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Abstract

Malus x domestica

Background: Understanding the genetic architecture of quantitative traits is important for developing
genome-based crop improvement methods. Genome-wide association study (GWAS) is a powerful technique for
mining novel functional variants. Using a family-based design involving 1,200 apple (Malus x domestica Borkh.)
seedlings genotyped for an 8K SNP array, we report the first systematic evaluation of the relative contributions of
different genomic regions to various traits related to eating quality and susceptibility to some physiological
disorders. Single-SNP analyses models that accounted for population structure, or not, were compared with models
fitting all markers simultaneously. The patterns of linkage disequilibrium (LD) were also investigated.

Results: A high degree of LD even at longer distances between markers was observed, and the patterns of LD
decay were similar across successive generations. Genomic regions were identified, some of which coincided with
known candidate genes, with significant effects on various traits. Phenotypic variation explained by the loci
identified through a whole-genome scan ranged from 3% to 25% across different traits, while fitting all markers
simultaneously generally provided heritability estimates close to those from pedigree-based analysis. Results from ‘Q
+K"and ‘K’ models were very similar, suggesting that the SNP-based kinship matrix captures most of the underlying
population structure. Correlations between allele substitution effects obtained from single-marker and all-marker
analyses were about 0.90 for all traits. Use of SNP-derived realized relationships in linear mixed models provided a
better goodness-of-fit than pedigree-based expected relationships. Genomic regions with probable pleiotropic
effects were supported by the corresponding higher linkage group (LG) level estimated genetic correlations.

Conclusions: The accuracy of artificial selection in plants species can be increased by using more precise
marker-derived estimates of realized coefficients of relationships. All-marker analyses that indirectly account for
population- and pedigree structure will be a credible alternative to single-SNP analyses in GWAS. This study
revealed large differences in the genetic architecture of apple fruit traits, and the marker-trait associations identified
here will help develop genome-based breeding methods for apple cultivar development.
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Background

Until the end of the 20™ century, the lack of high
throughput genotyping techniques and the limited devel-
opment of high-density SNP arrays have hindered the
advancement of genome-based breeding strategies for
crop improvement. During the last 10 years, the genome
sequences of about 20 plant species, including some
from the Rosaceae family, were made publicly available
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[1], which offers opportunities for transforming breeding
strategies to improve the yield and quality of major
crops. Genome-wide association studies (GWAS) and
genomic selection (GS) are among some new breeding
tools proposed for crop improvement [2,3]. The under-
lying philosophy of both these strategies is to genotype
enough markers across the genome so that at least one
of the genotyped markers is likely in LD with the quanti-
tative trait locus (QTL) alleles [4]. Both GS and GWAS
can be conducted using the same genotypic and pheno-
typic data, but their objectives are different [3]. GS is
used to predict phenotype from marker profiles alone, to
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reduce dramatically the length of the breeding cycle and
the costs involved in phenotyping [5,6]. The objective of
GWAS is to identify novel functional variation that can
be deployed in cultivar development through marker-
assisted selection [2].

GWAS studies in humans have used two fundamen-
tally different designs [7]: family-based and population-
based (that use unrelated individuals). The power of a
GWAS of a quantitative phenotype using related individ-
uals was shown to be slightly lower than that for a sam-
ple of unrelated individuals in a human study [8], but in
crops and livestock controlled mating could make family
designs more powerful than a population sample [4].
Both population-based [9] and family-based [10-12] de-
signs have been used for GWAS in crops. The advan-
tages of using relatives are manifold, including greater
quality control, the ability to perform within-family tests
of association that are robust to population stratification,
and joint linkage and association analysis. A nested asso-
ciation mapping (NAM) population [10,11], which con-
sists of multiple families derived from multiple inbred
lines crossed to one or more reference inbred line,
has been used for GWAS of different traits in maize.
Multi-parent advanced generation inter-cross (MAGIC)
population was first used in Arabidopsis [12]. Other
family-based designs, such as parent-offspring, multi-
generational pedigrees and multi-parent crosses, have
historically been used in quantitative genetic studies.
Thus, for plant populations, it is reasonable to consider
large number of progenies derived from controlled
crosses in various mating schemes for GWAS [4,11,13].

Population stratification and cryptic relatedness among
studied individuals, when not taken into account, could
lead to spurious genotype-phenotype associations in
GWAS. Population stratification refers to the inclusion
of individuals from different populations, while cryptic
(or familial) relatedness refers to the presence of varying
degree of genetic relationships between individuals
within the study sample. GWAS methods based on the
unified mixed linear model (MLM) were developed by
[14] to account for population-level membership (to cor-
rect for structure) and individual-level relationships (to
correct for cryptic relatedness). A realized individual-
level kinship matrix (G) calculated using molecular
markers is more efficient than the pedigree-based kin-
ship matrix (A) as it can account for Mendelian sam-
pling and segregation distortion [4,15]. As family sizes in
plant populations are much larger than those in other
species, implementation of MLM was computationally
very intensive. Therefore, the efficient mixed model as-
sociation expedited (EMMAX) algorithm was developed
to reduce this computational burden by re-
parameterizing the MLM likelihood function [16]. Fur-
ther, a computationally more efficient and powerful
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compressed MLM (CMLM) that uses a group kinship
matrix calculated from clustered individuals was devel-
oped recently [17]. Development of these methods has
now made it much easier to analyze large amounts of
data for GWAS. Unlike fitting each SNP in turn, which
is a typical feature of GWAS, simultaneously fitting high
density genome-wide SNPs could avoid the need to fit
population and pedigree effects in MLM specifically
[18].

In 2010, an international consortium published the
first draft of the apple (Malus x domestica Borkh.) gen-
ome sequence using DNA from a popular apple variety
‘Golden Delicious’ [19], which led to re-sequencing of 27
apple cultivars that are the founders in global apple
breeding programs. These efforts produced a huge reser-
voir of DNA markers, which helped the development of
the first-generation apple Infinium SNP chip, comprising
nearly 8,000 markers [20]. In the present study, we used
this 8K SNP chip for GWA analysis of various fruit qual-
ity traits in a family-based design. Traits considered in
this study relate to eating quality: fruit firmness (FF) and
titratable acidity (TA); visual quality: red-flesh coverage
(defined as weighted cortical intensity (WCI); see
Methods); and susceptibility to physiological disorders:
internal flesh browning (IB), bitter pit (BP) and fruit
splitting (also termed cracking) (CR). To elucidate the
relative contributions of different genomic regions, we
implemented single-SNP analysis models, with and with-
out accounting for population structure, and compared
these with a model fitting all markers simultaneously.
The statistical power of detecting SNP-trait associations
was calculated using an expression derived in this study.
The relative advantage of using realized relationships
compared with pedigree-based expected relationships
was also investigated. To our knowledge, this is the first
large SNP array-based GWAS study to unravel the gen-
etic architecture of quantitative traits for any major fruit
crop.

Results

Realized relationships and population structure

A plot of the first two principal components of the SNP
genotypes data matrix grouped seedlings largely according
to their familial relationships (Figure 1). Some individuals
did not cluster within their pedigree-assigned full-sib fam-
ily groupings. For example, individuals in two families,
namely A402 and A406, which have the same maternal
parent, were clustered less tightly than the other five fam-
ilies. A break-away group of individuals from families
A401 and A405, having the same maternal parent, appar-
ently formed a separate cluster away from their respective
full-sibs (Figure 1). These patterns of clustering suggested
some pollen contamination, so the actual number of
pollen parents should be higher than that suggested by
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Figure 1 Principal component analysis plot of the first two components of 1,120 individuals derived from their SNP genotypes.
Pedigree-based grouping (i.e. full-sib families) is also depicted in different colors.
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the mating design. Overall, a product—-moment correlation
of 0.65 was observed between pedigree-based (A matrix)
and SNP-based estimates of pair-wise coefficient of rela-
tionships. The average pair-wise coefficient of relation-
ships among all study individuals, obtained from the A
and G matrices, were 0.36 and 0.50 respectively, reflecting
that there are many more relationships not captured by
the known pedigree records. The proportion of pheno-
typic variation explained (R%R) using the G matrix (in
Equation 1) was higher than that using the A matrix for
all traits (Figure 2). Results obtained after removing appar-
ent contaminant seedlings, identified from PCA analysis
(Figure 1) and also by using PLINK software (http://pngu.
mgh.harvard.edu/~purcell/plink), suggested that the mag-
nitude of differences in R?, values were almost identical
(not shown) to those in Figure 2. Information presented in
Figures 1 and 2 would suggest that using G would better
account for population stratification than A, so only
GWAS results (Equation 3) using G are presented here.

0.3 m Pedigree-based
m SNP-based

FF  WCI 1B TA CR BP
Trait

Figure 2 Proportion of phenotypic variation explained (R%;) by
using SNP-based (green color) and pedigree-based (blue color)
coefficient of relationships (in Equation 1) for various apple
fruit traits (FF: fruit firmness; WCI: weighted cortical intensity;
IB: internal browning; TA: titratable acidity; CR: fruit splitting;
BP: bitter pit).

Linkage disequilibrium

The pattern of LD (+*) decay in our GWAS population
of 1120 individuals (arbitrarily called the first generation)
was compared with that observed in the successive gen-
eration (i.e. second generation; see Methods). Results
showed a high degree of LD even at longer distances be-
tween markers; for example, in the second generation
the average »* for SNPs separated by 0.1 Mbp, 0.5 Mbp
(approximately 1 ¢cM in apple), and 1.0 Mbp was 0.28,
0.21, and 0.16, respectively (Figure 3). This is somewhat
lower compared to LD in the first generation (also
reported earlier by [6]), but the pattern of LD decay was
quite similar in both generations (Figure 3).

Genome-wide associations

Goodness-of-fit of ‘Q+K’ (includes population structure
and familial relationships) and ‘K’ (only familial relation-
ships) models were compared to understand whether
population structure could bias results. Different num-
bers of PCs of the SNP genotypes matrix constituted the
Q matrix. The R%R values of the ‘Q+K’ and ‘K’ models
were identical for WCI, TA and BP, but were higher for
‘Q+K’ for the other three traits. Thus, the optimum
number, as determined using the Bayesian information
criterion (BIC), of PCs varied for different traits: O for
WCI, TA and BP; 1 for IB; and 2 for FF and CR. How-
ever, results with or without incorporating Q in Equation
3 were not materially different, suggesting that account-
ing only for cryptic relatedness was sufficient to account
for population stratification.

The profiles of p-values (in terms of —log;o(p)) for all
tested SNPs for each trait are illustrated in Figure 4. Un-
corrected p-values of p < 5 x 107, which roughly
equates to a genome-wide p-value of 0.00125 (= 2500 x
5 x 107) as we tested a total of 2,500 SNPs, was used as
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Figure 3 Genome-wide average LD decay estimated from first generation (n=1,120) and second generation (n=1,600) individuals.
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Figure 4 Manhattan plots of the -log,o(p) values for various apple fruit traits (FF: fruit firmness; WCl: weighted cortical intensity; IB:
internal browning; TA: titratable acidity; CR: fruit splitting; BP: bitter pit) from a genome-wide scan are plotted against position on
each of 17 linkage groups (represented by different colours). Grey horizontal line indicates the genome-wide significance threshold.
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a significance threshold for individual SNP testing. The
numbers of genome-wide significant SNPs detected for
fruit firmness (FF), weighted cortical intensity (WCI), in-
ternal browning (IB), titratable acidity (TA), fruit crack-
ing (CR) and bitter pit (BP) were 3, 36, 31, 18, 9 and 13
respectively. Most of the significant SNPs for any trait
were clustered within a small genomic region, suggesting
the presence of large-effect QTL at those positions.
SNP-trait association signals for FF were identified on
linkage groups (LG) LG3 and LG10; for WCI and IB on
LG9 and LG16; for TA on LGS; for CR and BP on LG16
(Figure 4).

The SNP with the largest effect on FF was located on
LG10, and this SNP is a T/G variant located within the
first exon of the polygalacturonase (PG) gene
(MDP0000232611), 20.833 kb from the top of LG10
(Table 1). A SNP with a massive effect (RER = 0.17) on
WCI was located on LG9 (Figure 4). This SNP on LG9
is a T/C variant and is located within the second exon of
the MdMYB10 gene (MDP0000259616), 32.840 kb from
the bottom of LG9. A cluster of SNPs with large effects
on CR and BP, and moderate effects on WCI and IB, re-
sides within the Leucoanthocyanidin Reductase (LARI)
gene (MDP0000376284) that is located between 1.496
kb and 1.669 kb on the top of LG16. The most signifi-
cant SNPs described here are probably not the causative
ones for our study traits due to extensive LD. For all
traits except FF, the Q-Q plots (Figure 5) showed a close
adherence of the observed and expected —log;o(p) values
over most of the range, implying that the significant
SNPs (highlighted in green colour) identified by the uni-
fied MMA are unlikely to be biased by population
stratification.

The majority of SNPs individually explained only a
small proportion of phenotypic variation (~ 0.5%), while
the largest-effect SNP explained 2, 17, 7, 6, 9 and 11% of
the phenotypic variation for FF, WCI, IB, TA, CR and BP
respectively (data not shown). The joint contribution of
genome-wide significantly associated SNPs was also in-
vestigated. Because of LD, there were many significant
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SNPs within a small genomic region, so only the SNPs
with the largest test statistics within 5 Mb regions were
chosen. The joint R?, calculated by fitting the chosen
SNPs together in Equation 3, for FF, WCI, IB, TA, CR
and BP were 0.03, 0.25, 0.11, 0.07, 0.11 and 0.12 respect-
ively (Table 2), suggesting some improvement over
single-SNP analysis. Fitting all 2,500 markers simultan-
eously (via SNP-derived G) captured nearly all genetic
variance (i.e. heritability) for most of the traits (Table 2).
Correlation coefficients between SNP allele substitution
effects (ASEs) obtained from single-SNP analysis and all-
SNP analysis were about 0.90 for all traits, and largest-
effect SNPs were generally common to both methods
(Figure 6).

Genomic regions with significant effects on the two
pairs of traits (WCI and IB; and BP and CR) were fur-
ther investigated by comparing LG-level estimated gen-
etic correlations (r,) for these two pairs of traits. Results
suggested that r, values for the LGs harboring common
significant regions were relatively higher than those for
other LGs. Some of these LG-level correlations were
quite different in magnitude as well as direction from
the whole-genome correlation (Figure 7).

Power of the GWAS

The power of detecting marker-trait association for vari-
ous QTL allele frequencies and trait heritabilities is
shown in Figure 8. A LD value of 0.25 between a marker
and QTL allele was assumed. For an unrelated sample
size of 1120 individuals (the same size as in our study),
the power of detection of an association with a locus
explaining 2% of the phenotypic variation was 0.78,
when marker and QTL allele frequency were 0.50. The
power increased with reductions in marker and QTL al-
lele frequencies. For a fixed sample size, the power of
detecting SNP-trait associations declined with increasing
relatedness among study individuals, but loss of power
was minimal. The effect of trait heritability became more
evident as the degree of relatedness increased (Figure 8).

Table 1 Single nucleotide polymorphism (SNP) with the largest effects (i.e. highest RfR value) on various traits; FF: fruit
firmness; WCI: weighted cortical intensity; IB: internal browning; TA: titratable acidity; CR: fruit splitting; BP: bitter pit

Trait SNP (NCBI db) Linkage group & RfR Heterozygosity Gene name & ID
position (bp)
FF 55475883584 LG10 (20,833,228) 0.02 050 Polygalacturonase (PG); MDP0000232611
el 55475879555 LG9 (32,840,325) 0.17 0.18 MdMYB10; MDP0000259616
1B 55475879555 LG9 (32,840,325) 0.07 0.18 MdMYB10; MDP0000259616
TA 55475882883 LG8 (19,658,610) 0.06 043 RING finger and CHY zinc finger domain-containing protein;
MDP0000294924
CR 55475883359 LG16 (1,496,083) 0.09 038 Leucoanthocyanidin Reductase (LART); MDP0000279135
BP 55475883359 LG16 (1,496,083) 0.11 038 Leucoanthocyanidin Reductase (LART); MDP0000279135
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Figure 5 Quantile-quantile plot of the observed and expected -log,(p) values for various traits (FF: fruit firmness; WCl: weighted
cortical intensity; BR: internal browning; TA: titratable acidity; CR: fruit splitting; BP: bitter pit) from a genome-wide scan. The values
exceeding the genome-wide significance threshold are highlighted in green colour.
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Discussion

Realized coefficient of relationships

The availability of genome sequence, the abundance of
DNA markers, and high throughput genotyping plat-
forms are providing a range of applications of molecular
markers, including pedigree reconstruction, estimation
of genetic parameters, and understanding relationships
between genotype and phenotype in various species
[5,21-23]. Using a likelihood ratio based parameter
(R7z), our study showed that using SNP-based realized
relationships in MLM could provide a better goodness-
of-fit than using pedigree-based expected relationships.
Our results also showed that for all traits, except IB, fit-
ting all markers simultaneously could explain most or all
the trait heritability. Similar results have been reported
in studies on humans [23] and animals [24,25]. Also, ap-
proximate standard errors of G-based estimates of />

were considerably less than those for A-based because
the former captured genetic relationships that are not
accessible from pedigree records. Similar to studies on
animals [22], our results suggest that the accuracy of
artificial selection in plants species can also be increased
by using more precise marker-derived estimates of gen-
etic parameters.

SNP-trait genome-wide associations

With only a little loss of power, family-based designs in
association studies offer various advantages compared
with population-based designs [7,8]. The average SNP-
derived pair-wise coefficient of relationship in our study
was about 0.50, but the loss of power to detect SNP-trait
association was small (about 0.05) compared with that
for an unrelated sample of the same size. Various factors
such as sample size, high LD, minimal effect of
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Table 2 Estimates of variance explained by single
nucleotide polymorphisms (SNPs) for various apple fruit
traits; FF: fruit firmness; WCI: weighted cortical intensity;
IB: internal browning; TA: titratable acidity; CR: fruit
splitting; BP: bitter pit

Trait ' GWAS? hZ 3
FF 039 003 043
wcl 026 025 0.50
IB 049 011 0.16
TA 0.15 007 031
CR 030 011 023
BP 022 012 025

'Estimates of narrow-sense heritability (h?) obtained using pedigree-based
relationships matrix (A). Approximate standard errors of hi estimates varied
from 0.12 (for TA) to 0.30 (for IB).

2Proportion of the phenotypic variance explained jointly by genome-wide
significant SNPs.

3Simultaneously using all 2,500 markers in the form of the G matrix.
Approximate standard errors of hé estimates varied from 0.02 (for IB) to 0.04
(for wQl).
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population structure, and the presence of some large-
effect QTL provide high confidence in the SNP-trait as-
sociations identified in this study. The SNP array used in
this study was designed to encompass SNPs in the cod-
ing region of predicted gene models and some candidate
genes such as MdMYB10, MdPG, and MdLAR [20]. Peak
association signals for FF, WCI and TA were located
close to genomic regions that have been previously iden-
tified in bi-parental QTL mapping studies. The SNPs
showing the largest effect on FF on LG10 (Figure 4) res-
ide in the polygalacturonase (PG) gene, which depoly-
merizes cell wall pectin, and the involvement of this
gene in the fruit softening process has been previously
demonstrated in apple [26].

Red color in apple flesh results from a high concentra-
tion of anthocyanins. The role of the MdMYBI0 gene on
anthocyanin biosynthesis in red-fleshed apple was dem-
onstrated using various approaches [27], and this gene
has been mapped to LG9 [28]. The SNP marker

FF (r = 0.91)

TA (r=10.92)
0.15

0.1

0.15

-0.04 -0.02

-0.4

Figure 6 Relationship between single nucleotide polymorphism (SNP) allele substitution effects obtained from single-SNP (y-axis) and
all-SNP (x-axis) analysis. Correlation coefficient () is also shown for each trait.
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associated with weighted cortical intensity (WCI) in our
experiment is located in the second exon of MdMYBIO0,
which is physically close to the motif in the MdMYB10
promoter that causally regulates transcription of
MdMYBIO itself and thereby anthocyanin synthesis in
apple flesh [27]. A cluster of SNPs at LG16 commonly
associated with WCI and IB resides in the MdLARI can-
didate gene. LARI is a key enzyme in the flavonoid bio-
synthetic pathway, reducing leucoanthocyanidin into the
flavanol compound catechin, a monomer of condensed
tannins (also known as proanthocyanidins). Perhaps
condensed tannins (CTs) act as co-pigments of cyanidin
to create more intense red coloration in the fruit and
hence the effect on WCI. Common genomic regions (es-
pecially MdMYB10 gene) found associated with WCI
and IB are supported by results showing high genetic
correlation (= 0.60) between these two traits [29]. Also,
cold-stored fruit from all MdMYBIO0 transgenic lines of
cultivar ‘Royal Gala’ showed varying degrees of symp-
toms of IB [29], suggesting a pleiotropic effect of
MdMYBI10 on WCI and IB. In our study, the estimated

genetic correlation differed in degree as well as direction
across different LGs, suggesting some possibility of
breaking this undesirable correlation by means of care-
fully designed breeding and selection strategies, but fur-
ther work on elucidating the genetic architecture of
WCI and IB is required first.

The distribution of SNP effects for TA (Figure 4) sug-
gests one major QTL on LG8, supporting similar results
from bi-parental QTL mapping studies [30,31]. However,
there is no published report of candidate genes for TA
on apple LG8. Segregation analysis approaches showed
that inheritance of TA in a large apple population was
better described by a mixed genetic architecture (a
major gene and polygenes rather than polygenic or
Mendelian inheritance [32]). Our results appeared to be
in agreement with [32] in the sense that the largest-
effect SNP accounted for about half the genetic variation,
while the other half was accounted for by small-effect
genes.

CR, which is a pre-harvest physiological disorder of
apple, can be a serious economic problem for some
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cultivars [33]. However, little is known about the genetic
architecture of this trait. Similarly to our results, esti-
mate of 4> from a previous study [34] indicated moder-
ate genetic control of CR. While little is known on the
physiological causes of genetic variability in CR suscepti-
bility, it may be linked to the internal properties of the
fruit during growth and differences in the elasticity of
the peel when under particular stresses and strains
caused by the developing parenchyma cells beneath it
[33]. To our knowledge, there is no published report on
marker-trait association for CR. A cluster of SNPs with a
large effect on CR resides within the MdLARI candidate
gene on LG16, which was previously reported to influ-
ence some other fruit quality traits such as astringency
[6] and polyphenolic compounds [35].

BP is also a serious physiological disorder whose ex-
pression is generally observed in fruit after storage, but
symptoms can also be observed on the fruit surface at
harvest (sometimes called lenticel blotch [36]), and in
our study they were classified as the same disorder. Gen-
etic predisposition, calcium nutrition of the fruit, and
environmental factors influence incidence of BP [36-38].
Based on the segregation ratio of resistant to susceptible
seedlings, it was hypothesized that resistance to BP is
controlled by two major dominant genes, named Bp-I
and Bp-2 [36]. Different segregation ratios (e.g. 1:1; 2:1
and 7:1) of resistance to susceptible seedlings were ob-
served in various families in our study, suggesting a
complex nature to this trait, which is further supported
by our results showing that GWA-significant SNPs
explained only about half the observed genetic variation
(Table 2). Interestingly, the same cluster of SNPs on
LG16 showed association with expression of BP and CR,
and the direction and magnitude of LG-level genetic
correlations were similar. Molecular, physiological and

biochemical pathways that commonly contribute to the
expression of these two traits are poorly understood, but
our study provides a genomic hotspot for further
investigations.

MLM that concurrently fits all available SNPs has
been adapted in recent GWAS in animals [24,25] follow-
ing an earlier study [18] that showed that provided high-
density SNPs are fitted simultaneously, admixed popula-
tions can be used to obtain reliable SNP effects even if
pedigree structure and population structure have not
been explicitly modeled. High correlations between SNP
ASEs obtained from the ‘Q+K’ model (Equation 3) and
all-marker analysis (Equation 4) for all six traits in this
study (Figure 7) reinforces the findings of [18].

Application of SNP-trait associations

In our study population, the average LD between SNPs
separated by 500 kb was high (+* = 0.25) largely because
of relatedness (e.g. full sibs and half sibs) among seed-
lings and small effective population size. It is not un-
common to find different LD structures in different
types of plant populations within a species. For example,
in maize, LD decays within 1 kb in land races, within 2
kb in diverse inbred lines, and can extend up to 500 kb
in commercial elite inbred lines (reviewed by [4]). Pre-
liminary results (not shown) from an unrelated set of
125 individuals from a diverse apple germplasm collec-
tion showed that for a given distance (say, 500 kb) be-
tween markers, the extent of LD was almost one-third
(r* = 0.08) of that in this study. One practical implica-
tion of these results is that marker-trait associations
identified in advanced-generation crosses may not be re-
peated in relatively less improved breeding material (e.g.
diverse germplasm).
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One of the key goals of GWAS is to identify large-effect
marker-trait associations that can be deployed through
marker-assisted selection (MAS) in subsequent generations
of cultivar development populations. However, in order to
conduct MAS using these SNPs in successive generations,
strong LD between marker and QTL must persist across
generations. Generally, only a selected set of individuals
from the current generation are used as parents for the sub-
sequent generation. Selection will lead to changes in allele
frequencies at marker and trait loci, potentially reducing the
LD between two loci, similar to that observed in the second
generation of our study material (see Figure 3). As a result,
the efficiency of GWAS-associated SNPs could be lower in
the following generations. Nevertheless, except for WCI, the
significant SNPs jointly explained less than 50% of the trait
heritability in this study, which raises a question of how
much variation in a quantitative trait needs to be accounted
by a marker (or two) so that it would be worthwhile for
MAS to be applied. Such a MAS scheme is generally viewed
as cost effective compared with the genome selection, but
this scheme does not bypass the phenotypic evaluation stage
because there could be some quantitative traits for which no
significant SNPs are identified. On the other hand however,
a small SNP assay comprising GWA-significant SNPs for
the key breeding traits could be used for pre-screening of
seedlings before further field evaluation. Such an approach
will not reduce the length of the breeding/selection cycle,
but will shift the mean of the selection population. In order
to keep the accuracy of MAS similar to that in the gener-
ation where SNPs were identified, periodical recalibration of
SNP effects would be necessary [39].

Conclusions

The use of realized relationship matrix will provide
higher accuracy of estimated genetic parameters,
resulting in increased accuracy of artificial selection.
There are apparently major differences in the genetic
architecture of various traits in this study, i.e. for traits
with similar heritability the distributions of SNPs effect
were very different. The majority of SNPs individually
explained only a small proportion of trait variation, but
fitting all markers simultaneously captured most of the
trait heritability for majority apple fruit traits. These
findings suggest that genome-based methods could po-
tentially replace the traditional apple cultivar breeding
methods.

Methods

Plant material and phenotypes

A set of four female parents and two pollen parents were
crossed in a factorial (4 x 2) mating design. One of the
crosses was unsuccessful, leaving seven full-sib families.
Seedling numbers varied between families, ranging from
40 to 350, with a total population size of 1,200. Seedlings
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were planted into the orchard (Havelock North, New
Zealand) in July 2008 using a randomized block design.
Further details of this experiment such as, parents in-
volved, orchard management, harvesting and fruit stor-
age protocols, were reported earlier [6]. Six traits were
evaluated on the fruit samples using instrumental, sen-
sory, or visual assessment methods. Phenotypic assess-
ments for all traits were repeated for two years. Fruit
splitting, observed as radial cracks in the stem end of
the fruit (CR), and bitter pit (BP) were scored visually as
presence or absence, with BP symptoms also noted if
present within the fruit after cutting. Fruit from each
seedling were cut in half across the equator and the pro-
portion of the cortex area that was red (PRA) and the
intensity of the red (RI) (=0 (none) to 9 (highest)) were
scored. A weighted cortical intensity (WCI) was then
calculated (PRA x RI) as an estimation of the amount of
red pigment in the fruit. The proportion of the cortex
area showing symptoms of cold-store-induced internal
browning (IB) was recorded. Assessment protocols for
fruit flesh firmness (FF) and titratable acidity (TA) were
described in detail in an earlier study [6]. Individual fruit
measurements (FE, WCI and IB) were first averaged for
each seedling, and the average performance of each
seedling over two years was used for testing genotype-
phenotype associations.

SNP Genotyping and LD estimation

Details of genotyping protocols for our study population
were reported earlier [6]. Briefly, SNP genotypes were
scored using the Genotyping Module (version 1.8.4) of
the Illumina® GenomeStudio software (Illumina Inc.).
The reliability of each genotype call was measured using
the GenCall score, and SNPs were subsequently
discarded using a sequence of criteria in the following
order: GenCall score at the 50% rank (50% GC) < 0.40;
cluster separation (ClusterSep) < 0.25; more than 5%
missing calls; segregation discrepancy. Finally a high
quality set of 2,500 SNPs was retained, and BEAGLE 3.1
software [40] was then used for imputing missing SNP
genotypes.

Before looking at marker—trait associations, we calcu-
lated pairwise LD between SNPs, as a surrogate to LD
between markers and QTLs, to evaluate the extent of
LD in the study population (arbitrarily called the first
generation) described above. These LD patterns were
compared with those in an another population (second
generation) comprised of 1600 seedlings derived from an
incomplete factorial mating between six paternal parents
(identified from the first generation) and four maternal
parents (identified from previous selections). The degree
of LD was quantified with the parameter /* [41] esti-
mated using GOLD software [42].
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Realized versus expected coefficients of relationship

The expected coefficients of relationship (i.e. the A
matrix) based on pedigree records were compared with
their realized counterparts (G) obtained using all avail-
able SNPs following [43]. A product-moment correl-
ation was calculated between the elements (i.e. pair-wise
coefficients of relationships) of the A and G matrices.
We also compared the goodness-of-fit of a mixed model
using realized or expected relationships:

y=ply+Za+e¢ (1)

where y is the vector of observed phenotypic values of #
seedlings; p is an intercept, 1, is a vector of 1s; Z is the
known design matrices relating to a, the unknown vec-
tor of random additive genetic effects with @ ~ N(0, A
0%) or a ~ N(0, G 02). The scalar o2 is the additive vari-
ance and € is a vector of independent random deviates
with variance ¢2. Using A or G in Equation 1, we calcu-
lated and compared the R7, values (which represent a
likelihood-ratio based value of phenotypic variance
explained) as follows [44]:

2
R, = l-exp - (logLp—logLy) (2)

where logLy, is the maximum log-likelihood from fitting
Equation 1; logL, is the maximum log-likelihood from
fitting the intercept-only model. In addition to compa-
ring R?,, values, we also compared estimates of heritabil-
ity (h%) of each trait obtained using the A or G matrices.
Equation 1 was fitted using ASReml software [45].

Marker-trait association analysis

The unified mixed linear model (MLM) approach [14]
that accounts for multiple degrees of relatedness (popu-
lation structure and cryptic relationships) was used:

y=XB+Za+e (3)

where B is an unknown vector containing fixed effects,
including a genetic marker, population structure (Q),
and the intercept; X is the known design matrices relat-
ing to B. All other effects are same as in Equation 1.
Equation 3 was fitted using GAPIT software [46], which
uses computationally efficient and powerful methods,
such as EMMAX [16] and CMLM [17]. To avoid spuri-
ous associations that could arise from population struc-
ture, we included principal components (PCs) derived
from the genotypic data matrix (n x m) as covariates
(i.e. Q matrix). The optimal number of PCs was deter-
mined by forward model selection using the Bayesian
information criterion as implemented in GAPIT. In
Equation 3, each SNP was tested in turn using a t-test
(Hp: No additive association between the SNP and trait),
and p-values were obtained. Uncorrected comparison-
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wise p-value of p < 5 x 107, which is generally accepted
to represent very strong proof of genome-wide associ-
ation [47,48], was used to identify significant marker-
trait associations for all traits. A quantile-quantile (Q-Q)
plot, which is commonly used for scrutinizing the popula-
tion stratification in GWAS, was used to assess how well
the model used for marker-trait association (Equation 3)
accounted for population structure and familial related-
ness. In this plot, the negative logarithms of the p-values
from Equation 3 were plotted against their expected value
under the null hypothesis of no association with the trait.
To compare the relative contributions of each SNP, we
used R?, values obtained by fitting Equation 3 with and
without each SNP.

Allele substitution effects (ASE) at each SNP obtained
from a single-SNP analysis (Equation 3) were compared
with those obtained from a model (e.g. RR-BLUP) that
concurrently fits all available SNPs. In our case, RR-
BLUP is theoretically similar to using a SNP-derived re-
lationship (G) matrix in Equation 1, i.e. @ ~ N(0, G 02)
[43,49]. So the BLUP of a (i.e. &) obtained using the G
matrix in Equation 1 was used to estimate the vector of
SNP ASEs (a) following [50]:

&= (ZZp,»qi)_l MGa (4)

where p; is the frequency of the A allele at the i SNP
(assuming three possible genotypes at each SNP were
scored as AA, AB and BB); ¢; = 1 - p; elements of the
i™ column of M are 2g;, g; - p; and - 2p; for AA, AB and
BB genotypes at a SNP locus. Product—-moment correla-
tions between ASE of SNPs obtained from Equations 3
and 4 are reported in this study.

Common genomic regions showing a significant effect
on a pair of traits were further investigated by comparing
LG-level estimates of between-traits genetic correlations
(rg). For this purpose, correlation between the estimated
BLUP-BV (from Equation 1) for two traits was termed as
genome-level genetic correlation. BLUP-BVs of each seed-
ling for each trait was then decomposed into LG-level BVs
by using SNP ASEs (from Equation 4) and seedling’s SNP
genotypes at each LG. These LG-level BVs were then used
to estimate LG-level between-trait genetic correlations.

Estimating the power of GWAS

When the significance of marker-trait association is
tested by using the regression of phenotype on the num-
ber of copies of a SNP allele, the power of detecting as-
sociation can be predicted from the probability [51]:

B = Pr{t,(8:) > tajo} (5)

where ¢£,(8;) is a random variable with non-central Stu-
dent’s ¢-distribution with v (= #n-2) degrees of freedom
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and non-centrality parameter J, The expression of §;
presented in [51] is that for unrelated samples, so given
the genetic relationships among our study individuals,
we derived a modified expression of §; as:

6}* = 6tR

_ I(v/2)b . ”
V2 T((v-1)/2)0,

where R (= 1-7*h*(1 - h?)) is the ratio of the approxi-
mate non-centrality parameter for genetically related in-
dividuals versus unrelated individuals, assuming that
resemblance between individuals is due to additive gen-
etic effects [8]; r is the coefficient of relationship and /?
is the narrow-sense heritability; I'(.) is a gamma function;
b and o, are the regression coefficient and its standard
deviation respectively. For derivations of b and o, refer
to [51].

Competing interests
The authors declare that they have no competing interests.

Authors’ contribution

SK, DC, RV and CW conceived and designed the experiment; SK, DC, CW and
RV performed the experiment; SK, DG and MB did analysis and interpretation
of results; SK, DG and MB drafted the manuscript. All authors read and
approved the final manuscript.

Acknowledgements

We thank Charmaine Carlisle and Kim Green for technical assistance in leaf
sampling and DNA extraction. Alex Lipka helped in discussions for analysis
using GAPIT software. Michela Troggio is thanked for sharing linkage map
positions of SNPs. Peter Visscher is thanked for helpful discussion and
suggestions during the course of this study. Luis Gea provided constructive
comments and suggestions on the manuscript. This research, and the
contribution of SK, CW, DC and RV, was partly funded by Prevar (Contract no.
26015) and the New Zealand Foundation for Research Science and
Technology (Contract no. C06X0812). The contribution of MB was carried out
as part of the EU-FruitBreedomics project funded by the Commission of the
European Communities (Contract FP7-KBBE-2010-265582).

Author details

'"The New Zealand Institute for Plant & Food Research Limited, Private Bag
1401, Havelock North 4157, New Zealand. “Department of Animal Science,
lowa State University, Ames, 1A 50011, USA. 3Biometris, Wageningen
University and Research Centre, PO Box 1006700AC, Wageningen,
Netherlands. “The New Zealand Institute for Plant & Food Research Limited,
Private Bag 11600, Palmerston North, New Zealand.

Received: 2 January 2013 Accepted: 7 June 2013
Published: 12 June 2013

References

1. Feuillet C, Leach JE, Rogers R, Schnable PS, Eversole K: Crop genome
sequencing: lessons and rationales. Trends Plant Sci 2011, 16:77-88.

2. Hamblin MT, Buckler ES, Jannink JL: Population genetics of genomics-
based crop improvement methods. Trends Genet 2011, 27:98-106.

3. Morrell PL, Buckler ES, Ross-Ibarra J: Crop genomics: advances and
applications. Nat Rev Genet 2012, 13:85-96.

4. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES:
Association mapping: critical considerations shift from genotyping to
experimental design. Plant Cell 2009, 21:2194-2202.

5. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value
using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.

19.

20.

21.

22.

23.

24.

Page 12 of 13

Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C: Genomic
selection for fruit quality traits in apple (Malus x domestica Borkh.).
PLoS One 2012, 7:236674.

Laird NM, Lange C: Family-based designs in the age of large-scale gene-
association studies. Nat Rev Genet 2006, 7:385-394.

Visscher PM, Andrew T, Nyholt DR: Genome-wide association studies of
quantitative traits with related individuals: little (power) lost but much
to be gained. Euro J Human Genet 2008, 16:387-390.

Atwell S, Huang Y, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt
A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter |,
Brachi B, Chory J, Dean C, Debieu M, Meaux J, Ecker JR, Faure N, Kniskern
JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M,
Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M:
Genome-wide association study of 107 phenotypes in a common set of
Arabidopsis thaliana inbred lines. Nature 2010, 465:627-631.

Yu J, Holland JB, McMullen MD, Buckler ES: Genetic design and statistical
power of nested association mapping in maize. Genetics 2008,
178:539-551.

Guo B, Sleper D, Beavis WD: Nested association mapping for identification
of functional markers. Genetics 2010, 186:373-383.

Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD,
Durrant C, Mott R: A multiparent advanced generation inter-cross to fine-
map quantitative traits in Arabidopsis thaliana. PLoS Genet 2009,
5:¢1000551.

Hayes BJ, Macleod IM, Baranski M: Sampling strategies for whole genome
association studies in aquaculture and outcrossing plant species. Genet
Res 2009, 91:367-371.

Yu J, Pressoir G, Briggs WH, Vroh-Bi |, Yamasaki M, Doebley JF, McMullen
MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES: A unified
mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat Genet 2006, 38:203-208.
Nejati-Javaremi A, Smith C, Gibson J: Effect of total allelic relationship on
accuracy of evaluation and response to selection. J Anim Sci 1997,
75:1738-1745.

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, Sabatti C,
Eskin E: Variance component model to account for sample structure in
genome-wide association studies. Nat Genet 2010, 42:348-354.

Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ,
Yu J, Arett DK, Ordovas JM, Buckler ES: Mixed linear model approach
adapted for genome-wide association Studies. Nat Genet 2010,
42:355-360.

Toosi A, Fernando RL, Dekkers JCM: Genomic selection in admixed and
crossbred populations. J Anim Sci 2009, 88:32-46.

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A,
Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P,
Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin
V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D,
Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, et al: The genome of the
domesticated apple (Malus x domestica Borkh.). Nat Genet 2010,
42:833-839.

Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C,
Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD,
lezzoni A, Mockler T, Wilhelm L, van de Weg E, Gardiner SE, Bassil N, Peace
C: Genome-Wide SNP Detection, Validation, and Development of an 8K
SNP Array for Apple. PLoS One 2012, 7:e31745.

Visscher PM, Medland SE, Ferreira MA, Morley KI, Zhu G, Cornes BK,
Montgomery GW, Martin NG: Assumption-free estimation of heritability
from genome-wide identity-by-descent sharing between full siblings.
PLoS Genet 2006, 2:e41.

Hayes BJ, Visscher PM, Goddard ME: Increased accuracy of artificial
selection by using the realized relationship matrix. Genet Res 2009,
91:47-60.

Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham
JM, De Andrade M, Feenstra B, Feingold E, Hayes MG, Hill WG, Landi MT,
Alonso A, Lettre G, Lin P, Ling H, Lowe W, Mathias RA, Melbye M, Pugh E,
Cornelis MC, Weir BS, Goddard ME, Visscher PM: Genome partitioning of
genetic variation for complex traits using common SNPs. Nat Genet 2011,
43:519-525.

Fan B, Onteru SK, Du Z-Q, Garrick DJ, Stalder KJ, Rothschild MF: Genome-
wide association study identifies loci for body composition and
structural soundness traits in pigs. PLoS One 2011, 6:¢14726.



Kumar et al. BMC Genomics 2013, 14:393
http://www.biomedcentral.com/1471-2164/14/393

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

McClure MC, Ramey HR, Rolf MM, McKay SD, Decker JE, Chapple RH, Kim
JW, Taxis TM, Weaber RL, Schnabel RD, Taylor JF: Genome-wide association
analysis for quantitative trait loci influencing Warner-Bratzler shear force
in five taurine cattle breeds. Anim Genet 2012, 43:662-673.

Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, van
de Weg E: QTL dynamics for fruit firmness and softening around an
ethylene-dependent polygalacturonase gene in apple (Malus x
domestica Borkh.). J Expt Botany 2010, 61:3029-3039.

Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC:
Red colouration in apple fruit is due to the activity of the MYB
transcription factor, MdMYB10. Plant J 2007, 49:414-427.

Chagné D, Carlisle C, Blond C, Volz RK, Whitworth C, Oraguzie NZ,
Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE: Mapping a
candidate gene (MdMYB10) for red flesh and foliage colour in apple.
BMC Genomics 2007, 8:212.

Volz RK, Kumar S, Chagné D, Espley R, McGhie TK, Allan AC: Genetic
relationships between red flesh and some fruit quality traits in apple.
Acta Horticulturae 2013, 976:363-368.

Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C: 2003)
Mapping quantitative physiological traits in apple (Malus x domestica
Borkh. Plant Mol Biol 2003, 52:511-526.

Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan MA, Zhou Y,
Gu C, Zhang X, Han Z, Korban SS, Li S: Identification, characterization, and
utilization of genome-wide simple sequence repeats to identify a QTL
for acidity in apple. BMC Genomics 2012, 13:537.

lwanami H, Moriya S, Kotoda N, Mimida N, Sumiyoshi ST, Abe K: Mode of
inheritance in fruit acidity in apple analysed with a mixed model of a
major gene and polygenes using large complex pedigree. Plant Breed
2012, 131:322-328.

Opara LU, Studman CJ, Banks NH: Fruit skin splitting and cracking.

Hort Reviews 1997, 19:217-262.

Durel CE, Laurens F, Fouillet A, Lespinasse Y: Utilization of pedigree
information to estimate genetic parameters from large unbalanced data
sets in apple. Theor Appl Genet 1998, 96:1077-1085.

Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M,
Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA: QTL and
candidate gene mapping for polyphenolic composition in apple fruit.
BMC Plant Biol 2012, 12:12.

Ferguson IB, Watkins CB: Bitter pit in apple fruit. Hort Reviews 1989,
11:289-355.

Korban SS, Swiader JM: Genetic and nutritional status in bitter pit-
resistant and -susceptible apple seedlings. J Amer Soc Hort Sci 1984,
109:428-432.

Volz RK, Alspach PA, White AG, Ferguson IB: Genetic variability in apple
fruit storage disorders. Acta Horticulturae 2001, 553:241-244.

Podlich DW, Winkler CR, Cooper M: Mapping as you go: an effective
approach for marker-assisted selection of complex traits. Crop Sci 2004,
44:1560-1571.

Browning SR, Browning BL: Rapid and accurate haplotype phasing and
missing data inference for whole genome association studies using
localized haplotype clustering. Am J Hum Genet 2007, 81:1084-1097.

Hill WG, Robertson A: Linkage disequilibrium in finite populations.

Theor Appl Genet 1968, 38:226-231.

Abecasis GR, Cookson WO: GOLD - graphical overview of linkage
disequilibrium. Bioinformatics 2000, 16:182-183.

Van Raden PM: Efficient methods to compute genomic predictions.

J Dairy Sci 2008, 91:4414-4423.

Sun G, Zhu C, Kramer MH, Yang S-S, Song W, Piepho H-P, Yu J: Variation
explained in mixed-model association Mapping. Heredity 2010,
105:333-340.

Gilmour AR, Cullis BR, Harding SA, Thompson R: ASRem/ Update: what's new
in Release 2.00. UK: VSN Int. Ltd, Hemel Hempstead; 2006.

Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES,
Zhang Z: GAPIT: Genome association and prediction integrated tool.
Bioinformatics 2012, 28:2397-2399.

Wellcome Trust Case Control Consortium: Genome-wide association study
of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature 2007, 447:661-78.

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang
Z,Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K,
Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang Q-F, Li J,

49.

50.

Page 13 of 13

Han B: Genome-wide association studies of 14 agronomic traits in rice
landraces. Nat Genet 2010, 42:961-967.

Fernando RL: Genetic evaluation and selection using genotypic,
phenotypic and pedigree information. In Proceedings of the 6th World
Congress on Genetics Applied to Livestock Production. Australia: Armidale;
1998:329-336. 11-16 Jan 1998.

Strandén |, Garrick DJ: Technical note: Derivation of equivalent computing
algorithms for genomic predictions and reliabilities of animal merit.

J Dairy Sci 2009, 92:2971-2975.

Luo Z: Detecting linkage disequilibrium between a polymorphic marker
locus and a trait locus in natural populations. Heredity 1998, 80:198-208.

doi:10.1186/1471-2164-14-393
Cite this article as: Kumar et al: Novel genomic approaches unravel
genetic architecture of complex traits in apple. BMC Genomics 2013

14:393.

( R
Submit your next manuscript to BioMed Central
and take full advantage of:

* Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolMed Central

& J




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Realized relationships and population structure
	Linkage disequilibrium
	Genome-wide associations
	Power of the GWAS

	Discussion
	Realized coefficient of relationships
	SNP-trait genome-wide associations
	Application of SNP-trait associations

	Conclusions
	Methods
	Plant material and phenotypes
	SNP Genotyping and LD estimation
	Realized versus expected coefficients of relationship
	Marker-trait association analysis
	Estimating the power of GWAS

	Competing interests
	Authors’ contribution
	Acknowledgements
	Author details
	References

