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Abstract

BCC phage JG068 (vB_BceP_JG068).

phage therapy development.

Galleria mellonella

Background: As is true for many other antibiotic-resistant Gram-negative pathogens, members of the Burkholderia
cepacia complex (BCC) are currently being assessed for their susceptibility to phage therapy as an antimicrobial
treatment. The objective of this study was to perform genomic and limited functional characterization of the novel

Results: JG068 is a podovirus that forms large, clear plaques on Burkholderia cenocepacia K56-2. Host range
analysis indicates that this phage can infect environmental, clinical, and epidemic isolates of Burkholderia multivorans,
B. cenocepacia, Burkholderia stabilis, and Burkholderia dolosa, likely through interaction with the host lipopolysaccharide as
a receptor. The JG068 chromosome is 41,604 base pairs (bp) in length and is flanked by 216 bp short direct terminal
repeats. Gene expression originates from both host and phage promoters and is in the forward direction for all 49
open reading frames. The genome sequence shows similarity to Ralstonia phage ®RSB1, Caulobacter phage Cd1,

and uncharacterized genetic loci of blood disease bacterium R229 and Burkholderia pseudomallei 1710b.
CoreGenesUniqueGenes analysis indicates that JG068 belongs to the Autographivirinae subfamily and GKMV-like
phages genus. Modules within the genome encode proteins involved in DNA-binding, morphogenesis, and lysis, but
none associated with pathogenicity or lysogeny. Similar to the signal-arrest-release (SAR) endolysin of GKMV,
inducible expression of the JG068 SAR endolysin causes lysis of Escherichia coli that is dependent on the presence of
an N-terminal signal sequence. In an in vivo assay using the Galleria mellonella infection model, treatment of

B. cenocepacia K56-2-infected larvae with JG068 results in a significant increase in larval survival.

Conclusions: As JGO68 has a broad host range, does not encode virulence factors, is obligately lytic, and has
activity against an epidemic B. cenocepacia strain in vivo, this phage is a highly promising candidate for BCC

Keywords: Burkholderia cepacia complex, Phage therapy, Autographivirinae, KMV-like phages, SAR endolysin,

Background

In recent years, the emergence of antibiotic-resistant
Gram-negative pathogens — including Acinetobacter,
Klebsiella, and Pseudomonas — has become a serious
global concern [1]. As the treatment options for these bac-
teria become increasingly limited, scientists and clinicians
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alike have turned to bacteriophage (or phage) therapy as
a possible alternative to antibiotic delivery. By preventing
and/or treating infections with phages — viruses that
specifically infect bacteria — one can target pathogens
that are resistant to conventional drug treatment while
avoiding possible antibiotic side effects, such as disrup-
tion of the patient’s normal flora [2]. Phages infecting
the Gram-negative bacteria Escherichia coli and Pseudo-
monas aeruginosa have already been shown to be safe for
human administration in multiple volunteer and phase 1
trials [3-6]. Although relatively little data are currently
available for controlled human efficacy studies, a recent
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phase I/II trial showed that P. aeruginosa-specific phages
were clinically active [6].

The Burkholderia cepacia complex (BCC) is a group
of antibiotic-resistant Gram-negative species that also
appear to be a promising target for phage therapy. These
bacteria cause transmissible and potentially fatal oppor-
tunistic infections in cystic fibrosis (CF) and immuno-
compromised patients. Similar to P. aeruginosa, BCC
bacteria are innately antibiotic-resistant owing to a var-
iety of mechanisms (reviewed in [7]). Antibiotics such as
meropenem, minocycline, and ceftazidime show partial
efficacy against some clinical isolates, but the vast major-
ity of strains are not susceptible to even the administra-
tion of multiple drugs [8]. Although phage therapy for
Burkholderia species has not yet reached clinical trials,
preliminary studies have shown it to be safe and effective
in the protection of crop seedlings and in both inverte-
brate and mammalian infection models [9-12].

One of the most important aspects of phage therapy
development is the selection of appropriate therapeutic
phage candidates. To be clinically applicable, a phage
should have a broad host range (that includes clinical
isolates) and a sequenced and characterized genome that
lacks genes encoding putative pathogenicity factors and
lysogeny-related proteins (reviewed in [13]). Identifying
BCC-specific phages that meet all of the above criteria
has thus far proven challenging, particularly with respect
to lysogeny genes. Although several phages have been
isolated and characterized that have a broad host range
(encompassing multiple strains and species within the
BCC) and no virulence genes, almost all of these phages
are temperate or encode proteins required for this life-
style [13,14]. BCC-specific phages that are obligately lytic
(or putatively so) are thus far suboptimal for phage ther-
apy development because they either infect only environ-
mental isolates (Bcepl, Bcep43, Bcep781, and BcepB1A)
[15] or have genomes that are either not sequenced or
not published (KS12, BcepFl, BcepNazgul, BcepGomr,
BcepEtu, BcepFife, and BcepBrny) [13,16]. Although we
have shown that BCC phages can be engineered to an ob-
ligately lytic form, such mutants can be difficult to con-
struct and could potentially encounter additional hurdles
with respect to regulatory approval [11,17]. As a result of
these obstacles, a key objective of BCC phage isolation
and characterization studies is to isolate naturally occur-
ring obligately lytic phages that infect clinical strains and
lack putative virulence or lysogeny genes. Here, we de-
scribe and characterize the complete genome sequence of
podovirus JG068, a novel phage possessing each of these
characteristics. Furthermore, using a well-characterized in-
vertebrate infection model [10,18], we show that this phage
is active against Burkholderia cenocepacia in vivo, provid-
ing further evidence that JG068 and other related phages
are appropriate candidates for clinical development.
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Results and discussion

Isolation, host range, and morphology

JG068 (vB_BceP_JG068) was isolated from a sewage
processing plant using an uncharacterized strain of
Burkholderia dolosa. Additional JG068 hosts were identi-
fied using spot tests and soft-agar overlays of BCC strains.
A total of 32 strains were tested and seven were found to
support lytic propagation of JG068 (with efficiency of plat-
ing [EOP] values in parentheses): Burkholderia multivorans
ATCC 17616 (107, Burkholderia cenocepacia K56-2 (10°),
J2315 (10%), and PC184 (10°), Burkholderia stabilis LMG
14294 (10", and Burkholderia dolosa AU0158 (10°) and
CEP021 (10°). Excluding the soil isolate ATCC 17616, each
of these strains was identified as a CF clinical isolate
[19-21]. Furthermore, the three susceptible B. cenocepacia
strains and AUO0158 have all been linked to epidemic
spread among CF patients [19,21]. This host range is rela-
tively broad, clinically relevant, and distinct compared to
the tropism of BCC phages that we have previously charac-
terized [10,11,22-26]. On K56-2, JG068 forms large clear
plaques, 1-3 mm in diameter.

Several BCC phages — including KS4, KS5, KS9, KS10,
and KS12 — have been previously shown to use lipopoly-
saccharide (LPS) as a receptor [11], Abdu and Judrez
Lara, unpublished data]. To assess if JGO68 uses a simi-
lar receptor, a panel of both K56-2 [27,28] and PC184
[Abdu, unpublished data] LPS mutants were tested with
the phage in spot tests. In K56-2 mutants, JG068 (propa-
gated on wildtype K56-2 [EOP: 10°]) less efficiently
infected whxE and waal mutants (EOP: 10 and did not
infect wabR, wabS, wabO, or waaC mutants (EOP: <107
Table 1). In PC184 (EOP: 10°), this JGO68 stock less effi-
ciently infected a wabP mutant (EOP: 10%) and did not in-
fect wabO or waaC mutants (EOP: <10 Table 1). As
JG068 does not infect mutants with significant deficits in
the core LPS structure, the tail of this phage likely interacts
with the LPS core of K56-2, PC184, and potentially other
hosts. As noted in a previous BCC phage study, further ex-
periments are required to validate this prediction as LPS
truncation may also result in secondary changes to the cell
surface structure of the mutants [11,27].

Electron microscopy of JG068 virions (Figure 1) shows
that this phage has a short tail and belongs to the
C1 morphotype of the order Caudovirales and family
Podoviridae [29]. This morphology is relatively rare for a
BCC phage as the only Burkholderia podoviruses identi-
fied to date are the BPP-1-like BcepC6B and the Bcep22-
like DC1, Bcep22, BceplL02, and BcepMigl [14]. The
JGO068 capsid is icosahedral and 60.93 + 2.83 nm in diam-
eter (Figure 1).

Genome sequencing and assembly
In order to determine if the genome sequence of JG068
was novel, several EcoRI genomic DNA fragments were
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Table 1 JG068 LPS mutant host range

B. cenocepacia strain Mutant strain Mutation Reference Phenotype EOP

K56-2 wildtype none [19] wildtype 10°
RSF19 WhxE [27] truncated O-antigen 10
XOA7 waal [28] no O-antigen 10%
XOA15 wabR [28] truncated outer core <10
XOA17 wab$ [28] truncated outer core <10°
XOA8 wabO [28] truncated inner core <10°
CCB1 waaC [28] truncated inner core <10

PC184 wildtype none [19] wildtype 10°
AwabP wabP [Abdu, unpublished data] truncated inner core 107
AwabO wabO [Abdu, unpublished data] truncated inner core <10°
AwaaC waaC [Abdu, unpublished data] truncated inner core <10°

cloned into pUC19 and sequenced. Resulting reads were
analyzed using BLASTN and found to be similar (but
not identical) to a variety of sequences, including those
from previously characterized podoviruses. The genome
sequence was completed using ion semiconductor tech-
nology on the Ion Torrent platform. A total of 1.07 x 10°
sequence reads were aligned into a single contig with
over 400-fold coverage. Regions of ambiguity and gen-
ome ends were analyzed using Sanger sequencing.

The JG068 genome is 41,604 bp in length and has a
60.7% GC content. Based on the similarity of the se-
quence to characterized ¢KMV-like Autographivirinae
genomes (discussed below), the chromosomal termini of
JGO68 are likely to be short direct terminal repeats
(DTRs) as canonically found in T7 [30]. To identify these
termini, JG068 DNA was directly sequenced using primers
that bind the following four loci: within the left DTR,

Figure 1 Transmission electron micrograph of phosphotungstic
acid-stained JG068 virions at 140,000-fold magnification. Scale
bar represents 50 nm.

extending to the left terminus; immediately outside of the
left DTR, extending to the left terminus; within the right
DTR, extending to the right terminus; and immediately
outside of the right DTR, extending to the right terminus.
Primers that bind within the left DTR will amplify both the
left and right ends of the genome simultaneously (as the
primer binding site is in both DTRs). A reduction to one-
half intensity in the sequence chromatogram represents
the arrest of half of the reads (those originating from the
left end of the genome) at the left chromosome terminus
[31]. Primers that bind immediately outside of the left DTR
will amplify only the left end of the genome (as the primer
binding site is unique) and the sequence chromatogram
will stop abruptly at the left chromosome terminus [30].
The same reasoning is true for primers binding within or
near the right DTR. Using these methods, it was deter-
mined that the chromosomal termini of JG068 are 216 bp
DTRs with an identical sequence on each end. The length
of these repeats is shorter than that of other ¢KMV-
like Autographivirinae such as LKD16 (428 bp), $KMV
(414 bp), LKA1 (298 bp), and LIMElight (277 bp) [32-34].

In $KMYV, genome replication is bidirectional with the
origin and terminus in the DNA polymerase gene and
an internal virion protein gene, respectively [33]. Using
GenSkew analysis, a global co-minimum GC skew was
identified in the JG068 DNA polymerase gene 18 and a
global maximum skew was identified in the internal vir-
ion protein gene 38, suggesting that the replication
process of JG068 is similar to that of other pKMV-like
Autographivirinae. In addition to the chromosomal termini
and the putative replication origin, a third commonality
with respect to the DNA of this genus of phages is that the
JG068 genome lacks recognition sites for many common
restriction enzymes, including BamHI, Bglll, Pstl, Sacl,
Smal, and Xhol. As in other phages, including those that
are pKMV-like, these sites tend to be lost as the phage
evolves to avoid host restriction systems [32,33].



Lynch et al. BMC Genomics 2013, 14:574
http://www.biomedcentral.com/1471-2164/14/574

Relatedness

When the sequence of JG068 is analyzed using BLASTN,
the most similar sequences (with E-values of 2™ or less)
are those of Ralstonia phage $pRSB1, a genetic locus
of blood disease bacterium R229, a genetic locus of
Burkholderia pseudomallei 1710b chromosome 1, and
Caulobacter phage Cdl. In the BLASTN results, JG068
shows similarity to several members of the Autogra-
phivirinae subfamily and $KMV-like phages genus,
including $RSB1, Cdl, and Pseudomonas phage Bf7.
Members of this subfamily (with enterobacteria phage T7
being the best characterized) belong to one of several gen-
era, including the T7-like phages, SP6-like phages, pKMV-
like phages, and novel genera that have not yet been
named [35,36]. These podoviruses all encode a single sub-
unit RNA polymerase, as is found in JG068 [35]. To deter-
mine if JGO68 belongs to this subfamily (and, if so, to what
genus), we used CoreGenesUniqueGenes (CGUG) analysis
to compare the genomes of JG068, T7 (NC_001604.1), SP6
(NC_004831.2), and $KMV (NC_005045.1) [37]. Using T7,
SP6, or KMV as the reference genome, the proteins of
JG068 were 15.0%, 23.1%, or 44.9% similar, respectively.
As 240% similarity indicates a genus-level relationship
[35], we can conclude that JG068 is a novel member of
the Autographivirinae subfamily and the ¢(pKMV-like
phages genus. As noted above, the few BCC podoviruses
that have been previously characterized are either Bcep22-
like or BPP-1-like [14], thus JG068 is the first BCC Auto-
graphivirinae phage to be identified.

Genome annotation

The JG068 genome contains 49 putative open reading
frames (ORFs) (Figure 2, Table 2). Similar to T7 and
other Autographivirinae, all of the genes are transcribed in
the forward direction [33,38]. Based on BLASTP analysis
(with an E-value cutoff of 0.01), 19 JG068 proteins show
no similarity to other proteins in the database (Table 2).
The remaining 30 proteins have percent identities between
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29% (Rz protein gp48, similar to hypothetical protein
Bpse9_41836 of B. pseudomallei 91) and 64% (hypothetical
protein gp8, similar to a hypothetical protein of Ralstonia
phage RSB2) (Table 2), thus showing low-to-moderate
similarity to other sequences at the protein level.

Similar to other phages, the JG068 genome has a modu-
lar organization. In both T7 and $KMYV, class I early genes
are clustered on the left end of the genome, class II genes
for DNA-binding proteins are found centrally, and class III
genes for virion morphogenesis and lysis are positioned on
the right end [32,38]. The overall organization of JG068 is
syntenic with both of these phages: left end genes encode
hypothetical proteins, central genes encode DNA-binding
proteins, and right end genes encode capsid morpho-
genesis and DNA packaging, tail morphogenesis, and lysis
proteins (Figure 2). Using BTXpred analysis (to identify
toxins) combined with BLASTP and HHpred compari-
sons (to identify other pathogenicity-associated proteins;
Tables 2 and 3), no putative virulence modules were
detected, indicating that JG068 is likely to be a safe candi-
date for clinical testing.

A module commonly identified in other BCC phages
that is notably absent from the JG068 genome is that
for lysogeny. Similar to other obligately lytic phages,
JG068 forms clear plaques and does not encode either an
integrase or a repressor. Most other characterized mem-
bers of the Autographivirinae are also virulent (although
putative prophage elements described as being T7-like
have been identified in Xanthomonas axonopodis, Pseudo-
monas putida, and B. pseudomallei) [39,40]. In order to
verify experimentally that JG068 was not capable of lysoge-
nizing BCC strains, we isolated JG068-insensitive K56-2
from a JG068/K56-2 lysate. To determine if these cells were
insensitive due to either receptor mutation or superinfec-
tion immunity, we attempted to lyse these isolates using a
second putatively virulent BCC-specific phage, KS12. Previ-
ous assays have shown that KS12 uses LPS as a receptor
[Judrez Lara, unpublished data]. If JG068-insensitive K56-2
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Figure 2 JG068 genome map. All genes (right-facing arrows labeled with the gene name [1-49]) are transcribed in the forward direction.
Regulatory and repeat sequences: orange triangle, host promoter; green triangle, phage promoter; brown triangle, terminator; black, direct
terminal repeat. Gene product functions: red, DNA-binding; purple, capsid morphogenesis and DNA packaging; pink, tail morphogenesis; blue,
lysis; grey, unknown function.




Table 2 JG068 genome annotation

Gene Start End  Putative function Strand Putative ribosome Length Closest relative BLASTP alignment Percent E-value Organism GenBank
binding site and (amino acids) region (amino acids) identity accession
start codon number

1 1211 1405 hypothetical + ACGGAGctagacgaATG 64 none

2 1402 1566  hypothetical + GGAACGAtgctcgATG 54 none

3 1590 1889  hypothetical + GGAGTAACgatcATG 99 hypothetical protein ~ 3-72/169 50 e’ Acinetobacter phage ADQ12705.1

GAB1_gp1 GAB1

4 1895 2227  hypothetical + GGGGTGAGttcgATG 110 none

5 2224 2613  hypothetical + GGAGAAtcacGTG 129 hypothetical protein ~ 1-98/106 32 6e® Escherichia phage  AFU62620.1

phAPEC8_0044 phAPEC8

6 2603 2974  hypothetical + GAGGTGttgaATG 123 none

7 2971 3231  hypothetical AACGAGGccgcATG 86 none

8 3242 3460 hypothetical AAGGAGcaacacATG 72 hypothetical protein  27-54/109 64 4e® Ralstonia phage BAJ51800.1

RSB2

9 3584 4672  hypothetical + AGGACAtcaATG 362 none

10 4762 5223 hypothetical + AAGGAtttaacATG 153 none

11 5252 5698 hypothetical + AAGGAACtgacATG 148 none

12 5702 6610 DNA primase + GGAGGCctaaggcATG 302 putative DnaG-like 1-277/284 43 1% Caulobacter phage ADD21651.1

primase Cd1

13 6624 7802 DNA helicase + GAAGGTAAcacgcaaGIG 392 hypothetical protein ~ 35-427/431 61 2¢’'7® Burkholderia YP_333051.1

BURPS1710b_1647 pseudomallei 1710b
14 7802 8032 hypothetical + GGGGGtgtgATG 76 none
15 8032 8493 hypothetical + AAGGAGGGtgcgtgATG 153 none
16 8493 8603 hypothetical + GTGGGGCgctgATG 36 none
17 8600 9553  DNA ligase + GGAGGAAQQtATG 317 PBCV-1 DNA ligase 4-309/309 37 1e™! Burkholderia ZP_02453445.1
pseudomallei 91

18 9688 12060 DNA polymerase  + AAGGAACCATG 790 38L 1-806/808 60 0 Burkholderia ZP_02453448.1
pseudomallei 91

19 12122 12424 HNH endonuclease + AGGCAcggtcgcagcATG 100 endonuclease 30-112/249 47 7e7® Bacteroides finegoldii - ZP_05414969.1
DSM 17565

20 12421 13314 hypothetical + AAGGAACaagtATG 297 37L 8-260/276 50 7e7! Burkholderia ZP_02453449.1
pseudomallei 91

21 13327 14301 DNA exonuclease + AAGGAGGcaaggccATG 324 phosphodiesterase | 1-247/258 48 5¢7° Burkholderia ZP_04951398.1

pseudomallei 1710a

22 14282 14677 DNA endonuclease + ATGAGAttgaccacaagcATG 131 DNA endonuclease VIl 1-115/118 47 2e® blood disease CCA83273.1

bacterium R229

23 14727 14909 hypothetical + GGCAGGttgattgcATG 60 none

24 14910 15704 DNA exonuclease + GGAGAltaaATG 264 34L 1-263/263 60 1" Burkholderia ZP_02453452.1

pseudomallei 91
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Table 2 JG068 genome annotation (Continued)

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

42
43

44

45
46

15704 16138 hypothetical

16142
16313

18861

19003

19444
20068
20488

22066

22991

24099

24726

27339

28206

30458

34572

37107

37524
37703

37989

39788
39998

16297
18799

19025

19443

20058
20478
22065

22908

24031

24716

27326

28196

30446

34495

37097

37520

37706
37987

39788

39994
40222

hypothetical
RNA polymerase

hypothetical
hypothetical

hypothetical
hypothetical

head-tail connector
protein

scaffolding
protein

capsid protein

tail tubular
protein A

tail tubular
protein B

internal virion
protein

internal virion
protein

internal virion
protein

tail fiber protein

tail fiber assembly
protein

holin

DNA maturase A

DNA maturase B

hypothetical
hypothetical

+

+

GGTGAGCtaATG

GACGGAGtaacagATG

GAGGAcactgATG

AAGGAACcgGTG

AAGGAACctgcgcgATG

AAGGAGALttgaATG

AAGGAGGGagcATG

AAGGAGAAgQacATG

AAGGAGCcgtaaATG

AGGAGGAAcctcaATG

AAGGAGACtgCtATG

AAGGAGGCattATG

AAGGGGGGtcagtcATG

AAGGAGGtagcATG

AAAGGAGAAGtaaATG

AGGAGGcaacATG

AAGGAGGItttATG

AGGAGtaagtaATG
AGGAGcaagctATG

GAGGCAttgatATG

GGAGGAAgGtaATG

AAAGGAGtaattcATG

144

51

828

54

146

204
136
525

280

346

205

866

285

746

1345

841

137

60
94

599

68
74

hypothetical protein

none

DNA-directed RNA
polymerase

none

hypothetical protein
BDB_mp60445

none
none

head portal-like protein
from phage

scaffolding-like protein
from phage

major capsid-like
protein

tail tuber protein A
from phage

tail tuber protein B
from phage

hypothetical protein
Bpse38_32600

hypothetical protein
RSB1_gp36

internal virion protein

BcepGomrgp19

hypothetical protein
Bcep1808_1285

none

conserved hypothetical
protein from phage

Terl large terminase
subunit-like protein

none

none

16-128/138

6-817/818

1-143/145

9-494/512

59-249/255

8-336/336

1-200/203

2-858/858

5-199/301

1-361/785
9-1318/1333
307-539,

321-459/669
7-141/146

6-79/96

4-604/605

33

51

35

50

36

57

40

48

37

30

30

44, 31

4

59

5e°

56—18

-165

2e—18

6e—133

9e—42

86722

2e—42
2e—1 31

44
3e™,

2e—28

2641

Pantoea phage
LIMElight

Burkholderia
thailandensis
MSMB43

blood disease
bacterium R229

blood disease
bacterium R229

blood disease
bacterium R229

Ralstonia phage
RSB1

blood disease
bacterium R229

blood disease
bacterium R229

Burkholderia
thailandensis
MSMB43

Ralstonia phage
RSB1

Caulobacter phage
Cd1

Burkholderia phage
BcepGomr

Burkholderia
vietnamiensis G4

blood disease
bacterium R229

Ralstonia phage
RSB1

YP_007002888.1

ZP_02468154.1

CCA83279.1

CCAB83282.1

CCAB83283.1

YP_002213721.1

CCA83285.1

CCA83286.1

ZP_02468144.1

YP_002213725.1

ADD21673.1

YP_001210239.1

YP_001119130.1

CCA83292.1

YP_002213730.1
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Table 2 JG068 genome annotation (Continued)

47 40232 40753 SAR endolysin + AAGGAGGCcagcATG
48 40763 41119 Rz + AGGAGAtaaccATG
49 41016 41267 Rzl + AAGGGGAAGCtgaATG

phage-type lysozyme 68-211/223

hypothetical protein  5-105/106
Bpse9_41836

exported hypothetical ~ 18-79/83
protein

36

29

52

88*27

6e™

4

Xanthomonas NP_858975.1
phage Xp10
Burkholderia ZP_02453410.1

pseudomallei 91

blood disease CCA83297.1

bacterium R229

BLASTP hits with an E-value <0.01 were included in the table.
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Table 3 JG068 HHpred predictions

Page 8 of 15

Protein Motif of closest relative Motif definition Percent probability E-value
gp12 2au3_A DNA primase 100 1.10e™
gp13 3bgw_A DNAB-like replicative helicase 100 1.70e®
gpl5 1v58_A Thioldisulfide interchange protein DSBG 93.88 0.13
gp17 Vi_A Chlorella virus DNA ligase-adenylate 100 3.90e°
gp18 3pv8_A DNA polymerase | 100 160e "
gp19 Tu3e_M HNH homing endonuclease 99.92 290e %
gp21 Texn_A 5-exonuclease, 5'-nuclease 100 3.90e*
gp22 1e7I_A GP49, recombination endonuclease VII 100 8100
gp24 2gui_A DNA polymerase Il epsilon subunit 99,85 7300
gp27 Tmsw_D DNA-directed RNA polymerase, bacteriophage T7 RNA 100 2.50e7'°
gp29 4h89_A GCN5-related N-acetyltransferase 96.86 0.002
gp32 3lj5_A Portal protein, protein GP1 96.82 0.027
gp34 2xd8_A GP10, T7-like capsid protein 100 130e®
gp39 Tgsa_A Protein (soluble lytic transglycosylase SLT70) 99.15 6.20e™"
gp40 2ch7_A Methyl-accepting chemotaxis protein 96.27 0.95
gp41 2kz6_A Uncharacterized protein 9967 1.70e7'®
gp44 3cpe_A Terminase, DNA packaging protein GP17 99.97 6.00e°
gp47 3hde_A Lysozyme 100 3.80e°

HHpred hits with a probability >90% were included in the table.

isolates are also insensitive to KS12 infection, they are likely
LPS mutants, whereas if they are sensitive to KS12 infec-
tion, they are likely JG068 lysogens. Over 100 JG068-
insensitive isolates were screened and all were found to
be insensitive to both phages compared to wildtype K56-
2. Twelve resistant colonies were PCR-screened using
JG068-specific primers and each isolate was found to be
amplification-negative. This evidence shows that resist-
ance arises due to receptor mutation and not due to
JG068 lysogeny.

In Autographivirinae, transcription is first initiated
from host promoters found at the far left-hand side
of the genome, followed by initiation from phage RNA
polymerase-specific promoters found throughout the
genome [33,38]. JG068 promoters putatively recognized
by BCC RNA polymerase were identified using Neural
Network Promoter Prediction. Using a cutoff of 0.95 and
limiting the results to sequences found intergenically,
three promoters were identified in the first 650 bp down-
stream of the left DTR (Figure 2 and Figure 3A). Phage
promoters lack the conserved structure observed in bac-
terial promoters with —~10 and -35 regions and are in-
stead described as short consensus sequences that vary
among different phages [41]. PHIRE was used to iden-
tify a strongly conserved 16 bp consensus sequence
(Figure 3B) found six times at five intergenic loci in the
JG068 chromosome: overlapping the first host promoter
sequence, upstream of the DNA polymerase gene 18

(2 promoters), upstream of the hypothetical protein gene
28 (downstream of the DNA-binding module), upstream
of the capsid gene 34, and upstream of the tail fiber
gene 40 (Figure 2). Putative rho-independent termi-
nators were identified using TransTermHP. Although
multiple sequences were reported in the output, those
shown in Figure 3C were chosen because they were
intergenic (based on GeneMark predictions) and had a
AG value of —10 kcal/mol or less. Similar to LIMEzero,
the putative terminators are found upstream of the
DNA-binding module and downstream of the capsid
protein (Figure 2) [34].

Module analysis

DNA-binding proteins

One of the more notable aspects of the JG068 genome is
its abundance of DNA-binding proteins. As discussed
above, similar to T7 and $KMYV, these genes are found
centrally in the JG068 genome (Figure 2). In JG068 and
other ¢KMV-like phages [32-34], the RNA polymerase
gene is at the far right end of this module (upstream of
the structural genes; Figure 2), whereas in T7 it is found
close to the left end of the genome [38]. JG068 DNA-
binding proteins include the primase gpl2, helicase
gpl3, ligase gpl7, DNA polymerase gpl8, HNH endo-
nuclease gpl9, exonuclease gp21, endonuclease gp22,
exonuclease gp24, and RNA polymerase gp27 (Table 2).
The annotation of each of these proteins was based
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Figure 3 Predicted promoter and terminator sequences in JG068. A, putative host promoter sequences identified using Neural Network
Promoter Prediction [50]. Predicted —35/—10 boxes and transcription start sites are underlined. A canonical prokaryotic promoter is shown below.
B, putative phage promoter consensus sequence identified using PHIRE [51] and plotted using Weblogo 3.3 [52]. C, putative rho-independent
terminator sequences identified using TransTermHP [53]. The central loop region is separated by dashes and the 3’ stretch of thymidine residues

-TAAGATGGAGTCTCAGTAGCA

on BLASTP analysis and subsequently confirmed using
HHpred (Tables 2 and 3).

One of the unifying features of the Autographivirinae
is the presence of a single-subunit phage RNA polymer-
ase gene [35]. Based on CGUG analysis, the only JG068
DNA-binding protein that shows similarity to those of T7
is this polymerase. These two proteins have 31% identity
based on BLASTP analysis. In contrast, almost all of the
JG068 DNA-binding proteins are similar to proteins in
GKMYV with 29-48% identity. Furthermore, these genes are
found in the same order in these two phages.

The three components within this module that are dis-
similar between KMV and JG068 are the genes encod-
ing the ligase, HNH endonuclease, and DNA binding
protein. In KMV, a ligase gene is found between the
helicase and DNA polymerase (as in JG068), but the se-
quences of these genes are dissimilar between the two
phages [32]. Several HNH homing endonuclease genes
have been identified in T7 [38], but only one is found in
JG068 and none have been identified in GKMV. Al-
though a DNA binding protein gene was identified up-
stream of the helicase gene in KMV [32], such a gene
was not identified in the JG068 annotation.

The position of the promoters driving the expression of
genes in this module also differs between these phages.
In $KMYV, promoters upstream of these genes include
four host promoters and two phage promoters (one be-
tween the DNA binding protein and primase genes and
one between the DNA polymerase and endonuclease
genes) [32]. In contrast, whereas the host promoters for
JG068 are found at a similar locus as in $KMYV, the phage
promoters either overlap the host promoters or are found
between the ligase (17) and DNA polymerase (18) genes
(Figure 2). Based on this arrangement, all of the KMV

genes in this module could be expressed from internal
phage promoters (except for the gene encoding the DNA
binding protein), whereas the primase (12), helicase (13),
and ligase (17) genes of JG068 would be expressed from
either a host promoter or the nested phage promoter on
the far left end (Figure 2).

Morphogenesis proteins
The structural proteins of $KMV, LKA1, and LKD16
have been identified using mass spectrometry of proteins
from purified virions [33,42]. Based on CGUG analysis,
JG068 encodes proteins similar to the majority of these
structural proteins. The putative structural genes 32—40
(excluding 33, discussed below) are contained in a single
17 kbp module (Figure 2). In a CGUG comparison of
GKMV and JG068, the head-tail connector (JGO68 gp32),
capsid protein (gp34), tail tubular protein A (gp35) and
B (gp36), internal virion proteins (gp38 and gp39), and
tail fiber protein (gp40) are all similar and each of these
proteins was shown to be structural in KMV virions
[42]. In addition, when JG068 and LKAl are compared
using CGUG, a third internal virion protein (gp37) is
identified as similar that is structural in LKAl [33].
$KMYV, LKA1, and LKD16 virions also contain some pro-
teins not encoded similarly by JG068. The genes encod-
ing these structural proteins are found either upstream of
the head-tail connector gene or downstream of the tail
fiber gene and have uncharacterized functions or are pu-
tatively involved in adsorption [33,42]. Based on our gen-
ome annotation, JG068 does not encode any additional
unique structural proteins.

Additional head morphogenesis/DNA packaging and
tail morphogenesis proteins are encoded by JG068 that
are not predicted to be associated with the mature virion.
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Although the scaffolding protein gp33 is encoded within
the structural module discussed above, it is likely to func-
tion in capsid assembly but not to be part of the mature
virion based on KMV, LKA1, and LKD16 structural pro-
tein analysis [33,42]. Dissimilar to many other phages (but
similar to others in the ¢pKMV-like genus) [32-34], the
DNA packaging genes 43 and 44 are found far downstream
of the head morphogenesis genes (Figure 2). Gp33, gp43,
and gp44 are all similar to proteins of $KMV based on
CGUG analysis. The only putative morphogenesis pro-
tein that is unique to JG068 and not shared by ¢KMV
or LKAL1 is the putative tail fiber assembly protein gp41.
Although HHpred analysis was uninformative (as the
high probability matches to gp41 lack characterized func-
tions; Table 3), this protein shows similarity in BLASTP
analysis to tail fiber assembly proteins of Cupriavidus
necator N-1, Dickeya dadantii 3937, and Idiomarina
xiamenensis 10-D-4.

Lysis proteins

The lysis proteins of JG068, encoded on the far right
end of the genome, include a putative pinholin, signal-
arrest-release (SAR) endolysin, Rz, and Rzl. Although
the lysis genes in most phages (including $KMV) tend
to be arranged in a single block with the holin gene
followed by the endolysin, Rz, and Rzl genes [43], this
order is not maintained in JG068. Here, the putative
pinholin gene 42 is found upstream of the SAR endolysin
(47), Rz (48), and Rzl (49) genes, separated by genes en-
coding two DNA packaging proteins and two hypothetical
proteins (Figure 2). Within the Autographivirinae subfam-
ily, this gene arrangement is also observed in SP6 [44].

Although only two of the four JG068 lysis proteins are
similar to those of pKMV based on CGUG analysis (the
SAR endolysin gp47 and Rz gp48), these two phages are
likely to use similar lysis mechanisms. The gp42 pinholin
has analogous features to that of pKMV: ~60 amino acids
in length (60 for JG068 and 66 for pKMYV), two transmem-
brane domains (as predicted by TMHMM analysis), and
positively-charged arginine and lysine residues at the C-
terminus [43]. The gp48 Rz inner membrane protein
has a single N-terminal transmembrane domain based on
TMHMM analysis. Gene 49, encoding the Rzl outer
membrane lipoprotein, overlaps with gene 48 in the +1
reading frame and extends downstream of the 48 stop
codon by 148 base pairs (Figure 2). LipoP analysis pre-
dicts a signal peptidase II cleavage site in gp49 between
residues 18 (alanine) and 19 (cysteine).

The SAR endolysin of JG068 has a very similar
organization to that of ¢KMV. SignalP 3.0 predicts an
N-terminal signal sequence probability of 0.97 for gp47
(later versions of SignalP do not make the same predic-
tion, likely because the C-region is absent). The gp47 N-
terminus contains two signal sequence regions followed
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by three putative catalytic residues of the lysozyme domain.
Residues 1-7, including a positively-charged histidine, ly-
sine, and arginine, make up the N-region. Residues 8—25
make up the hydrophobic glycine- and alanine-rich H-
region, also predicted to be a transmembrane domain by
OCTOPUS analysis. Using CD Search and BLASTP align-
ment with the KMV SAR endolysin, the putative lyso-
zyme catalytic residues were identified as 27E, 36D, and
45T, all found immediately downstream of the H-region.
As in $KMYV, because the C-region is absent, the protein
will not be cleaved by a signal peptidase upon secretion
and will instead remain associated with the inner mem-
brane until release into the periplasm [43].

Using inducible expression of the pKMV SAR endolysin
in E. coli, it was shown that this protein could decrease cul-
ture absorbance in the absence of a pinholin, but only if
the N-terminal signal sequence of the endolysin was
present [43]. We performed a similar experiment using
the JG068 SAR endolysin to further characterize the ex-
port mechanism and biological activity of this protein.
To allow for tightly controlled inducible expression, we
cloned gene 47 into pET22b (with [gp47] or without
[gp47ASS] the putative signal sequence in the first 25 res-
idues) and transformed these plasmids into E. coli BL21
(DE3)pLysS. When these cells (or a pET22b blank control)
are subcultured, their growth rates prior to IPTG induc-
tion are similar based on optical density measurements
at 600 nm (ODgqp; up to 3 h in Figure 4). However, follow-
ing induction, expression of gp47 is lethal to the cells as
the ODgqo decreases from ~0.6 at 3 hours to ~0.45 at 8
hours (black squares, Figure 4). A very different trend is
observed for the blank control, gp47ASS, and uninduced
gp47 strains, where the ODggo increases from ~0.6 at 3
hours to ~0.9 at 8 hours, double that of the induced gp47
ODgqo (Figure 4). As the lytic activity is dependent upon
expression of not only the lysozyme domain but also the
signal sequence, we can conclude that JG068 gp47 acts as
a typical SAR endolysin in Gram-negative bacteria. While
the classical endolysins of Bcep781/Bcep43 and BcepC6B
have been functionally characterized [15,45], this is the first
experimental evidence for SAR endolysin activity in a BCC
phage. As these proteins have also been identified in the
Bcep22-like viruses [25,46], similar experiments may be
used to confirm the activity of SAR endolysins in these
phages as well.

In vivo activity

The Galleria mellonella (greater wax moth) larvae model
is commonly used to assess both strain virulence and
phage therapy efficacy for members of the BCC, particu-
larly B. cenocepacia [10,11,18]. Although this model is
less complex than a mammalian system, it shows positive
correlation with both mouse and rat models of infection
[18]. To determine if JGO68 possesses lytic activity against
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Figure 4 Signal sequence-dependent lytic activity of the gp47 SAR endolysin expressed in E. coli BL21(DE3)pLysS. Cells carrying pET22b
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B. cenocepacia in vivo, we infected G. mellonella larvae
with 3.7 x 10° colony forming units (CFU) of K56-2 and
treated with endotoxin-removed JG068 at a multiplicity of
infection (MOI) of 350 (1.3 x10° plaque forming units
[PFU]). For infected, untreated controls, no larvae survived
after 72 hours (Figure 5, left). Those larvae that received
only JG068 remained healthy over the course of the experi-
ment (Figure 5, centre), indicating that phage treatment
produced no harmful effects. For infected, treated larvae,
JG068 administration significantly increased survival to an
average of 77% (from 0% in untreated controls) (Figure 5,
right). In a previous study, the putatively virulent phage

KS12 was the most effective for immediate treatment
of K56-2 infection in the G. mellonella model, resulting
in 93 +12% survival (MOI =5000) or 57 + 6% survival
(MOI =500) [10]. Based on the G. mellonella data pre-
sented in Figure 5, JGO68 is almost as effective as a signifi-
cantly larger dose of KS12, indicating that JG068 is highly
active in vivo.

Conclusions

One of the greatest challenges in BCC phage therapy de-
velopment is the identification of phages with a broad,
clinically relevant host range that are free of virulence
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Figure 5 In vivo activity of JG068 against B. cenocepacia K56-2. G. mellonella larvae were infected with K56-2 and treated with endotoxin-
removed JG068 at a multiplicity of infection (MOI) of 350. Survival was assessed 72 hours post-infection.
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genes, obligately lytic, and active in vivo. Our charac-
terization of the podovirus JG068 indicates that it is a
rare example of a BCC phage that satisfies each of these
requirements. JG068 infects strains of B. multivorans,
B. cenocepacia (interacting with the LPS core as a recep-
tor in K56-2 and PC184), B. stabilis, and B. dolosa. It is
the first BCC virus to be identified as a member of the
Autographivirinae subfamily and ¢KMV-like phages
genus. The 41,604 bp genome sequence has a structure
similar to that of other Autographivirinae chromosomes,
with DTRs and genes encoding DNA-binding, morpho-
genesis, and lysis proteins expressed in the forward direc-
tion from phage and host promoters. JG068 lacks virulence
genes, is obligately lytic, and encodes a functional SAR
endolysin, the first to be experimentally verified for the
BCC. Administration of JG068 to B. cenocepacia K56-
2-infected G. mellonella larvae significantly decreases
larval mortality, providing the first evidence that se-
quenced, obligately lytic BCC phages are active against
B. cenocepacia in vivo. Given these characteristics, further
study is warranted regarding the development of JG068
into an active antimicrobial for use in CF patients.

Methods

Bacterial strains and culture conditions

BCC strains were grown aerobically at 30°C overnight
on half-strength Luria-Bertani (% LB) solid agar or agar-
ose plates or in % LB broth. Strains used for host range
testing and phage propagation are members of the ori-
ginal and updated BCC experimental strain panels
[19,20]. K56-2 LPS mutants [27,28] were grown at 30°C
on % LB plates or in % LB broth containing 100 mg/1 tri-
methoprim. E. coli DH5a transformed with pUC19 or
pET22b was grown at 37°C on LB plates containing 100
mg/l ampicillin. E. coli BL21(DE3)pLysS was grown at
37°C in LB broth containing 25 mg/l chloramphenicol
or, if transformed with pET22b, 25 mg/l chlorampheni-
col and 100 mg/] ampicillin.

Phage propagation, host range analysis, lysogeny screen,
and electron microscopy

JG068 was isolated from a sewage plant in Steinhof near
Braunschweig in Germany following an enrichment proto-
col previously described [47]. For propagation of JG068,
100 pl high-titre phage stock and 100 pl BCC liquid culture
were combined and incubated 20 minutes at room
temperature, mixed with 3 ml 0.7% % LB agar or 0.6% %
LB agarose, overlaid on a % LB plate, and incubated at
30°C overnight. High-titre stocks were made in modified
suspension medium (modified SM; 50 mM Tris—HCI
[pH 7.5], 100 mM NaCl, 10 mM MgSO,). Phage plates
were overlaid with 3 ml modified SM and incubated >1 h
at room temperature on a platform rocker. The super-
natant was recovered, pelleted by centrifugation for 2 min
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at 10,000 x g, filter-sterilized using a Millex-HA 0.45 um
syringe-driven filter unit (Millipore, Billerica, MA), and
stored at 4°C.

Spot testing was used for preliminary host range ana-
lysis. Soft-agar overlays containing 100 pul BCC liquid
culture were allowed to solidify for >10 minutes at room
temperature, spotted with 10 pl drops of high-titer JG068
stock, and assayed for clearing and/or plaque formation
after incubation at 30°C overnight. Strains that showed
phage susceptibility in this assay were re-tested in soft-agar
overlays containing both the strain and JG068. The host
ranges for LPS mutants of K56-2 [27,28] and PC184
[Abdu, unpublished data] were tested similarly. Efficiency
of plating (EOP) values were determined as previously
described [46].

To assay for JG068-lysogenized K56-2, JG068 and
K56-2 were plated in agar overlays at a multiplicity of in-
fection of 10° and incubated at 30°C overnight. To recover
surviving cells, plates were overlaid with 3 ml sterile water
and incubated 1 h at room temperature on a platform
rocker. Cells were pelleted by centrifugation for 2 min at
10,000 x g, washed and resuspended in sterile water, and
plated to obtain isolated colonies. Colonies were struck out
onto % LB plates and spotted with separate 10 pl drops of
high-titer JG068 stock and high-titer KS12 stock. Isolates
were scored as sensitive or insensitive compared to a sensi-
tive wildtype K56-2 control that was lysed by both phage
stocks. A subset of resistant isolates was replated and PCR-
screened for lysogeny using JGO068-specific primers (9F:
GAACATCGGTAACGTCGTCAAGG; 9R: GGCGTGA
CGAACAGCTTGGC). TopTaqg DNA polymerase and
buffers (Qiagen, Hilden, Germany) were used according to
the manufacturer’s instructions (template: 1 pl overnight
culture incubated 5 min at 100°C).

For electron microscopy, phage stocks were prepared as
described above with the following modifications: agarose
plates and soft agarose were used for overlays, sterile water
was used in place of modified SM, and a 0.22 um filter was
used for syringe-driven filtration. A carbon-coated copper
grid was incubated with lysate for 5 min and stained with
2% phosphotungstic acid for 30 s. Transmission electron
micrographs were captured using a Philips/FEI (Morgagni)
transmission electron microscope with charge-coupled de-
vice camera at 80 kV (University of Alberta Department of
Biological Sciences Advanced Microscopy Facility). The
capsid diameter (mean + standard deviation) was calculated
using Microsoft Excel based on measurements from nine
individual virions.

Phage DNA isolation, RFLP analysis, and sequencing

Phage DNA was isolated using a modified version of a
Wizard DNA Clean-Up protocol [48]. Ten milliliters of
filter-sterilized JGO068 lysate (propagated using K56-2 on
agarose medium) was treated with 10 pl DNase I (Thermo
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Scientific, Waltham, MA), 100 pl 100x DNase I buffer
(I M Tris—HCl, 0.25 M MgCl,, 10 mM CaCl,), and 6 pl
RNase (Thermo Scientific) and incubated 1 h at 37°C to
degrade the bacterial nucleic acids. Four hundred micro-
liters of 0.5 M EDTA and 25 pl of 20 mg/ml proteinase K
(Applied Biosystems, Carlsbad, CA) were added and in-
cubated 1 h at 55°C to inactivate DNase I. After cooling
to room temperature, the lysate was added to 8.4 g of
guanidine thiocyanate and briefly mixed. One milliliter
of warmed, resuspended Wizard DNA Clean-Up Resin
(Promega Corporation, Madison, WI) was added to the
mixture and mixed by inverting for 15 minutes to allow
for release of the phage DNA and binding to the resin.
The mixture was pelleted by centrifugation at room
temperature for 10 min at 5,000 x g and the supernatant
was drawn off until ~5 ml remained. This mixture was
resuspended by swirling, transferred into an empty syr-
inge barrel attached to a Wizard Minicolumn (Promega
Corporation), and pushed into the column. The column
was then washed with 2 ml 80% isopropanol and dried by
centrifugation for 2 min at 10,000 x g. JG068 DNA was
eluted from the column following addition of 100 ul of
80°C nuclease-free water (Integrated DNA Technologies,
Coralville, IA), incubation for 1 min, and centrifugation
for >20 s at 10,000 x g.

Phage and plasmid DNA were quantified using a
NanoDrop 2000c spectrophotometer (Thermo Scientific).
For shotgun cloning, JG068 EcoRI fragments were purified
using a GENECLEAN III kit (MP Biomedicals, Santa
Ana, CA), ligated into pUC19, and transformed into
E. coli DH5a (Invitrogen, Carlsbad, CA). Plasmids were
purified using the GeneJET Plasmid Miniprep kit (Thermo
Scientific) and sequenced using a 3730 DNA Analyzer
(Applied Biosystems) by the University of Alberta De-
partment of Biological Sciences Molecular Biology Ser-
vice Unit (MBSU). Sequences were edited and assembled
using Geneious [49].

The complete JG068 genome sequence was deter-
mined with the assistance of the MBSU using an Ion
Torrent PGM (Applied Biosystems) and assembled using
SeqMan NGen (DNASTAR, Madison, WI). Ambiguous
regions in the assembly were resequenced using Sanger
sequencing from EcoRI clones (for internal fragments)
or PCR products (for terminal fragments). Chromosomal
termini were identified using primers within the left
direct terminal repeat (DTR), extending to the left end
(IL: CAACCCTGTACAGCCGACCC), outside of the left
DTR, extending to the left end (OL: CCTTGCTCTAT
CTACCATGTTCCGC), within the right DTR, extending
to the right end (IR: TGTGGATAGGGCGAAGTCT
GAAGQ), and outside of the right DTR, extending to
the right end (OR: CTCCGACGAAGCATCCGC). Primers
were used to directly sequence the JGO68 DNA and se-
quence alignment was used to identify the loci where
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sequence intensity dropped by 50% (for primers IL and
IR) or 100% (for primers OL and OR). The JG068
sequence has been deposited in GenBank [GenBank:
KC853746].

Bioinformatics analysis

Open reading frames (ORFs) were identified using
GeneMark.hmm for prokaryotes [54] and annotated using
BLASTP [55], HHpred [56], and CD-Search [57]. Gene 49,
which has a start codon within the last third of gene 48,
was identified using ORF Finder [58]. The replication ori-
gin and terminus were predicted using a GC-skew plot
generated by GenSkew [59]. Genome restriction profiles
were predicted using NEBcutter [60]. Whole genome com-
parisons were performed using CoreGenesUniqueGenes
(CGUG) with a cutoff score of 75 [35,37]. Screening for
bacterial toxins was performed using BTXpred [61]. Bac-
terial promoters, phage promoters, and rho-independent
terminators were identified using prokaryotic Neural Net-
work Promoter Prediction with a cutoff of 0.95 [50],
PHIRE [51], and TransTermHP [53] on the PePPER server
[62], respectively. Sequence logos were constructed using
WebLogo [52]. Transmembrane domains were predicted
using TMHMM [63] and OCTOPUS [64]. Lysis protein
signal sequences were identified using SignalP 3.0 [65] and
LipoP [66].

SAR endolysin expression

To assess the activity of the gp47 SAR endolysin, gene
47 including the signal sequence (bp 40,232 — 40,753;
Ndel-SS-F: ATAATAACATATGCACCCCATCGTCAA
GCGAG; HindIII-R: AAAAAGCTTCTATCGCCGGA
TACCAGCAACG) or excluding the signal sequence
(bp 40,307 — 40,753; Ndel-ASS-F: TAATAACATATGG
ACGAGGGTATCCGGAACGTC; HindIII-R: as above)
was PCR amplified using KAPA HiFi HotStart ReadyMix
(Kapa Biosystems, Woburn, MA) and ligated in-frame
into pET22b. These constructs were separately trans-
formed into E. coli DH5q, sequenced to verify that the in-
serts were correct, and transformed into E. coli BL21
(DE3)pLysS using a standard protocol [67]. A pET22b
blank control plasmid was isolated from E. coli MC4100
and transformed similarly into BL21(DE3)pLysS. To
assay endolysin activity in E. coli, 5 ml liquid cultures
of the three strains (in triplicate) were each subcultured
into six wells of a 96 well plate by adding 10 pl culture
to 190 pl LB broth containing 25 mg/l chloramphenicol
and 100 mg/] ampicillin. The plate was then covered with
plastic wrap and incubated with shaking at 37°C. Optical
density measurements at 600 nm (ODgg,) were measured
at 1 h intervals with a Wallac 1420 VICTOR? multilabel
counter (PerkinElmer, Waltham, MA). At 3 h (ODggg ~
0.6), half of the samples were induced with IPTG (1 mM
final concentration) and optical density measurements
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continued at 1 h intervals up to 8 h. Averages and stand-
ard deviations were calculated using Microsoft Excel.

Galleria mellonella assays

G. mellonella infection and treatment assays were per-
formed as described previously [10] with modifications.
One milliliter of a 16 h K56-2 overnight culture was pel-
leted by centrifugation for 2 min at 10,000 x g, resus-
pended in 1 ml MgSOg-ampicillin solution (10 mM
MgSQOy, 1.2 mg/ml ampicillin), and diluted in this solution
to 1:10*. High-titre JGO68 lysate was passaged through
a Detoxi-Gel Endotoxin Removing Column (Thermo
Scientific) and supplemented with ampicillin. Larvae
(RECORP Inc., Georgetown, ON) were stored at 4°C and
warmed to room temperature prior to injection with a
250 pl syringe with repeating dispenser (Hamilton Com-
pany, Reno, NV). In the left hindmost proleg, 5 pl of the
diluted K56-2 suspension (3.7 x 10* CFU/5 pl) was injected
into ten infected/treated larvae and ten infected/untreated
larvae and 5 pl of MgSO,-ampicillin solution was injected
into ten uninfected/treated larvae. In the adjacent left pro-
leg, 5 pl of the JG068 lysate (1.3x10° PFU/5 ul) was
injected into ten infected/treated larvae and ten unin-
fected/treated larvae and 5 pl of MgSO4-ampicillin solution
was injected into ten infected/untreated larvae. Larvae
were placed into petri dishes, incubated aerobically at 30°C
for 72 h, and scored for survival. Experiments were re-
peated in triplicate. Averages and standard deviations were
calculated using Microsoft Excel.
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