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Abstract

Background: Offspring of pregnancy complicated with preeclampsia are at high risk for hypertension, stroke and
possibly obesity. The mechanisms behind the association of intrauterine exposure to preeclampsia and high risk of
health problems in the later life remain largely unknown. The aims of the current investigation were to determine
the changes in DNA methylation at IGF2 and GNAS DMR in offspring of preeclamptic pregnancy and to explore the
possible mechanisms underlying the association between maternal preeclampsia and high risk for health problems
in the later life of their offspring.

Results: Umbilical cord blood was taken from infants born to women of preeclampsia (n=56), gestational
hypertension (n=23) and normal pregnancy (n=81). DNA methylation levels of IGF2 and GNAS DMR were
determined by Massarray quantitative methylation analysis. Methylation levels at IGF2 DMR were significantly lower
in preeclampsia than normal pregnancy. The average methylation level at IGF2 DMR was significantly correlated
with preeclampsia even after birth weight, maternal age, gestational age at delivery and fetal gender were adjusted.
The difference in methylation level was not significantly different between mild and severe preeclampsia. The
methylation level at GNAS DMR was not significantly correlated with birth weight, maternal age, gestational age at
delivery, fetal gender, preeclampsia or gestational hypertension.

Conclusions: We concluded preeclampsia induced a decrease in methylation level at IGF 2 DMR, and this might be
among the mechanisms behind the association between intrauterine exposure to preeclampsia and high risk for
metabolic diseases in the later life of the infants.
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Background
Preeclampsia, affecting 2-8% of pregnancies, manifests
maternal hypertension and proteinuria in the second
half of pregnancy, and is pathologically characterized
by shadow implantation of placenta, small placenta
and inadequate placental perfusion [1,2]. The disease
not only increases maternal and neonatal mortality and
morbidity [1,2] but also poses adverse effects on future
health of the offspring. The offspring of preelamptic
women have increased blood pressure during child-
hood and adolescence [3,4], pulmonary and systemic
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vascular dysfunction during adolescence [5], and nearly
double the risk of stroke in later life [6]. The effect
of intrauterine exposure to preeclampsia on adiposity
remains controversial, but some investigations revealed
that male offspring of preeclamptic pregnancy had higher
BMI, waist circumference, subscapular skinfold thick-
nesses and body fat percentage than offspring of nor-
mal pregnancy [7,8].
Small placenta, low placental perfusion and subsequently

under-nutrition and inadequate oxygen supply of the fetus
lead to low birth weight of neonates. Preeclampsia caused
substantial preterm delivery, which also results in low birth
weight [1,2]. Low birth weight is associated with the in-
creased risk of arterial hypertension, carotid arteriosclerosis
and mortality caused by coronary heart disease or stroke in
adulthood more than 20 years ago [9]. However, some in-
vestigations indicate that the association of preeclampsia
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with health problems in later life of offspring is independent
of birth weight [3]. The mechanisms underlying this associ-
ation attracted the attention of scientists. Alterations in
cardiac structure [10], vascular structure and function
[11], sympatho-adrenal function [12], renal function [13],
immune function and inflammation [14], and endocrine
status [15] have been proposed to be involved in the long-
term programming of cardio-vascular diseases in the late
life of offspring of preeclamptic pregnancies [1,2], however,
the molecular mechanism remains largely unknown.
The persistent epigenetic change induced by prenatal

environmental conditions in imprinted genes may be
among the mechanisms contributing to the association
between preeclampsia and late life health in humans.
Imprinted genes play important roles in embryonic
growth and development as well as in placental function.
Epigenetic disruption of imprinted genes due to early
exposure to adverse environment was proposed with
enhanced susceptibility to adult chronic diseases [16].
Insulin-like growth factor2 (IGF2) is a paternally expressed
gene while guanine nucleotide binding protein, alpha
stimulating (GNAS) an imprinted gene with a highly
complex imprinted expression pattern, which gives rise to
maternally, paternally, and biallelically expressed transcripts
[17,18]. The methylation at differentially methylated region
(DMR) of these imprinted genes is established before
gastrulation, and is very sensitive to early developmental
environment, but can be relatively stable throughout the
course of individual’s life [17,18]. The investigation in
subjects conceived during Dutch famine revealed that
the exposure to prenatal famine resulted in the persistent
difference in DNA methylation of IGF-2, GNAS and other
imprinted genes [19,20]. The methylation levels of IGF-2
DMR were affected by folic acid intake before or during
pregnancy and depression in pregnancy [21]. The alter-
ations in methylation levels of these imprinted genes
regulating growth and metabolism were associated with
the low birth weight induced by these poor prenatal
conditions and subsequently contribute to the development
of diabetes and hypertension in late life [18,22,23]. How-
ever, a recent investigation revealed that DNA methylation
levels of IGF2, GNAS and leptin were not significantly
different between small for gestational age (SGA) and
appropriate for gestational age (AGA) [18]. Those findings
indicate that there is a need for further investigation on the
effect of poor prenatal condition on the DNA methylation
of imprinted genes that regulate growth and metabolism.
Herein, to observe the effect of preeclampsia, an im-

portant risk factor for low birth weight, on DNA methy-
lation of the fetus and to explore the potential molecular
mechanisms linking preeclampsia to the increased risk
of cardio-vascular diseases in late life, we analyzed the
methylation levels at DMRs of IGF2 and GNAS of umbil-
ical cord blood lymphocytes of neonates born to normal
pregnancy, gestational hypertension and preeclampsia. The
IGF2 DMR was first evaluated by Cui et al. [24], and was
highly correlated with IGF2 expression [25]. The GNAS
DMR was maternally methylated and first evaluated by Liu
et al. [26], containing an imprinting control element that
specifically regulates the imprinting status of GNAS [27].
We found that maternal preeclampsia induced a decrease
in DNA methylation level at IGF2 DMR in infants.

Methods
Subjects
Fifty-six women of preeclampsia (17 of mild and 39 of
severe), 23 women with gestational hypertension and
81 normally pregnant women were recruited in Women’s
Hospital, School of Medicine, Zhejiang University, Shaoxing
Women and Children’s Hospital, Ningbo Women and
Children’s Hospital, Huzhou Maternity and Child Care
Hospital and Jiaxing Maternity and Child Care Hospital.
Pregnancy was diagnosed upon positive human chorionic

gonadotropin test after missed menstruation. Gestational
age was calculated by menstrual dating. Ultrasound
was performed to confirm pregnancy and gestational
age. Gestational hypertension was defined as following
[28]: a systolic blood pressure of 140 mm Hg or higher
or a diastolic blood pressure of 90 mm Hg or higher on
two occasions at least six hours apart occurring after
20 weeks of gestation in a pregnant woman with previously
normal blood pressure and without detectable urinary pro-
tein. Preeclampsia were diagnosed and classified according
to the criteria recommended by American College of
Obstetrics and Gynecologist (ACOG): a systolic blood
pressure of 140 mm Hg or higher or a diastolic blood
pressure of 90 mm Hg or higher on two occasions at least
six hours apart occurring after 20 weeks of gestation in a
pregnant woman with previously normal blood pressure
and detectable urinary protein (≥1 + by dipstick or 0.3
g/24 h and more) [28]. Severe preeclampsia was defined
as a blood pressure greater than or equal to 160/110
mm Hg with either a urine dipstick showing 3+ or 4+ in
a random urine sample or greater than 5.0 g of protein-
uria over 24 hours [28]. Other evidence of severe disease
included elevated serum creatinine, eclampsia, pulmonary
edema, oliguria (less than 500 ml per 24 hours), fetal growth
restriction, oligohydramnios and symptoms suggesting
significant end-organ involvement (headache, visual
disturbance, or epigastric or right upper quadrant pain).
Women who met criteria of preeclampsia but not severe
preeclampsia were diagnosed mild preeclampsia.
Exclusion criteria were multiple gestation, diabetes

mellitus, chronic hypertension, infectious diseases recog-
nized in pregnancy, premature rupture of membrane, ac-
tive labor, polyhydramnios and signs of other concurrent
medical complication. The control women had no sign
of gestational complications and fetal distress and gave
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birth to healthy neonates of appropriate size for gesta-
tional age.
Clinical data and demographic data were collected

according to the medical records. The approval of the
current study was obtained from Institutional Ethical
committee of Women’s Hospital, School of Medicine,
Zhejiang University, and all the participants provided
their informed consents.

DNA methylation analysis
Umbilical cord blood samples were collected in Ethylene
Diamine Tetraacetic Acid (EDTA)-treated tubes at delivery.
Lymphocytes of infants were isolated and stored at -80C
until use. Total DNA was isolated from lymphocytes using
buffer ATL, proteinase K, and RNase A (Qiagen, Inc.,
Valencia, CA) followed by phenol–chloroform extraction
and ethanol precipitation. Bisulfite conversion of DNA
was carried out using the Epitect Bisulfite Kit (Qiagen
Inc., Valencia, CA).
Quantitative methylation analysis of DNA was performed

using MassARRAY EpiTYPER assays (Sequenom, San
Diego, CA). Primers were designed using Epidesigner
(Sequenom, San Diego, CA; http://www.epidesigner.com)
to cover the CG-rich regions with amplicons in a target
range of 400–600 bp. Each reverse primer was designed to
contain a T7 promoter sequence tag (5'-CAG TAA TAC
GAC TCA CTA TAG GGA GAA GGC T-3') for in vitro
transcription, and each forward primer incorporated a
10-mer tag (5'-AGG AAG AGA G-3') to balance the
primer annealing temperature with that of the primer
containing the T7 tag. Polymerase chain reaction
(PCR) amplification was performed using HotStarTaq
(Qiagen, Inc, Valencia, CA) with the following parameters:
polymerase activation at 95°C for 5 min, followed by
denaturation at 94°C for 20 sec, annealing at 60°C for
25 sec, and extension at 72°C for 1 min for a total of 40
cycles, with a final incubation at 72°C for 5 min. After de-
phosphorylation of unincorporated dNTPs, the processed
poly-chain reaction (PCR) products were used in in vitro
transcription reactions (T-cleavage assay) according to
the manufacturer’s standard protocol (Sequenom, San
Diego, CA). The transcription products were conditioned
to remove bilvalent cation adducts by dilution with 20 μl
H2O and addition of 6 mg of Clean Resin (Sequenom,
San Diego, CA). The samples were then spotted on a
384-pad Spectro-CHIP (Sequenom, San Diego, CA) using
a MassARRAY Nanodispenser (Samsung, Irvine, CA),
followed by spectral acquisition on a MassARRAY analyzer
compact MALDI-TOF MS (Sequenom, San Diego, CA).
Fragments containing CpG sites were analyzed with
EpiTyper software (Sequenom, San Diego, CA) to generate
quantitative methylation fractions at these sites. CpGs
unites that yielded data in greater than 90% of the samples
passed the initial quality control. Poor–quality data for the
qualitative methylation of each CpGs unit were excluded.
Duplicate units which inhibit the display of all duplicate
CpG ratios were also excluded from the data analysis.
Methylation was measured at 6 CpG dinucleotides at
the IGF2 DMR in Chr11: 2169100–2169551, version
2009 (GRCh37/hg19), CpG site 3: 2,169,499; CpG site
4: 2,169,400; CpG site 6: 2,169,371; CpG site 7: 2,169,290;
CpG site 9: 2,169,175; CpG site 10: 2,169,138. Methylation
was measured at 8 CpG dinucleotides at the GNAS DMR
in Chr 20: 57,415,713-57,416,072, version 2009 (GRCh37/
hg19), CpG site 2: 57,415,774; CpG site 4: 57,415,808; CpG
site 5: 57,415,838; CpG site 7: 57,415,889; CpG site 8:
57,415,908; CpG site 9: 57,415,956; CpG site 12: 57,416,034.

Statistical analysis
The Kolmogorov-Smirnov tests were used to evaluate
the distribution of data. Student t-tests were used for the
comparison of continuous data between groups while
one-way ANOVA as well as Bonferroni test for the
multiple-group comparison. Chi-square test was used
for the analysis of categorical data. Linear mixed model
analysis was used for the relationship of methylation
level with disease, birth weight, maternal age, gesta-
tional age at delivery and fetal gender. Linear regression
was used to evaluate the correlation of methylation level
with birth weight in normal pregnancy, gestational
hypertension, or preeclampsia respectively. SPSS statis-
tical package (Statistical Analysis System, Chicago, IL)
was used for the data analysis. Values of P<0.05 were
considered to be statistically significant.

Results
As shown in Table 1, there was significant difference in
maternal age, gestational age at delivery and neonatal birth
weight among normal pregnancy, gestational hypertension
and preeclampsia. Gestational age at delivery was signifi-
cantly shorter in preeclampsia than normal pregnancy and
gestational hypertension (P<0.001 for both), but was not
significantly different between normal pregnancy and
gestational hypertension. The differences in neonatal
birth weight were significant between normal pregnancy
and gestational hypertension (P=0.033), between normal
pregnancy and preeclampsia (P<0.001) and between
gestational hypertension and preeclampsia (P<0.001).
There was no significant difference in fetal gender among
three groups.
The methylation levels of six CpG sites of IGF2 DMRs

and seven CpG sites of GNAS DMRs were detected
(Figures 1 and 2). The methylation levels at sites 3, 6 and 7
of IGF2 DMR were significantly lower in preeclampsia than
normal pregnancy (P=0.045, 0.009 and 0.048, respectively),
but the methylation levels at site 4, 9 and 10 did not signifi-
cantly differ (P>0.05 for all). However, we did not find any
significant differences in methylation level at any sites of
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Table 1 Clinical data and average methylation levels at IGF2 and GNAS DMRs

Normal pregnancy Gestational hypertension Preeclampsia

N 81 23 56

Maternal age (y) 28.6±3.4 31.8±4.7 30.8±5.0 F=6.687 P=0.002

Gestational age at delivery (w) 38.70±1.37 38.29±1.90 34.07±3.29 F=72.509 P<0.001

Birth weight (g) 3288±395 3629±543 2473±818 F=45.591 P<0.001

Fetal gender Male:41 Male:14 Male:30 X2=0.763 P=0.683

Female:40 Female:9 Female: 26

Average methylation level at IGF2 DMR 0.4609±0.0434 0.4526±0.0340 0.4425±0.0415 F=3.242 P=0.042

Average methylation level at GNAS DMR 0.5060±0.0559 0.5087±0.0523 0.5151±0.0530 F=0.473 P=0.624
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IGF2 DMR between normal pregnancy and gestational
hypertension or between gestational hypertension and
preeclampsia (P>0.05 for all). There were no any significant
differences in the methylation levels at 7 sites of GNAS
DMR among normal pregnancy, gestational hypertension
and preeclampsia (P>0.05 for all). Furthermore, the
methylation levels of IGF2 and DNAS DMRs were not
significantly different between mild and severe preeclamp-
sia (P>0.05 for all) (data not shown).
The average methylation level at the IGF2 DMR was

significantly different among normal pregnancy, gestational
hypertension and preeclampsia (F=3.242, P=0.042) (Table 1).
The methylation level was significantly lower in pre-
eclampsia than normal pregnancy (P=0.036), but was
Figure 1 The comparison of Site-specific methylation levels at IGF2 D
preeclampsia. There were significant differences in methylation levels (Y-a
among three groups (P>0.05 for all). The methylation levels of site 3, 6 and
(P=0.045, 0.009, 0.048, respectively), but not significantly different between
gestational hypertension and preeclamspsia (P>0.05 for all).
not significantly different between normal pregnancy and
gestational hypertension, or between gestational hyperten-
sion and preeclampsia (P>0.05 for both). There was no
significant difference in methylation level between mild
(0.4464±0.0493) and severe preeclampsia (0.4407±0.0382)
(t=0.466, P=0.643). Average methylation level was sig-
nificantly correlated with preeclampsia even after birth
weight, maternal age, gestational age at delivery and
fetal gender were adjusted (P<0.05).
The average methylation level at the GNAS DMR was

not significantly different among normal pregnancy, gesta-
tional hypertension and preeclampsia (F=0.47, P=0.624)
(Table 1). There was no significant difference in average
methylation level between mild (0.5046±0.0340) and
MR among normal pregnancy, gestational hypertension and
xle) of site 3, 6 and 7 (*: P<0.05 for all) but not the site 4, 9 and 10
7 were significantly lower in preeclampsia than normal pregnancy
normal pregnancy and gestational hypertension, or between



Figure 2 The comparison of Site-specific methylation levels at GNAS DMR among normal pregnancy, gestational hypertension and
preeclampsia. There were no significant differences in methylation levels (Y-axle) of any site among three groups (P>0.05 for all).
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severe preeclampsia (0.5191±0.0586)(t=0.928, P=0.358).
The methylation level of GNAS DMR was not signifi-
cantly correlated with preeclampsia, gestational hyper-
tension, birth weight, maternal age, gestational age at
delivery or fetal gender.

Discussion
In the current investigation, we revealed for the first time
that maternal preeclampsia but not gestational hyperten-
sion induced a decrease in DNA methylation level at IGF2
DMR in infants. Since aberrant methylation at IGF2 and
subsequently the expression of IGF2 affects postnatal
growth and contribute to the development of diabetes,
hypertension and other metabolic disorders in late life, our
findings implies that preeclampsia-induced decrease in fetal
DNA methylation at IGF2 DMR might be among the
mechanisms associating maternal preeclampsia and meta-
bolic disorders in late life of the offspring.
Early embryo development is a crucial period for

establishing and maintaining epigenetic marks that are
susceptible to nutritional condition of very early stage
of mammalian development [29]. Animal studies have
indicated that environmental conditions during conception
produce persistent changes in epigenetic marks that have
life-long phenotypic consequence [23]. Heijmans et al. [19]
first described the relevance of periconceptional exposure
to under-nutrition and hypomethylation at IGF2 DMR by
reporting that maternal exposure to famine during Dutch
Winter Hunger of 1944–45 led to hypomethylation at IGF2
DMR in their offspring and proposed that hypomethylation
at IGF2 DMR was one of the mechanisms linking low birth
weight and high risk of diabetes, hypertension and other
metabolic diseases. Hoyo et al. and his colleagues [30]
found that depressed mode during pregnancy was asso-
ciated with 3-fold increase in the risk of low birth weight
and low birth weight infants had 2.4% lower methylation
at IGF2 DMR compared with infants with normal birth
weight. These findings from natural models indicate that
poor prenatal conditions, either under-nutrition or mater-
nal disease, induces epigenetic modifications of imprinted
genes. In the current study, we observed a decrease in
methylation level at IGF2 DMR in cord blood cells of in-
fants from preeclamptic women compared with those born
to normally pregnant women, implying that hypoperfusion
to fetal-placental unit occurs in very early life of embryonic
development and that decreased methylation at IGF2 MDR
is among the mechanisms linking exposure to maternal
preeclampsia and health problems of late life.
IGF2 is one of the major regulators for embryonic devel-

opment and fetal growth and its disturbance is involved in
fetal growth restriction. However, the relationship between
circulating IGF2 and birth weight remains controversial.
Kajantie et al. [31] observed that IGF2 level in umbilical
cord plasma from preterm infants (born before 32 weeks of
gestation) was negatively correlated with birth weight SD
score (expression of birth weight adjusted for gestational
age), while Hoyo et al. [32] reported that elevated IGF2
level in cord blood was associated with higher birth weight.
IGF2 DMR methylation levels control circulating IGF2
concentration. Hoyo et al. observed that lower IGF2
DMR methylation was associated with higher plasma
IGF2 protein concentration [32]. In this study, we found
that methylation level at IGF2 DMR was negatively corre-
lated with birth weight in normal pregnancy but not in
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preeclampsia or gestational hypertension. These findings
imply that IGF2 regulates fetal growth but the regulatory
pattern is disturbed in pathological pregnancies.
The effect of complicated pregnancies on the fetal DNA

methylation has been investigated so far. Low birth weight
is a characteristic of preeclampsia. To explore the relation-
ship between small for gestational age (SGA), a proxy
for intrauterine growth restriction, and DNA methylation
levels of imprinted genes, Tobi et al. [18] determined DNA
methylation levels at IGF2, GNAS and other imprinted
genes in SGA infants born preterm (before 32 weeks of
gestation) and compared with infants appropriate for
gestational age (AGA) born preterm, and found no
significant differences in DNA methylation levels at
any imprinted genes detected between AGA infants
and SGA infants. Tabano et al. [33] reported that mean
methylation values of umbilical cord blood cells resembled
peripheral blood cells from normal individuals and mean
methylation values of umbilical cord blood cells were
similar in SGA (n=5) and AGA cases (n=10). Our findings
showed that DNA methylation at IGF2 DMR was lower in
infants born to preeclamptic women than those born to
controls. However, Tobi et al. [18] found that preeclamp-
sia was not significantly associated with DNA methylation
levels at any of these imprinted genes including IGF2 and
GNAS in a SGA study with relatively small sample size
(n=25). These findings indicate that the effect pattern on
fetal epigenetic programming is different in preeclampsia
from fetal growth restriction.
The epigenetic modification of GNAS is sensitive to

environmental condition and the function of GNAS is
associated with diabetes, hypertension and other metabolic
diseases. The literature regarding the effect of prenatal
condition on the methylation at GNAS DMR is limited.
Tobi et al. [18] reported that the methylation level at
GNAS DMR was not significantly different between
SGA and AGA individuals. Similarly, we observed compar-
able methylation levels in infants born to normal pregnancy
and preeclampsia. Relatively low birth weight is one of the
characteristics of preeclampsia. These limited data indicate
that under-nutrition at early life does not affect DNA
methylation at GNAS DMR and the methylation level
may not be associated with preeclampsia-induced risk
of metabolic syndrome.
The current investigation is a cross-sectional design, not

a prospective one from early pregnancy onward. This
limited the extrapolation of our results. The effect of
confounding factors including gene polymorphism on the
association observed could not be completely excluded.

Conclusion
In summary, we observed that maternal preeclampsia
induced a decrease in methylation level at IGF-2 DMR
compared with normal pregnancy and DNA methylation
level at IGF-2 DMR was significantly associated with
neonatal birth weight in normal pregnancy but not in
preeclampsia or gestational hypertension. Our findings
indicated that IGF-2 is one of the mechanisms involved
in regulating fetal growth but this regulation was perturbed
in preeclampsia and that preeclampsia-induced decrease in
fetal DNA methylation at IGF-2 DMR might be among
the mechanisms associating maternal preeclampsia and
metabolic disorders in late life of the offspring, however,
the confounding effect of other factors could not be
completely excluded.
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