MC2 155; Mflv, Mycobacterium gilvum
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close relative. The single exception is the gene cluster
for mycobactin synthesis, a characterized siderophore,
which is found in all strains except M. leprae. Two
scotochromogenic strains, Mycobacterium gilvum and
Mycobacterium sp. Spyr1 (which is proposed as syn-
onymous with M. gilvum [39]) share a lycopene cyclase
not found in the other strains that is possibly the source
of their coloration (Mflv_0944-0956, Mspyr1_50120-
50240).
Mycobacterium marinum is a very unique genome

with regards to natural products compared to other
Mycobacterium genomes. It has seven NRPS clusters,
two PKS clusters, and three hybrid PKS-NRPS clusters
not found in other mycobacterial genomes completed to
date. This is especially surprising given the very close re-
lationship between M. marinum and M. ulcerans, which
have an average nucleotide identity of >98% [40]. Stinear
et al. has shown that these clusters are not found on a
single genomic island, and some of them may represent
recent duplication events followed by divergence [41].
The evolution of natural product gene clusters in this
group has already been mapped out in detail, including a
new genome sequence for M. liflandii not included in
the present study [42].
Corynebacterium
Corynebacterium is not known for its ability to produce
natural products of the kind investigated here, and their
genomes have not held many surprises in these regards.
The most conserved cluster is that for mycolic acid as
discussed above. Unlike most bacteria in the Corynebac-
terium-Nocardia-Mycobacterium group examined here,
three pathogenic strains, Corynebacterium resistens
DSM 45100T, Corynebacterium ulcerans BR-AD22 and
Corynebacterium diphtheriae NCTC13129, share an
aerobactin-like non-NRPS siderophore gene cluster. The
ratio of isoprenoid and terpenoid biosynthesis gene clus-
ters to PKS and NRPS clusters is high in corynebacteria
compared to other genera, but this may be due simply to
low overall numbers. The importance of these compounds
at least to some of these strains is highlighted by the pres-
ence of the discrete mevalonate and non-mevalonate
pathways for isoprene biosynthesis in Corynebacterium
kroppenstedtii DSM 44385T and Corynebacterium variabile
DSM 44702 [43]. Interestingly, the two mevalonate path-
ways seem to have reached Corynebacterium via different
horizontal gene transfer routes, as they are only 54% similar
to each other and more closely related to genes outside of
the genus. The presence of two mevalonate pathways of dif-
ferent origins in Actinobacteria has been reported before,
and these pathways are not unique to Corynebacterium
among Actinobacteria [44].
Arthrobacter
The secondary metabolites in the Arthrobacter genomes
examined here reveal little more than the divergence of
Renibacterium salmoninarum ATCC 33209T from both
Group I and II arthrobacteria. Overall, these strains have
very few secondary metabolite gene clusters. One NRPS
independent, aerobactin-like siderophore cluster is
shared among all strains except Renibacterium, and a
type III PKS is shared by all Group I strains.
Arthrobacter arilaitensis RE117T and Arthrobacter
aurescens TC1 also share a phytoene synthase gene clus-
ter. The rest of the biosynthetic gene clusters present in
this genus are unique to one strain.
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Rhodococcus
The extent of secondary metabolite gene clusters re-
vealed by Rhodococcus genome sequences was initially
a surprise because no rhodococcal secondary metabo-
lites were previously known [45]. In comparison with
other actinomycete genomes, the Rhodococcus strains
examined here have a skewed ratio of NRPS to PKS
gene clusters. The average ratio of NRPS to PKS gene
clusters for the entire data set is 0.45, but among
rhodococcal genomes this ratio jumps to 2.8. In these
four genomes there are only two PKS clusters that are
found in only one strain, but each genome has at least
four NRPS clusters that are not shared with any of the
others. Despite the abundance of NRPS clusters, there
are no conserved NRPS gene clusters; however, there
are two conserved PKS clusters, one conserved phytoene
synthase, which condenses two geranylgeranyl pyrophos-
phates to phytoene, one conserved lycopene cyclase,
which cyclizes the ends of lycopene to the rings found
in β-carotene, and a conserved butyrolactone bio-
synthetic gene cluster. The presence of a conserved
butyrolactone biosynthetic gene cluster may indicate
that a conserved cell-cell signaling pathway is important
for the rhodococcal life cycle [46]. Rhodococcus strains
are capable of differentiation and growth as either rods,
cocci or hyphal filaments [47], but development has not
been as well studied in this genus as in Streptomyces.
The two strains from soil have larger genomes and more
secondary metabolite biosynthetic gene clusters than
Rhodococcus erythropolis PR4, a species isolated from a
depth of 1,000 m in the Pacific Ocean south of Okinawa
island, Japan, and Rhodococcus equi 103S, an equine
pathogen.

Streptomyces
Based on solely genomic data, Streptomyces are the lo-
gical choice to mine for secondary metabolites. They
have consistently high numbers of secondary metabolite
biosynthetic gene clusters and a large variety of classes.
Of course, streptomycetes have been the most heavily
sampled historically, making rediscovery more likely
when sampling from this genus. The eight genomes ex-
amined in this data set show a large diversity of gene
clusters for secondary metabolism with little overlap be-
tween strains. The most common classes are PKS and
NRPS, followed by terpenoids, aerobactin-like non-
NRPS siderophores and lanthipeptides. All genomes
contain the genes for butyrolactone biosynthesis, and in
all but Streptomyces griseus at least one afsA, the central
butyrolactone biosynthetic gene, homolog per genome is
accompanied by a tetR family regulator immediately 5’
to afsA and in the opposite orientation (see Additional
file 1, under Conserved Clusters). All eight genomes
contain a non-NRPS aerobactin-like siderophore gene
cluster similar to rhizobactin that is not currently tied to
a product (SCO_17 in Figure 5). This gene cluster ap-
pears to be present in Catenulispora acidiphila as well,
but significant changes to the gene cluster occurred be-
tween C. acidiphila and the most recent common ances-
tor of Streptomyces. All but Streptomyces sp. SirexAA-E
contain the genes for the biosynthesis of the aerobactin-
like siderophore desferrioxamine (nocardamine, SCO_10
in Figure 5). All streptomycetes, with the exception of S.
griseus, contain the spore pigment type II PKS gene clus-
ter. S. griseus contains a different spore pigment, pro-
duced instead by a type III PKS [48]. Interestingly, the
lanthipeptide SapB, which was found to be required for
aerial mycelia formation on rich media in “S. coelicolor”
A3(2) and S. griseus [49], is only present in half of the
strains.
Given the number of NRPS and PKS gene clusters in

this genus, the amount of overlap with these clusters be-
tween genomes is very low. Unlike the abundance of
NRPS clusters in Rhodococcus or PKS clusters in Frankia
(discussed below), the ratio of NRPS to PKS clusters is
also not heavily skewed in either direction and varies
throughout the genus. While there has already been a
significant amount of discovery of nonribosomal pep-
tides and polyketides from Streptomyces, only a handful
of terpenoids have been discovered from streptomycetes
(see [20] for a review). Nevertheless, the number of ter-
pene synthases present in these eight genomes comes
close to those for PKS and NRPS biosynthesis,
suggesting that a large diversity of terpenoids remain to
be discovered in members of this genus.

Frankia
Frankia strains have a large number of secondary me-
tabolite biosynthetic gene clusters, the vast majority of
which are PKS clusters not shared with other strains.
There are only four unique NRPS clusters within the
genus, three of which occur only once and one that is
shared by two strains. There are also two hybrid NRPS/
PKS clusters, both unique. Out of the PKS clusters all
but three sets of clusters are unique to one strain. Of the
shared PKS clusters, one is a type II PKS shared by
Frankia sp. CcI3 and Frankia sp. EuI1c, and one is a
type II PKS conserved by all strains. The other cluster is a
type I PKS that is conserved in all strains and duplicated
in Frankia sp. EuI1c and Frankia alni ACN14a. There is
only one type of lanthipeptide cluster found within the
genus, but it is found either twice or four times in all ge-
nomes except FsymDg (Frankia symbiont of Datisca
glomerata, Figure 5B). The sequence logo for the puta-
tive precursor peptides from these twelve lanthipeptide
gene clusters show two conserved cysteine residues and
a conserved threonine, along with a conserved LD motif
that may be related to cleavage of the leader peptide.
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The conservation of cysteines, threonines and serines is
biologically significant in lanthipeptides, as these resi-
dues are involved in lanthionine formation and
cyclization that is central to lanthipeptide function (see
[21] for review).

Other genera
The marine actinomycetes in the genus Salinispora have
been a recent focus of natural products research because
they have been historically understudied and because
they possess large numbers of secondary metabolite gene
clusters [50]. Moreover, they have the genetic capacity
to produce a diverse array of natural product classes,
Figure 1. Of the twelve classes examined in this study,
Salinispora tropica and Salinispora arenicola have gene
clusters that involve seven and nine classes, respect-
ively. Thus, of the complete genomes examined here, S.
arenicola has the highest diversity of secondary metab-
olite classes.
The genomes of Amycolatopsis mediterranei U32 and

S699 (AMED and RAM, respectively), Actinosynnema
mirum 101TT (Amir), Pseudonocardia dioxanivorans
CB1190T (Psed) and Saccharopolyspora erythraea NRRL
2338T (SACE) also show a large number and diversity of
secondary metabolite biosynthetic gene clusters. These
strains were already known to produce rifamycin
(AMED and RAM), nocardicin (Amir), and erythro-
mycin (SACE). Amycolatopsis and Saccharopolyspora in
particular are heavily researched, industrially important
strains. Saccharomonospora viridis DSM 43017T, a
pathogen that falls within the order Pseudonocardiales,
has a smaller genome compared to its closest relatives in
this analysis, a common theme among pathogens, and a
corresponding large decrease in secondary metabolite
biosynthetic gene clusters. The order Streptosporangiales
also has significant potential for secondary metabolite
production based on genome mining, although this is
highly variable dependent on the genus examined.

Conclusions
We have concerned ourselves here with the study of nat-
ural product genetic diversity throughout the actinomy-
cetes because the resultant patterns and observations
add depth and breadth to our understanding of their
molecular biology and ecology. The work presented in
this manuscript is our first step towards a systematic
framework for studying natural products, a difficult bio-
informatic task especially for PKS and NRPS systems.
We have found patterns showing that some genera have
higher prevalence of NRPS or PKS natural products
compared to other genera. We have used multiple types
of comparisons to group every gene cluster in each
genus well-represented by complete genomes. Such gene
cluster families are essential for determining cluster
boundaries and as part of integrated data sets for novel
natural product discovery. These groupings found con-
servation of the spore pigment and desferrioxamine class
of siderophores in Streptomyces, along with mycolic acid,
mycobactin and phthiocerol in Mycobacterium. When
applied to less well-studied genera, analysis of conserva-
tion within phylogenetic groups is a first-step tool to
form hypotheses about pathways that may be of similar
importance. Our focus on the genomes available from
Frankia has allowed us to generate hypotheses about the
importance of several natural product gene cluster fam-
ilies that may relate to core aspects of the evolution and
biology of Frankia. We also show that some mycobacter-
ial natural product gene clusters with uncharacterized
products are preferentially conserved on one of the
other side of the fast or slow growing split that divides
the genus. All conserved clusters are shown together on
a stand-alone website, as well as the complete collection
of all gene clusters found in these genomes. Our broad
overview of actinomycete genomic diversity also rein-
forces the view that several genera within the
Actinobacteria may be in need of new descriptions that
take genomic diversity into account. It is our hope that
this work will provide valuable leads in the field about
yet unforeseen aspects of actinomycete biology and
ecology.
Additional files

Additional file 1: A stand-alone website showing all natural
product gene clusters analyzed in this study, along with separate
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