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Abstract

Background: The large-scale identification of physical protein-protein interactions (PPIs) is an important step toward
understanding how biological networks evolve and generate emergent phenotypes. However, experimental
identification of PPIs is a laborious and error-prone process, and current methods of PPI prediction tend to be highly
conservative or require large amounts of functional data that may not be available for newly-sequenced organisms.

Results: In this study we demonstrate a random-forest based technique, ENTS, for the computational prediction of
protein-protein interactions based only on primary sequence data. Our approach is able to efficiently predict
interactions on a whole-genome scale for any eukaryotic organism, using pairwise combinations of conserved
domains and predicted subcellular localization of proteins as input features. We present the first predicted
interactome for the forest tree Populus trichocarpa in addition to the predicted interactomes for Saccharomyces
cerevisiae, Homo sapiens,Musmusculus, and Arabidopsis thaliana. Comparing our approach to other PPI predictors, we
find that ENTS performs comparably to or better than a number of existing approaches, including several that utilize a
variety of functional information for their predictions. We also find that the predicted interactions are biologically
meaningful, as indicated by similarity in functional annotations and enrichment of co-expressed genes in public
microarray datasets. Furthermore, we demonstrate some of the biological insights that can be gained from these
predicted interaction networks. We show that the predicted interactions yield informative groupings of P. trichocarpa
metabolic pathways, literature-supported associations among human disease states, and theory-supported insight
into the evolutionary dynamics of duplicated genes in paleopolyploid plants.

Conclusion: We conclude that the ENTS classifier will be a valuable tool for the de novo annotation of genome
sequences, providing initial clues about regulatory and metabolic network topology, and revealing relationships that
are not immediately obvious from traditional homology-based annotations.

Background
Proteins do not exist within a vacuum. Much of the
startling diversity of living organisms emerges only with
the aggregate combinatorial complexity of protein-protein
interactions (PPIs) [1]. As such, the discovery of phys-
ical interactions between proteins is often an essential
step in the characterization of protein functions, provid-
ing insights into diverse cellular processes such as the
fluxes of metabolic pathways, the logic of transcriptional
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activation, and the kinetics of signal transduction. This in
turn forms the basis of understanding biological functions
at the organismal scale, including mechanisms of environ-
mental responses and the etiology of disease states.
Despite the biological importance of PPIs and the

availability of high-throughput screening methods in
recent years, experimentally-verified PPI networks
remain sparsely populated, especially with respect to
the amount of sequence data currently available. High
throughput approaches such as automated yeast two-
hybrid screens and tandem affinity purification/mass
spectrometry have detected thousands of binary PPIs
in animal and fungal model organisms such as Homo
sapiens [2], Saccharomyces cerevisiae [3], and Drosophila
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melanogaster [4], yet the current size of the interactome
belonging to the experimental workhorse of the plant
kingdom, Arabidopsis thaliana, only constitutes approx-
imately 3% of its expected size [5]. Moreover, the lack of
significant numbers of PPIs for non-model species hin-
ders the development of evolutionary studies concerning
rewiring within the interactome [6].
The demand for additional PPIs has led to the devel-

opment of several methods for computational PPI predic-
tion over the past decade. Several groups have attempted
to expand the A. thaliana interactome using statisti-
cal learning methodology and/or transfer of interac-
tion annotation based on homology (interologs) [7-10].
Similar methods have been used to expand the num-
ber of network connections in the S. cerevisiae and
H. sapiens proteomes. Though each of these meth-
ods does have the potential to provide useful network
information, each approach carries distinct disadvantages
limiting its use on non-model species. The interolog-
based approaches are limited to discovering PPIs for
only the most conserved proteins, as reflected by their
relatively low discovery rates in A. thaliana [9]. Other
methods rely on an ensemble of functional data, such
as genome-wide measures of co-expression and co-
localization, which is often not available for non-model
organisms.
Although many homologous proteins may evolve to

become highly dissimilar at the primary sequence level,
they often retain conserved structural and/or functional
units known as domains. These domains may directly
mediate interactions between proteins, as demonstrated
by databases of domain-domain interactions such as
DOMINE [11]. However, even in the absence of direct
interaction, certain pairwise combinations of domains
suggest a high probability of interaction. Thus, domain-
based approaches of PPI prediction have the poten-
tial to provide the advantages of the interolog-based
approaches while maintaining utility for less-conserved
proteins, especially if the approach also includes features
more sensitive to fine-scale differences in amino acid con-
tent. There have been several recent attempts to infer
PPIs based on pairwise domain information. For exam-
ple, Singhal et al. used a genetic algorithm to discover
domain-domain interactions that could be used as pre-
dictors of PPIs [12]. Chen and Liu used a domain-driven
random forest classifier to predict PPIs for S. cerevisiae
[13]. However, feature representation for the algorithm
required vectors with several thousand entries, making
its use computationally expensive for full-genome predic-
tion. Although these approaches are initially promising,
there is a lack of publicly-available software that would
enable domain-based PPI prediction on a genome-wide
scale for non-model organisms lacking large experimental
data sets.

Here we present “Elucidating Network Topology with
Sequence” (ENTS), a binary PPI classifier that uses a ran-
dom forest framework. ENTS is capable of efficiently and
exhaustively evaluating all potential protein-protein pairs
in a large eukaryotic genome using parallelization. We
show that the method provides comparable or better pre-
dictions on recently experimentally-determined PPIs than
several existing methods and that such predictions are
biologically plausible using the predicted interactomes of
A. thaliana, P. trichocarpa, M. musculus, H. sapiens, and
S. cerevisiae. Scripts, instructions for use, and predicted
PPIs for several organisms are available at http://ENTS.as.
wvu.edu.

Results
ENTS performance relative to experimental predictions
We assessed the performance of ENTS by calculating the
area underneath the ROC curve (AUC) for testing data
consisting of no overlap with the training data at the
level of protein interaction and no overlap with any pro-
tein pairs used to calculate pairwise domain LOD scores
(see methods). AUC scores ranged from 0.811 and 0.827
in the yeast and human-trained classifiers, respectively,
to a high of 0.9632 in the A. thaliana-trained classifier
(Figure 1). The most important features for the classifier
included those derived from the analysis of domain pairs
and the output from the subcellular localization predic-
tion programmultiLoc2 thatmeasures the extent to which
the amino acid contents and phylogenetic profiles of the
query proteins matched particular cellular compartments
(Additional file 1: Figures S6, S7 and S8).

ENTS performance relative to other classifiers
We obtained whole-genome predictions of PPIs for the
organisms on which the classifiers were trained (i.e.,
S. cerevisiae, H. sapiens and A. thaliana), as well as
for species that were not used in training the predic-
tors. We find that the numbers of predicted interactions
are highly similar between the training and prediction
species, although the training species do have an enrich-
ment of genes at the high confidence levels (Table 1).
Although most alternative classifiers performed simi-

larly to ENTS on the testing data set (Figure 1), this set
included interactions that were used to train the alter-
natives and could thereby inflate their sensitivities at a
given specificity value. Therefore, in order to assess the
performance of ENTS on whole genome data relative to
several alternative classifiers, we examined the frequency
of positive predictions among sets of experimentally-
determined PPIs that were not used for training, test-
ing, or calculation of pairwise domain odds in ENTS or
used for training in the alternative classifiers. We ob-
tained genome-wide predicted PPI datasets in S. cerevisiae
[14], H. sapiens [15], M. musculus [16], and A. thaliana
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Figure 1 ENTS performance relative to experimental predictions. The ROC curves for ENTS testing data on (A) A. thaliana, (B) H. sapiens, and
(C) S. cerevisiae. Dots represent measures on the same testing data from alternative predictors, with the De Bodt (red), PAIR (green), AtPID (yellow),
and Geisler-Lee (orange) predictors for A. thaliana, the PIPS predictor for H. sapiens, and the Pitre predictor for S. cerevisiae.

[7-10]. The sizes of the predicted datasets varied greatly,
so when making comparisons we reduced the sizes of
the ENTS predictions to those of the alternative datasets
following removal of predictions that corresponded to
data used for ENTS training or calculation of pairwise
domain odds in order to place bounds on the possible
number of positive predictions and thereby provide fair
comparisons.
ForA. thaliana, we compared predictions to 6,314 novel

yeast two-hybrid and literature-curated PPIs from a large-
scale study of interactome evolution [5]. We found that
ENTS predicted more of these interactions than 3 of the
4 alternative classifiers (Figure 2A). This included more
than twice as many predicted interactions as the Geisler-
Lee (n = 19, 779) and De Bodt (n = 51, 594) sets,
each of which used interolog approaches to make their
predictions [7,9]. By contrast, ENTS made a similar num-
ber of positive predictions to the AtPID classifier (n =
24, 248) and less positive predictions than the PAIR clas-
sifier (n = 143, 939). Those two approaches used machine
learning techniques - naive Bayes and SVM, respec-
tively - to combine interolog data with domain content
and functional data such as co-expression, gene ontol-
ogy similarity, and co-localization [8,17]. Strikingly, each
classifier shared relatively few of its positive predictions

with the ENTS predictor, with the highest number of
interactions shared between the ENTS and PAIR clas-
sifiers, at 36.8% of the ENTS predictions. Due to the
high number of novel interactions discovered within this
single Y2H experiment, we also used this to assess the
frequency of experimentally-supported novel interactions
among all interactions that were predicted between pro-
teins within this set (Additional file 1: Table S1). We find
that the ratio of experimentally-supported interactions to
all positive predictions is higher for ENTS than all alter-
native classifiers except AtPID. However, the actual true
and false positive rates within this set are not possible
to obtain due to the low sensitivity (16%) of the Y2H
assay [5].
We find that the number of novel interactions pre-

dicted by ENTS is similar to those predicted by the Pitre
et al. PIPE2 classifier (n = 13, 826) in S. cerevisiae
and the PIPS classifier (n = 22, 687) in human [14,15]
(Figure 2A-C), as found through comparisons to a high-
throughput yeast two-hybrid dataset in S. cerevisiae [3]
(n = 1, 337) and high-confidence interactions from two
large-scale studies of human PPIs (n = 2, 045) [18,19].
Again, relatively few predictions were shared between
each pair of classifiers. The alternative classifiers differed
substantially in their prediction methods. The Pitre et al.

Table 1 Whole genome prediction counts

Training Prediction 0.55 0.65 0.75 0.85

S. cerevisiae S. cerevisiae 29,616 (4,320) 10,933 (3,314) 2,841 (1,713) 497 (576)

H. sapiens
H. sapiens 212,365 (12,936) 94,082 (9,906) 29,562 (6,377) 4,180 (2,223)

M.musculus 244,548 (13,615) 98,108 (10,157) 26,860 (5,889) 2,825 (1,496)

A. thaliana
A. thaliana 346,020 (15,964) 176,600 (13,426) 79,796 (9,504) 19,915 (4,010)

P. trichocarpa 481,253 (19,321) 178,232 (14,536) 42,503 (7,501) 4,085 (1,316)

Protein-protein interactions predicted using ENTS at several confidence cutoffs. The number of genes involved in the predicted interactions is shown in parentheses.
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Figure 2 ENTS performance relative to other classifiers. The number of predictions supported by experiment on sets of novel
experimentally-determined interactions for ENTS and several alternative prediction techniques in (A) A. thaliana, (B) S. cerevisiae, (C) H. sapiens, and
(D)M.musculus. ENTS results are shown in blue; the alternative classifiers’ results are shown in green; and the number of positive predictions shared
between each pair of classifiers is shown in yellow.

classifier based its predictions on the pairwise-occurrence
of short sequence motifs [14], while the PIPS classifier
used naive Bayes to combine sequence-derived features
such as orthology and pairwise domain content with func-
tional data such as gene co-expression, post-translational
modifications, and co-localization [15]. In mouse, we find
that ENTS predicted many fewer novel interactions from
a high-confidence set of literature-curated interactions
(n = 1, 807) relative to the interolog-based predictor of
Yellaboina et al. (n = 36, 608) (Figure 2D). The high
number of mouse interologs inferred directly from human
interactions is responsible for most of this disparity, as
ENTS predicts more of the novel interactions (36 vs. 25)
when the human-derived interologs are filtered out of the
Yellaboina et al. dataset.
Although training was performed with the response

defined as the presence of an interaction between two pro-
teins, we also repeated the comparisons after restricting
to a protein set that did not occur within the data used for
calculation of domain odds or training the classifier. We
did this in order to assess the ability of ENTS to predict
beyond the scope of proteins for which there is interac-
tion data currently available. For the species in which there
were large numbers of these proteins among the novel
interactions - A. thaliana (n = 2,239) and M. musculus
(n = 1,005), we observe a decline in the relative number

of novel interactions predicted relative to other classi-
fiers (Additional file 1; Figure S1), although the predicted
interactions shared between ENTS and the alternatives
remain low. The remaining two species contained rela-
tively few proteins with novel interactions that were never
used for calculation of domain odds (H. sapiens n = 305;
S. cerevisiae n = 208). Neither the truncated ENTS set nor
the PIPE2 classifier predicted any interactions within this
S. cerevisiae set. ENTS did predict two of the novel inter-
actions within the H. sapiens set, while the PIPS classifier
failed to predict any novel interactions within this set.

Biological plausibility of PPI predictions
The majority of predicted interactions for each organ-
ism are not experimentally verified, so we required indi-
rect means of assessing their plausibility. This led us to
assess the similarity of annotations and expression profiles
among predicted interactors, excluding self-interactions
to avoid upward bias. We find that ENTS-predicted inter-
actors share KEGG pathways significantly more often
than expected by chance for all species (Figure 3A). More-
over, KEGG and GO similarity for the organisms with
the largest experimentally-determined interactomes - H.
sapiens and S. cerevisiae - matches or exceeds those of the
experimentally-verified networks (Figure 3C,D). M. mus-
culus KEGG similarity closely matches that observed for



Rodgers-Melnick et al. BMC Genomics 2013, 14:608 Page 5 of 17
http://www.biomedcentral.com/1471-2164/14/608

Figure 3 Biological similarity. (A) The frequency of shared KEGG pathways and (B) the mean GOmolecular function similarity scores for predicted
ENTS interactions. Vertical lines at each confidence level show the total range for randomized networks. (C) Shared KEGG pathway frequency and
(D)mean GO molecular function similarity for ENTS as compared to other predicted networks and the experimentally-verified network. The
experimentally-verified networks are shown on the left for each organism, with a hatched bar.

H. sapiens, while the measures for P. trichocarpa actu-
ally exceed those of A. thaliana at higher confidence
levels (Figure 3A). We also find that the mean semantic
similarities between predicted interactors for GO bio-
logical process (BP), GO cellular component (CC), and
GO molecular function (MF) are significantly greater
than expected by chance (Figure 3B, Additional file 1:
Figure S5). However, even though GO categories were
not included as predictors during random forest predic-
tion, they were used during subcellular localization pre-

diction, so their use as a verification criterion is somewhat
circular.
Lastly, we find that the distributions of Pearson gene

expression correlations between ENTS-predicted inter-
actors are significantly enriched for co-expressed genes
(ρ > 0.5) in all organisms (Figure 4). The extent of
enrichment varies by organism, with all confidence lev-
els yielding significant enrichment of co-expressed genes
in S. cerevisiae, H. sapiens, and A. thaliana. ENTS pro-
duces a significant enrichment of co-expressed genes for
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Figure 4 Significant co-expression. Dots show the observed frequency of interactors with ρ > 0.5. Error bars indicate 95% confidence intervals
based on 250 bootstrapped replicates. Grey bars indicate 95% confidence intervals from 250 randomized networks. The leftmost lane for each
organism with the exception of P. trichocarpa is the data for the experimentally-verified network.

M. musculus at 0.55 and 0.65 confidence levels and for P.
trichocarpa at all confidence levels except 0.85. Notably,
however, the M. musculus experimentally-verified net-
work is not significantly enriched for co-expressed genes
under the microarray experiment used. Several alternative
prediction methods yield networks with much higher co-
expression than those predicted by ENTS. However, sev-
eral of these - PAIR, AtPID, and PIPS - used co-expression
as a predictor of protein interaction [8,10,15].

Metabolic pathway linkages in P. trichocarpa
The connectivity of PPI networks permits insight into
higher-order structures that largely remain hidden under
non network-based analyses. Several studies have demon-
strated that biological networks are organized into path-
ways or modules, each of which contain highly connected
groups of genes that may act semi-autonomously with
respect to the action of the network as a whole [20]. We
used the predicted P. trichocarpa PPI network to infer a
network of P. trichocarpa metabolic pathways, which we
then analyzed for higher order structures.
We produced a network of pathway-pathway associa-

tions between poplarCyc v. 3 metabolic pathways [21] by
placing edges between pathways that share a significant
number of predicted PPIs between the proteins under-
lying the pathway, excluding predicted self-interactions.
Pathway linkages are considered significant if the num-
ber of inter-pathway interactions exceeds the number
found in 99.9% of randomized networks. Using the ENTS
0.65 P. trichocarpa network, we find 913 significant path-
way linkages (Figure 5, Additional file 2). All but 2 pairs
of pathway linkages are joined within the largest con-
nected component of the linkage graph, and the groups
not connected to the primary component include one
pair of sulfate metabolic pathways and one pair of heavy
metal transporters. Out of the 913 total linkages, we

find 173 that share at least 1 compound, significantly
more than expected by chance (85.95 ± 7.90, p <

0.0001). Seven out of the 10 most highly connected path-
ways are involved in the biosynthesis of carbohydrates,
with the sucrose biosynthesis pathway having the high-
est degree with 38 pathway linkages. The major entry
point of reduced nitrogen, the glutamine biosynthesis
pathway, is the fifth most highly connected pathway with
27 linkages. The remaining 2 most highly connected
pathways include the flavonoid biosynthesis pathway and
glycolysis.
We then used the MCL algorithm to produce clusters

of pathways, which we assessed for enrichment of spe-
cific pathway classes (Table 2, Additional file 3). We find
9 out of 22 clusters that are significantly enriched for
specific classes at a family-wise error rate of 0.05, follow-
ing a Bonferroni correction. The largest cluster is highly
enriched for the biosynthesis of phenylpropanoid deriva-
tives (p = 4.105 × 10−11), which include a large variety
of secondary metabolites important for structure, defense
against pathogens, and defense from herbivory. A sec-
ond cluster is highly enriched for the biosynthesis of fatty
acids and lipids (p = 2.838 × 10−10) (Figure 5). The fatty
acid biosynthesis cluster includes not only pathways for
the production of phospholipds - primarily phosphatidyl-
choline - but also biosynthetic pathways for hydrophobic
electron carriers such as quinones and quinols. This clus-
ter also contains the rubisco shunt, which acts as a bypass
to the Calvin cycle in order to decrease carbon loss during
carbohydrate to lipid conversion by approximately 40%
[22]. The other pathways in this cluster include the two
glycolysis pathways, which act as the othermain sources of
pyruvate prior to fatty acid synthesis. Two additional clus-
ters are highly enriched for nucleoside/nucleotide biosyn-
thesis (p = 1.831 × 10−13) and nucleoside/nucleotide
degradation (p = 2.283 × 10−21), respectively (Figure 5).
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Figure 5 P. trichocarpametabolic linkage network. Each node represents a pathway in the PoplarCyc metabolic network, with lines connecting
those with a significant number interpathway interactions based on ENTs predictions. Red lines indicate a shared compound between pathways.
The yellow nodes belong to a cluster significantly enriched for fatty acid biosynthesis, while the green and blue nodes belong to pathways
significantly enriched for nucleotide/nucleoside biosynthesis and degradation, respectively.

Interestingly, while the degradation cluster only contains
purine and pyrimidine degradation pathways and a sin-
gle pyrimidine salvage pathway, the biosynthesis cluster
also contains arginine biosynthesis pathways. This non-
intuitive grouping is supported by work in A. thaliana
that demonstrates the coordination of arginine biosyn-
thesis with the biosynthesis of pyrimidines [23]. Amino
acid biosynthesis pathways are divided over several clus-
ters and therefore do not consistently show up as enriched
within their clusters. However, the groupings of several
amino acid biosynthetic pathways do reflect their bio-
chemical commonalities. The single cluster with signifi-
cant enrichment of amino acid biosynthesis groups two
of the three amino acids derived from 3-phosphoglycerate
- serine and cysteine - together with threonine, the only
other amino acid besides serine to carry a hydroxyl group.
The 3 branched chain amino acid biosynthetic pathways
are also grouped together within cluster 9, while the two
proline biosynthetic pathways are grouped with glutamine
and glutamate biosynthesis in clusters 2 and 4, reflect-
ing their common origins from α-ketoglutarate (Table 2,
Additional file 3).

Predictions of human disease associations
The analysis of PPI networks has great potential for aiding
our understanding of heritable disease, as the manifesta-
tion of a given pathology may result from the perturbation
of entire network modules rather than the abrogation of
a single gene [24]. In particular, the physical associations
between disease-related genes within a protein interaction
network may signify a functional relationship between the
corresponding disease states, including co-morbidity or
alternative routes to a disease due to disruption of a shared
pathway.
As a demonstration of the potential for ENTs predic-

tions to provide insights into human diseases, we created
a network of associations between human diseases found
in the OMIM database. Edges are inferred between dis-
eases if the corresponding disease genes are predicted
to produce interacting proteins within the ENTS 0.65
confidence human PPI network and if these interac-
tions are more frequent than expected by random chance
(see Methods). This leads to 552 disease associations
covering 408 distinct pathologies and divided into 61
connected components (Additional file 4). Overall, we
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Table 2 Significant enrichments in clusters of the
P. trichocarpametabolic linkage network

Cluster Class p-value

1 (31)

Phenylpropanoid derivatives biosynthesis (6) 4.105 × 10−11

Secondary metabolites biosynthesis (8) 5.815 × 10−9

Flavonoids biosynthesis (6) 6.486 × 10−9

Carbohydrates biosynthesis (9) 2.185 × 10−8

Sugars biosynthesis (8) 5.65 × 10−6

2 (22)
Nitrogen compounds metabolism (3) 1.077 × 10−5

Inorganic nutrients metabolism (3) 1.134 × 10−5

3 (21)

Fatty acids and lipids biosynthesis (8) 2.838 × 10−10

Cofactors, prosthetic groups, electron
carriers biosynthesis (8)

1.741 × 10−7

Phospholipid biosynthesis (6) 2.106 × 10−7

Quinol and quinone biosynthesis (3) 6.301 × 10−6

4 (17) Vitamins biosynthesis (4) 3.871 × 10−6

8 (12)
Nucleosides and nucleotides biosynthesis (6) 1.831 × 10−13

Purine nucleotide biosynthesis (3) 7.213 × 10−6

11 (6)

Nucleosides and nucleotides degradation (5) 2.283 × 10−21

Purine nucleotides degradation (4) 2.128 × 10−13

Degradation/Utilization/Assimilation (5) 3.977 × 10−10

15 (3) Amino acids biosynthesis (3) 1.642 × 10−6

22 (2)
Inorganic nutrients metabolism (2) 2.583 × 10−7

Sulfur compounds metabolism (2) 1.062 × 10−6

23 (2) Transport (2) 1.256 × 10−5

Classes of metabolic pathway that were significantly enriched in clusters at a 0.05
family-wide type I error rate. The number of pathways present in each cluster is
given in parentheses in the first column, while the number of the given class of
pathway within each cluster is given by parentheses in the second column.

find the disease network to be significantly enriched for
similarity in the literature relative to random networks
(Kolmolgorov-Smirnov one-sided test; D = 0.0948; p =
5.065 × 10−5) (Figure 6A). The network contains a vari-
ety of intuitive and non-intuitive relationships between
pathologies, many of which are based on interactions
absent from the public databases.
As an example of intuitive relationships, one of the

connected components consists entirely of associations
between 11 cataract disorders (Figure 6B), all of which are
based on predicted interactions between crystallin pro-
teins without experimental support in public databases.
We also find a number of non-intuitive relationships with
anecdotal support in the literature. These include associ-
ations within one connected component containing sev-
eral myopathies, including cardiomyopathy, limb-girdle
muscular dystrophy, myotilinopathy, and spheroid body
myopathy. These three latter disorders have overlapping
symptoms and are known to co-occur with cardiomy-
opathy [25], as indicated by the network (Figure 6C). A

disease characterized by progressive extraocular muscle
weakness - horizontal gaze palsy with progressive scolio-
sis - is also associated with both cardiomyopathy and
limb-girdle muscular dystrophy based on a predicted
interaction between TCAP and ROBO3, though limb-
girdle muscle weakness is not directly associated with
this disorder in the literature [26]. The last condition
within the component, vesicoureteral reflux (VUR), is
characterized by developmental abnormalities of the kid-
ney and urinary tract. Its relationship to cardiomyopathy
and limb-girdle muscular dystrophy is indicated by a
predicted interaction between TCAP and ROBO2. Inter-
estingly, although VUR is not associated with disorders
of the striated or cardiac muscle, it has been observed
to co-occur with visceral myopathy in cases of Chronic
Intestinal PseudoObstruction and Berdon Syndrome [27].

Network properties and duplicate gene evolution
Recently, several authors have proposed a relationship
between the properties of biological networks and the
evolution of duplicate genes. Studies of paleopolyploid
plants have demonstrated that functional categories gen-
erally associated with higher network connectivity tend to
be retained in duplicate following whole genome dupli-
cation (WGD) [28]. These observations led to the devel-
opment of the gene balance hypothesis, which predicts
that more highly connected genes should tend to be
retained following WGD because of purifying selection
for stoichiometric balance among interaction proteins
[29]. Unfortunately, the lack of large-scale PPI data for
paleopolyploid plants has largely precluded a thorough
network-based analysis of this phenomenon. Here, we
used the predicted A. thaliana and P. trichocarpa 0.65
confidence PPI networks to conduct a preliminary analy-
sis of the relationship between WGD duplicate retention
and 2 properties of the predicted network: the fraction
of genes to which a given gene is connected (degree cen-
trality) and the fraction of neighbors retained following
the same WGD (duplicated neighbors). Based on logis-
tic regression, the fraction of duplicated neighbors and
the interaction term with degree centrality was posi-
tively associated with the presence of a duplicate paralog
(Figure 7, Table 3). These results were highly consis-
tent with those generated when we restricted the analysis
to genes with at least 10 neighbors (Additional file 1:
Table S3). Therefore, the duplication state of a given
gene’s neighbors has a strong effect on its probability of
retention, and this effect is enhanced with a higher num-
ber of interactions. This fits the predictions of the gene
balance hypothesis in that the dependence on connected-
ness strongly depends upon the dosage of the interacting
genes. Interestingly, the degree centrality main effect is
negatively associated with the odds of retention once
the interaction term is taken into account, although this
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Figure 6 OMIM human disease network. (A) The cumulative distribution of literature similarity scores in randomized networks (green) and the
observed human disease network constructed from ENTS PPI predictions (blue). (B) and (C) connected components in the human disease network.
Line widths are drawn proportional to literature similarity scores.

effect is not significant for the A. thaliana β/γ WGD and
inconsistently significant for the α WGD.

Discussion
ENTS performance
In this study we find that our random forest-based
classifier, ENTS, can predict biologically meaningful PPIs
both within the species on which we trained the classifier
and within species sharing a relatively distant common
ancestor with the training species. These results are
comparable or favorable to existing methods of pro-
tein interaction prediction, including several that used
experimentally-obtained functional data as predictors.
This demonstrates that researchers may generate a high
quality set of probable PPIs prior to performing extensive
functional experimentation. Therefore these predicted
PPIs may serve as a basis for the development of func-
tional hypotheses in newly-sequence organisms. Notably,
even in the cases in which ENTS predictions were out-
performed - the A. thaliana PAIR predictor and the M.
musculus Yellaboina interolog approach - the majority of
interactions predicted by ENTS were not predicted by
the alternative approach. This suggests the value of using
ENTS as part of an ensemble rather than relying on any
single classifier. This may be particularly effective when
large amounts of functional data are available, as with
PAIR, or an orthologous interactome is well-covered, as
with the Yellaboina interolog approach.

The performance of ENTS does vary significantly
between organisms, with the AUC ranging from a low of
0.811 in S. cerevisiae to a high of 0.963 in A. thaliana.
These differences likely arise due to functional differ-
ences between the positive datasets. The contrast in
performance between the A. thaliana and non-plant clas-
sifiers may be attributed to biases in the interaction
data currently available for these organisms - particu-
larly A. thaliana. With the exception of a recent high-
throughput study that was not used for training [5],
A. thaliana studies of PPIs within the literature have
focused on testing of specific hypotheses concerning
proteins of high a priori importance. This can result
in sets of highly clustered, high degree nodes within
literature-curated PPI networks [5,30]. Such clusters have
likely led to an enrichment of A. thaliana interacting
pairs with high pairwise domain odds (Additional file 1:
Figure S1). It also explains the decline in relative per-
formance for A. thaliana predictions on proteins that
were never used for training or calculation of pairwise
domain odds (Additional file 1: Figure S2). In contrast,
the multiple high throughput studies of binary PPIs
conducted on H. sapiens [2], S. cerevisiae [3], and D.
melanogaster [4] contribute a more unbiased view of
the interactome than for A. thaliana. The more com-
prehensive experimental datasets have yielded a number
of interactions that are less amenable to ENTS detec-
tion due to either an absence of PFAM domains in one
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Figure 7 Logistic models for duplicate retention based on ENTS
predictions. The relationship between degree centrality, the fraction
of predicted neighbors retained following WGD, and the probability
of whether a gene in the predicted network is retained following the
WGD for the (A) P. trichocarpa Salicoid duplication, (B) the A. thaliana
α duplication, and (C) the A. thaliana β and γ duplications.

or both of the proteins in the pair or because of the
presence of domain pairs infrequently associated with
physical interaction. Testing performance based primar-
ily on literature-curated sets may therefore give results
that are inconsistent with the true global protein interac-
tion network. This highlights a necessary caveat present
for all statistical learning methods - the performance of
the classifier on novel data depends on the scope of its
training.
Although the most important features for ENTS clas-

sification are based on domain composition, we also
find subcellular localization information from Multi-
Loc2 to be highly important for prediction of PPIs.
Interestingly, the most important MultiLoc2 features
tend to be the SVM amino acid scores, which indi-
cate how well the total amino acid content of a
protein matches a particular subcellular compartment
[31]. These measures provided ENTS with more sen-
sitivity to subtle changes in amino acid content than
the domain-based scores, which rely on the gain
or loss of conserved PFAM domains. For instance,
the duplicated genes from the Salicoid WGD in
P. trichocarpa only share 56% of their predicted
neighbors on average in the 0.65 confidence network
despite high pairwise similarity in domain content.
This allows for the possibility that ENTS may predict
rewiring of PPIs within networks following duplication,
although confirmation of this would require experimental
validation.

Interpretation of ENTS interactions
We trained ENTS using sets of known physically-
interacting pairs of proteins. Therefore, proteins pre-
dicted to interact by ENTS should be interpreted as
having a high potential for physical interaction, given
that they are present within the same location at the
same time. Each set of predicted interactions repre-
sents a more than 1000-fold reduction in the number
of total possible interactions for the organism. How-
ever, because we want to permit the use of this classifier
across a variety of organisms without broad functional
data, we do not include expression or proteomics data
as features in the set of predictor variables. As such,
researchers should confirm all predictions with func-
tional data. Furthermore, ENTS has limited capability
for predicting interactions between proteins that either
lack conserved domains or that contain domains never
before experimentally observed within physically inter-
acting proteins. This precludes the detection of some
novel interactions, although other researchers may wish
to append functional data to the set of ENTS pre-
dictor variables for their organism in order to predict
these interactions through a greater variety of evidence
sources.
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Table 3 Duplicate retention coefficients

WGD Intercept log(DC) DN log(DC):DN

P. trichocarpa Salicoid -1.90193 *** -0.24628 *** 4.91163 *** 0.57953 ***

A. thaliana α -1.98648 *** -0.09509 *** 5.73056 *** 0.69114 ***

A. thaliana β/γ -2.49904 *** -0.03628 6.93515 *** 0.72433 ***

Estimated coefficients and significance for the logistic regressions on WGD retention in P. trichocarpa and A. thaliana using network properties degree centrality (DC)
and duplicated neighbors (DN) from the ENTS 0.65 confidence networks. P-values are based on confidence intervals generated from fitting the model on resampled
data 10,000 times.
*p < 0.05; **p < 0.01; ***p < 0.001.

Applications of ENTS networks
The elucidation of PPI networks permits tremendous
insight into both cellular and evolutionary processes.
In humans, several studies have used experimental PPI
data to map relationships between human diseases based
on causative similarity and infer causative disease genes
within large implicated linkage regions [32]. However,
such studies have reported limitations due to the lack of
detected interactions with shared disease etiology. Here,
we have shown that ENTS is capable of yielding novel pre-
dicted interactions with relevance to known co-occurring
human diseases. We contend that these predicted inter-
actions may be used by biomedical researchers to narrow
the scope of regions implicated in genome-wide asso-
ciation studies in addition to providing predictions on
which to base more targeted searches for candidate loci.
The latter function may prove especially vital due to
the increasingly visible role of rare de novo mutations,
particularly CNVs, in the etiology of disease [33]. Fur-
thermore, the generality of our approach across species
allows the potential for yielding insight into a variety of
agriculturally important diseases in non-model species
that are currently only understood through large linkage
regions based on QTL and relatively small GWAS studies.
We have also shown that ENTS is capable of reveal-
ing the higher-order structure of metabolic networks
in a plant species without extensive experimental data,
P. trichocarpa. ENTS-predicted physical interactions yield
a significant enrichment of associations between path-
ways that share compounds and group sets of coordinated
pathways such as pyrimidine and arginine biosynthesis
[23]. Such insights may be used to inform targets of selec-
tion in breeding programs in order to increase the output
flux from key pathways.
We have demonstrated that ENTS has great potential

for yielding insight into network evolution in non-model
species across the plant, animal, and fungal kingdoms.
Networks have come to play an increasingly central role in
evolutionary studies [6], but a rigorous analysis of network
evolution requires the development of whole-genome net-
works for many non-model species. Here, we have shown
that the topological properties of ENTS-predicted net-
works, including the first whole-genome interactome for

P. trichocarpa, are related to the probability of WGD
duplicate gene retention following independent duplica-
tion events in a manner consistent with the predictions of
the gene balance hypothesis. Specifically, we have shown
that the duplication state of a gene’s neighbors has a
strong impact on the probability of retention following
WGD and that this effect is enhanced at higher connectiv-
ity, which is consistent with the hypothesis of a selective
drive to maintain stoichiometric balance between inter-
acting proteins. Interestingly, the degree centrality main
effect was only significant for the P. trichocarpa Sali-
coid WGD and the A. thaliana α WGD. In the case of
P. trichocarpa, the negative degree centrality coefficient
leads to an inverse relationship between connectivity and
the probability of duplicate retention in the presence of
few duplicated neighbors. This decrease is, again, con-
sistent with the gene balance hypothesis, as the effects
of stoichiometric imbalance are likely to become more
extreme at higher connectivity and would therefore favor
a singleton state when interconnected genes are also sin-
gletons. Intriguingly, this effect is also present in the A.
thaliana duplications, though it is highly diminished with
respect to P trichocarpa and shows inconsistent statisti-
cal significance. One explanation is that A. thaliana has
undergone a greater degree of fractionation following its
last two WGDs than has P. trichocarpa following the Sal-
icoid WGD [34], so the influence of connectivity is more
apparent in the latter. This suggests that the P. trichocarpa
duplicate genes most at risk for future nonfunctional-
ization include those with low degree centrality and few
duplicated neighbors.

Conclusions
We have introduced an efficient new approach that
enables prediction of protein-protein interactions on a
whole genome scale based entirely on information that
can be derived from primary sequence data. This is
a potentially groundbreaking addition to the standard
toolbox for newly-sequence non-model genomes, which
are rapidly proliferating. The networks derived from
our protein-protein interaction predictions are realistic
from the standpoint of consistency with co-expression
and shared functional annotations of connected genes.
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Furthermore, we have shown that our predictions can
reveal supported relationships among emergent pheno-
types such as human disease states and the coordination
of metabolic pathways. Finally, we have demonstrated
that our inferred networks can reveal subtle details of
genome-scale evolution. Because the method can read-
ily be applied on a large scale to phylogenetically-diverse
organisms, we anticipate that large-scale comparative
analyses will provide insights into the mechanisms of
network structure evolution.

Methods
Data sources
We obtained experimentally verified physical interactions
forH. sapiens, S. cerevisiae,M.musculus,D. melanogaster,
and A. thaliana from the PPI databases DIP (10/27/2011
Release) [35], IntAct (01/01/2012 Release) [36], and
BioGRID (v. 3.1.84) [37]. Additional experimentally-
verified interactions for A. thaliana were taken from the
TAIR database (05/27/2009 Release) [38]. We also col-
lected known and predicted domain-domain interactions
and their associated confidence scores from the DOMINE
database (version 2) [11]. All protein annotations were
taken from Ensembl core databases with the A. thaliana
and P. trichocarpa annotations corresponding to Ensembl
Plants release 12, the S. cerevisiae annotations corre-
sponding to Ensembl Fungi release 12, and the H. sapiens,
M. musculus, and D. melanogaster annotations corre-
sponding to Ensembl release 65. Only canonical versions
of proteins were used; splice variants were not considered
in this analysis.

Calculation of domain pair odds
We calculated a log-of-odds score for each pair of domains
observed at least once in an interacting protein pair.
This score may be interpreted as the odds of observ-
ing a pair of domains in an interacting protein pair
versus by random chance among all interacting pro-
teins. We obtained all unique PFAM domains present
in each protein for all experimentally-verified protein
interactions in H. sapiens, S. cerevisiae, M. musculus,
D. melanogaster, and A. thaliana with the exception
of 1,300 in each training organism that were reserved
for testing data. We then assessed all possible pairwise
domain combinations among all these protein pairs and
calculated the log-odds score for each domain pair as
follows:

f (Dx,Dy) = n(Dx,Dy)∑np
i=1

∑i
j=1 n(Di,Dj)

(1)

f (Dx) = n(Dx)∑
i n(Di)

(2)

LOD = log
f (Dx,Dy)

f (Dx)f (Dy)
(3)

where n(Dx,Dy) is the number of times the domain pair
Dx, Dy was observed among experimentally-verified pro-
tein interactions, np is the total number of domain pairs,
and n(Dx) is the number of timesDx was observed among
the set of proteins with experimentally-verified interac-
tions. Because the absence of a protein pair within the
experimentally-verified data set may result from either
non-detection of existing interactions or the absence of
any such interactions, we chose to assume an LOD of 0 for
all domain pairs that were not observed in any interacting
protein pairs.

Feature data
All data features were defined from pairwise-domain
information and predictions of subcellular localization.
An exhaustive list of all features can be found in
Additional file 1: Table S1. Domain-based features
included the sum of all odds scores, the highest odds
score, the lowest odds score (ceilinged at 0), the num-
ber of pairwise domain pairs not observed in any of the
interacting proteins used to calculate the odds scores, the
number of domain pairs found among the pairs with odds
scores, the number of domain pairs predicted or known
to interact in DOMINE, and the highest DOMINE confi-
dence score assigned to a domain pair. All other features
were outputs of the high-res MultiLoc2 subcellular pre-
dicted program [31], which used protein sequence data
and computer-generated GO categories as input. These
features included the probabilities of localization to each
of the possible subcompartments - cytoplasm, nucleus,
peroxisome, ER, mitochondria, chloroplast (plant only),
vacuole (plant and fungus), and the lysosome (animal
only) - along with the raw output from each of the
MultiLoc2 subprograms - SVMTarget, SVMSA, SVMaac,
PhyloLoc, GOLoc, and MotifSearch.

Training and prediction
Classifiers were trained using 1,330 randomly selected
protein pairs with experimental verification of interaction
to serve as positive examples for each organism. We also
included 101,300 randomly drawn pairs of proteins with-
out any known or predicted interactions in the Reactome
version 39 database to serve as negative examples. In order
to avoid potential over-fitting based on the predicted
subcellular characteristics of proteins in the positive set,
we spiked the negative set with 1,300 randomly selected
pairs of proteins without known or predicted interactions
drawn from the positive set, wherein the proteins in the
pair were drawn in proportion to their representation
within the interacting pairs. Additionally, we included
each protein pair twice within the dataset but switched
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the subcellular features between the proteins in the sec-
ond set (reversed set). We trained the classifier using
400 fully-grown trees with the R randomForest package
(http://cran.r-project.org/web/packages/randomForest/).
Prediction also used both the forward and reversed set,
with the final predictions taken from the union of the
two. We trained a total of 3 ENTS classifiers - one on
H. sapiens, one on S. cerevisiae, and one on A. thaliana.
The H. sapiens-trained classifier was used to predict on
H. sapiens and M. musculus; the S. cerevisiae-trained
classifier was used to predict on S. cerevisiae; and the
A. thaliana-trained classifier was used to predict on A.
thaliana and P. trichocarpa.
In order to characterize the testing performance, we cal-

culated the area under the ROC curve (AUC) using the R
pROC package (http://cran.r-project.org/web/packages/
pROC/index.html). Testing data consisted of 1,300 known
positive interactions and 101,300 randomly selected
negative examples without known or predicted interac-
tions. Testing data did not include any protein pairs used
to calculate the domain pair odds and contained no over-
lap to the random forest training data at the level of
protein interactions. Sensitivity and specificity are defined
as follows:

sensitivity = TP
TP + FN

(4)

specificity = TN
TN + FP

(5)

where TP is the number of true positives (predicted inter-
actions with experimental support), FN is the number
of false negatives (non-predicted interactions with exper-
imental support, TN is the number of true negatives
(non-predicted interactions without experimental sup-
port), and FP is the number of false positives (predicted
interactions without experimental support). We also cal-
culated these values for the other predictors using the
same set of testing data to provide single points on the
ROC curve.

Comparisons to other predictors
Predicted protein interaction datasets were taken from
the Pitre et al. PIPE2 S. cerevisiae classifier novel inter-
actions [14], the H. sapiens PIPS classifier [15], the NIA
Mouse Protein-Protein Interaction Database [16], the pre-
dicted A. thaliana interactome of De Bodt et al. [7], the
AtPID A. thaliana interactome [8], the Geisler-Lee A.
thaliana interactome [9], and the PAIR high-confidence
A. thaliana interactome [10]. We obtained protein inter-
action datasets without any overlap to the interactions
used to train ENTS or calculate domain odds scores. We

also limited the overlap to training data from the alter-
native classifiers by choosing datasets containing PPIs
that were either published after the alternative classifier’s
publication date or were not present within the datasets
reportedly used for training. In S. cerevisiae these were
taken from a high-throughput yeast two-hybrid study [3].
In humans we used high confidence sets of human pro-
tein interactions from a recent study of protein complexes
(confidence of at least 0.9) [19] and a high-throughput
mass-spectrometry study of human PPIs (confidence of at
least 0.3) [18]. In M. musculus we used interactions taken
from the HitPredict database (05/01/2012) that were pub-
lished after October 2008 [39]. Finally, in A. thaliana
we used high-throughput yeast two-hybrid and litera-
ture curated interactions from a large study of network
evolution [5].
Prior to performing each comparison we removed any

predicted pairs from ENTS and the alternative classifiers
that were used for training of the ENTS random forest or
calculation of domain pair odds. ENTS predictions were
then sorted by decreasing confidence and truncated to
sets of the same size as the alternative classifiers. We then
calculated the sizes of the intersections with the experi-
mental datasets in addition to the sizes of the three-way
intersections between ENTS, the alternative classifiers,
and the experimental datasets. We then performed the
same comparisons after limiting the predicted datasets
to pairs of proteins in which neither protein was present
within the training data or the proteins used to calculate
domain-pair odds.

Evaluation of functional similarity
For each measure of functional similarity, we first nar-
rowed the protein network (predicted or experimentally-
verified) to the set of proteins with the given annotation
present. For instance, we narrowed the networks to those
with at least 1 KEGG annotation when evaluating KEGG
similarity. Similarity was then calculated as the number
of pathways present in the intersection of two proteins’
annotations divided the by the number of pathways in the
union.
GO semantic similarity between pairs of putatively

interacting proteins was calculated separately for biologi-
cal process, cellular component, and molecular function,
and was based on the information content of shared par-
ents [40]. Briefly, for each organism we assigned a proba-
bility to each GO subgraph node, p(c), which was defined
as follows:

p(x) = n(cd)
nc

(6)

where n(cd) is the number of times the node or any of its
descendants occurred in the genome, and nc is the num-
ber of times any term occurred. For each pair of queried

http://cran.r-project.org/web/packages/randomForest/
http://cran.r-project.org/web/packages/pROC/index.html
http://cran.r-project.org/web/packages/pROC/index.html
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terms we then found the shared parent with the minimal
probability pm(cx, cy) among the set of shared parents in
the subgraph, S(cx, cy):

pm(cx, cy) = min
c∈s(cx,cy)

p(c) (7)

The similarity score between the two terms cx and cy
was then defined as follows:

sim(cx, cy) = −ln(pm(cx, cy)) (8)

In the case of more than one pair of GO terms between
a pair of proteins, we set the similarity score as the maxi-
mum of all pairwise similarity scores.

Metabolic pathway linkages
We made a network of linkages between metabolic path-
ways downloaded from the PoplarCyc v. 3.0 database [21]
using protein interactions predicted in the P. trichocarpa
0.65 confidence network. Pathways were linked to one
another if one or more protein pairs between the two
pathways were predicted to interact. We also did not
include predicted self-interactions when constructing the
network. We tested the significance of all pathway link-
ages by creating 10,000 randomized PPI networks in
which each node had the same degree as the ENTS net-
work but randomized connections. We retained pathway
linkages for which the number of supporting interactions
was greater than that of at least 99.9% of randomized net-
works. We found the number of pathway linkages that
connected two pathways sharing at least one metabolic
compound between them, discounting all compounds that
were present inmore than 15 pathways in order to prevent
less meaningful associations due to common compounds
such as ATP.We then assessed the significance of the com-
pound sharing by generating 10,000 randomized pathway
linkage networks in which each pathway had the same
degree as in the observed network.
We performed clustering on the pathway linkage net-

work using the MCL graph clustering algorithm with
default parameters [41]. Edges were weighted by the frac-
tion of interactions predicted to exist between the two
pathways out of the total number of possible non-self
interactions. We then tested the clusters for significant
enrichment using annotation enrichment analysis, which
corrects for biases that can occur under Fisher’s exact test
[42]. Briefly, each pathway was contained within a path-
way ontology retrieved from PlantCyc, forming a directed
acyclic graph. Each node in the graph was annotated with
a given pathway if that pathway was a descendant of the
node. P-values were then generated for each term in the
ontology as follows:

p(Mgt) =
min(Mg ,Mt)∑

i=Mgt

(Mt
i
)(Mtot−Mt

Mg−i
)

(Mtot
Mg

) (9)

where Mg is the number of ontology annotations to
the cluster, Mgt is the number of ontology annotations
to the cluster on the ontology branch of interest, Mt
is the number of pathways annotated to the branch of
interest, and Mtot is the total number of pathway anno-
tations made to the ontology graph. We assessed signif-
icance using a 0.05 family-wide type I error rate under
a Bonferroni correction, such that a term was consid-
ered significant if p ≤ 0.05

nCnO where nC is the number
of clusters found and nO is the number of nodes in the
ontology.

OMIM disease network
We created a network of OMIM diseases and disorders
by creating an edge between two diseases if their under-
lying causative loci in the OMIM database were predicted
to interact within the ENTS predicted human network.
We did not count self-interactions when creating the net-
work. We tested the significance of the disease-disease
associations by creating 10,000 randomized PPI networks
in which each node had the same degree as the ENTS
network but randomized connections. We then retained
disease associations for which the number of support-
ing interactions was greater than that of at least 99.9% of
randomized networks.
We then evaluated the significance of the network asso-

ciations using Pubmed literature mining. In order to per-
form this with a controlled vocabulary, we first mapped
the OMIM identifiers for each disease to medical sub-
ject headings (MeSH) terms using the Gendoo database
[43], narrowing the disease network to OMIM identi-
fiers associated with at least 1 MeSH term. Each of these
OMIM-MeSH associations was associated with a p-value
indicating the significance of the term-term association,
pOM. We obtained the full set of Pubmed IDs (PMIDs)
associated with each MeSH term present within the dis-
ease network using NCBI E-Utilities. We then assessed
literature similarity using a measure that incorporated
both the significance of the OMIM-MeSH association and
the frequency of the MeSH-MeSH pairings within the
literature. This was calculated as follows:

sim(Mx,My) = − n(Px ∩ Py)
min(n(Px), n(Py))

× log(max(pOM(Mx), pOM(My)))

(10)

where the n()̇ function refers to the number of PMIDs in
the set, and Px, Py are the sets of PMID ids associated with
the MeSH terms Mx and My. Only the most significant
MeSH term for each OMIM disease was used for compar-
ison. In order to assess the significance of the observed
network, we compared the distribution of literature scores
to those in 250 random disease-disease networks in which
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disease nodes were sampled in proportion to their degree
in the observed network, thus generating networks with
similar degree distributions.

WGD logistic regression
Intragenomic syntenic segments corresponding to the Sal-
icoid WGD in P. trichocarpa and the α and β/γ duplica-
tions in A. thaliana were defined using MCScan [44]. We
separated the more recent α-duplication from the older
β and γ duplications using the mappings provided by
Bowers et al (2003) [45]. However, many of the dupli-
cated regions with higher dS were not defined within that
dataset, and we could not confidently separate the β and
γ duplications from one another based on dS due to sat-
uration of substitutions. Therefore, we considered the A.
thaliana β and γ WGDs as a single β/γ duplication for
the purposes of the analysis. We then fit the following
model using the generalized linear model with the logit
link function in the R programming language:

Duplication ∼ log(Degree Centrality) + Duplicated Neighbors
+log(Degree Centrality) :Duplicated Neighbors

(11)

The response was coded as 0 or 1, corresponding to
absence or presence of a duplicate paralog from the given
WGD, respectively. The duplicated neighbors term was
calculated as the fraction of neighboring genes that were
retained as duplicates from the corresponding WGD.
Degree centrality was calculated as follows using the
Python Networkx package (http://networkx.lanl.gov):

Degree Centrality = d(nx)
nG − 1

(12)

where nG is the number of nodes in the graph, and d(nx)
is the degree of node nx. We assessed the significance of
the model coefficients by resampling 10,000 times with
replacement, fitting the model to the resampled data,
and generating 95%, 99%, and 99.9% confidence inter-
vals using the corresponding quantiles of the coefficient
distributions. Additionally, because the degree centrality
constrained the possible range of the duplicated neighbor
fraction such that a gene with one neighbor could only
have a duplicated neighbor value of either 0 or 1, we fit
two models for each duplication: one using the full set of
genes with at least 1 interaction in the predicted network
and one using only the subset with at least 10 predicted
interactions.

Implementation
ENTS is implemented using a combination of Python
and R. The user provides a tab-delimited list of pro-
teins and their constituent PFAM domains along with
high-resolution output from the subcellular localization
prediction program Multiloc2. The user also specifies a

set of two tab-delimited files. The first file contains the
pairwise domain odds for pairs of PFAM domains poten-
tially involved in interactions, and the second provides
PFAM pairwise scores from the DOMINE database. We
provide both of these flat files for convenience, along with
R workspaces with random forests trained on A. thaliana,
H. sapiens, and S. cerevisiae.
ENTS is run by calling a Python script from the com-

mand line. The Python script then splits the n(n+1)
2 pair-

wise comparisons to be performed among a number of
subprocesses specified by the user at the command line.
These are run in parallel, and each subprocess makes calls
to the random forest present in the R workspace through
Rserve using the pyRserve package as an interface. The
random forest is implemented using the efficient R ran-
domForest package. Protein pairs with confidence scores
above a user-specified threshold are then saved to tab-
delimited files, which are combined into a single file at the
end of the run.

Availability and requirements
Project Name: ENTS
Home Page: http://ents.as.wvu.edu
Operating system(s): Windows, Unix-like (Linux, Mac
OSX)
Programming language: Python >= 2.7, R >= 2.15
Dependencies: Python - Numpy and pyRserve, R - ran-
domForest and Rserve, MultiLoc2 (Optional)

Additional files

Additional file 1: Supplementary Figures and Tables. PDF format,
containing additional ENTS performance measures.

Additional file 2: P. trichocarpametabolic pathway linkage network.
Tab-delimited file containing the weighted pathway linkages in the
PoplarCyc v. 3 metabolic network.

Additional file 3: P. trichocarpametabolic pathway linkage network
clusters. Tab-delimited file containing the clusters of pathways found by
the MCL algorithm.

Additional file 4: Human disease association network. Tab-delimited
file containing the associations discovered between OMIM diseases and
the numbers of predicted interactions supporting those associations.
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