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Abstract

Background: Mosaic somatic alterations are present in all multi-cellular organisms, but the physiological effects of
low-level mosaicism are largely unknown. Most mosaic alterations remain undetectable with current analytical
approaches, although the presence of such alterations is increasingly implicated as causative for disease.

Results: Here, we present the Parent-of-Origin-based Detection (POD) method for chromosomal abnormality
detection in trio-based SNP microarray data. Our software implementation, triPOD, was benchmarked using a
simulated dataset, outperformed comparable software for sensitivity of abnormality detection, and displayed
substantial improvement in the detection of low-level mosaicism while maintaining comparable specificity.
Examples of low-level mosaic abnormalities from a large autism dataset demonstrate the benefits of the increased
sensitivity provided by triPOD. The triPOD analyses showed robustness across multiple types of Illumina microarray
chips. Two large, clinically-relevant datasets were characterized and compared.

Conclusions: Our method and software provide a significant advancement in the ability to detect low-level mosaic
abnormalities, thereby opening new avenues for research into the implications of mosaicism in pathogenic and
non-pathogenic processes.
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Background
Chromosomal abnormalities, including deletions, ampli-
fications, and uniparental disomy (UPD) events, are a
significant cause of Mendelian and complex disorders,
as well as a source of benign variation within a pop-
ulation. Technological advancements such as SNP
microarrays and next-generation sequencing have dra-
matically enhanced disease research and diagnosis by
improving the ability to detect genomic variation. Along
with technological advances, new algorithms for data
analysis improve our ability to identify biological aberra-
tions within large datasets. Many algorithms are
designed to detect abnormalities that result in copy
number variation (CNV), but frequently neglect regions
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of UPD and somatic mosaicism. Within a population of
cells originating from a single zygote, any somatic
change results in mosaicism, in which a subset of cells
harbors a unique genetic variant. Our understanding of
the prevalence and consequences of mosaic abnormal-
ities remains limited, due to the difficulty of detecting al-
terations in a small subpopulation of cells. Mosaic
abnormalities have been implicated in a multitude of
disorders, including Alzheimer’s disease, schizophrenia,
autism, neurofibromatosis, McCune-Albright syndrome,
Duchenne muscular dystrophy, Proteus syndrome, heart,
kidney, neuromuscular, and dysmorphic syndromes, as
well as cancer [1-5]. Lymphoblastoid cell lines, com-
monly used for disease research, frequently undergo
both the introduction of large mosaic abnormalities and
the loss of biological mosaicism due to a tendency
toward clonality [6,7].
There are many useful algorithms for abnormality

detection in SNP array data. Implementations of
segmentation-based approaches applied to B allele
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frequency (BAF) and log R ratio (LRR) values, including
BAFsegmentation [8] and MAD [9], are proficient at
detecting abnormalities, including mosaicism, when
there are suitably large percentages of abnormal cells.
SNPtrio makes use of genotypes from parent–child trios
and reports uniparental inheritance, but is generally lim-
ited to detection of non-mosaic deletion and UPD events
[10]. PennCNV joint is a hidden Markov model (HMM)-
based CNV detection tool which is capable of improved
detection using parent–child trios, but is not designed to
detect UPD or partial copy number states [11]. Other
HMM-based approaches, including PSCN, genoCN,
MixHMM, and GPHMM, can detect CNVs and UPD
events in tumor/normal mixtures and are thus capable
of detecting mosaic changes at a certain level of reso-
lution [12-15]. A Bayesian-based algorithm, gBPCR, also
reports successful detection of both CNVs and UPD
events in mixed tumor/normal samples, but has a very
long run time (~2 days per sample) [16]. A highly sensi-
tive method for quantification of the level of mosaicism
has been reported, which applies the Distribution Ana-
lysis by Fitting Integrated Probabilities method to
determine the central tendencies of the BAF band distri-
butions, but there is not currently a feasible implementa-
tion for detection of unknown mosaic regions [17].
While many algorithms can detect a subset of mosaic
abnormalities, the resolution for low-level mosaicism
can be greatly improved.
Here we present an algorithm for highly sensitive and

specific detection of mosaic and non-mosaic abnormal-
ities in offspring by employing the Parent of Origin-
based Detection (POD) method on SNP array data from
a parent–child trio. We also describe an implementation
of this algorithm in triPOD (Parent-of-Origin-based
Detection in trios), which includes additional parental
contribution-based approaches for abnormality detec-
tion. triPOD outperforms current state of the art detec-
tion methods, shows greatly improved sensitivity for
detection of low-level mosaicism, and uniquely provides
the parental origin for each detected abnormality.
triPOD software is made available as a command line
program and as a web application.

Results
SNP array technology provides a convenient source of
data for the detection of chromosomal abnormalities.
SNP arrays consist of immobilized allele-specific probes
for hybridization with fluorescently-labeled target DNA.
For the Illumina platform, the normalized intensity ratio
at each position is subjected to linear interpolation based
on AA, AB, and BB reference genotype cluster positions
[18]. The resulting value is an expression of the intensity
ratio in terms of the B allele and is referred to as
the B allele frequency (BAF). Genotype determination
incorporates the proximity of the BAF and LRR values
of a sample to those of the reference cluster. When a
chromosomal abnormality is present, the BAF values
(and often the LRR) deviate from the expected range
and possibly affect the genotype call. A SNP with a BAF
or LRR value not located within close proximity to an al-
lelic cluster cannot be assigned a genotype and is thus
labeled a No Call (NC). A mosaic abnormality can result
in a mixture of genotypes (e.g. 80% AB, 20% BB). The
resulting diploid genotype as called by the default
Illumina algorithm is dependent on the extent of mosai-
cism and would be either the genotype of the largest
subpopulation (e.g. AB) or a NC. Mosaic abnormalities
can be visualized as aberrations from the expected geno-
type bands in a BAF plot (Figure 1, center panel).

The POD method
The POD method identifies SNPs which are informative
for abnormal parental contribution. We define an in-
formative SNP as a polymorphic position where the
comparison of parental and progeny genotypes (called or
inferred) potentially reveals abnormal parental contribu-
tion for the surrounding region (Table 1). Abnormally
contributed SNPs are enriched for by analyzing the out-
liers of the sample-specific normal heterozygous BAF
distribution. For example, if at a given SNP position the
parental alleles are AA (paternal) and BB (maternal), the
genotype of the child is expected to be AB. Thus the
BAF value is expected to be a member of the distribu-
tion of normal heterozygous BAF values. In this case, if
the child’s BAF value is abnormally depressed, it may in-
dicate an underlying biological abnormality resulting in
an elevated proportion of paternal A alleles. Conversely,
if the child’s BAF value is abnormally elevated, it may in-
dicate an underlying biological abnormality resulting in
an elevated proportion of maternal B alleles. The com-
bination of parental genotypes and progeny BAF outliers
allows for a highly sensitive inference of mosaic parental
contribution regardless of the progeny genotype call.
The information content provided by the POD method
can be effectively utilized for abnormal region detection
by multiple algorithmic and statistical approaches and is
the most useful when used concurrently with segmenta-
tion or model-based CNV detection. This method can
also be used to detect abnormalities in any member of
the parent–child trio using inheritance-based expecta-
tions of genotype and BAF values (Table 2).

triPOD description
triPOD is a fast, efficient, multi-threaded software pro-
gram for chromosomal abnormality detection in off-
spring using SNP array data from parent–child trios. It
is implemented as a Perl script and makes use of the R
software environment for graphical output. It can be



Figure 1 triPOD graphical output. triPOD provides graphical output for each chromosome harboring a detected abnormality. The output
includes three panels: LRR, BAF, and triPOD Results. The figure illustrates regions of abnormal paternal and maternal contribution: a large
maternally contributed mosaic UPD region is plotted in green and a mosaic deletion of paternal origin in red.
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used for single trios or batches. It is designed to distrib-
ute analyses of individual chromosome arms to a user-
supplied number of processors and perform parallelized
single processor analyses of samples in batch mode. For
the current implementation, average run times for ana-
lyses of a single trio with ~600,000 SNPs were recorded
on a Linux server with 2.67 GHz Xeon x5650 processors
and range from ~90 seconds on a single CPU to ~35 sec-
onds employing 10 CPU cores (–cores=10). In batch
mode, a number of samples equal to the number of CPU
cores can be analyzed in parallel in the same amount of
time required for a single sample on a single CPU core.
The user can specify the use of the four detection algo-
rithms described below. The output includes detailed
annotation of detected abnormal regions in tabular for-
mat, optional graphical output of chromosomes harbor-
ing abnormalities, a file in BED format for use with
genome browsers, an optional file reporting calculated
Table 1 Informative SNPs for progeny abnormality detection

Father Mother C

AA, AB, NC BB

AB,BB, NC AA

AA AB, BB, NC

BB AA, AB, NC

Combinations of genotypes and outlier BAF values provide information content use
the child’s BAF value is an outlier of the normal BAF distribution, it may be indicativ
unexpected elevation of the child’s BAF value (unexpectedly high proportion of B a
(unexpectedly low proportion of B alleles).
parameters and thresholds, and a log file for error
reporting.

triPOD workflow
triPOD includes an implementation of the POD method,
in addition to streak-based approaches to homozygous
deletion (HD)(PODhd), single Mendelian error (MI1)-
based (PODmi1), and cryptic (low information content)
region detection (PODcr). The sliding window approach
employed combines high resolution and an adequate
sampling of the surrounding region. The following is a
summary of the triPOD workflow:

1. Sample-specific parameter specifications and
probability estimations are calculated.

2. POD method. SNPs are analyzed for information
content based on genotype combinations and
progeny BAF values.
with the POD method

hild BAF Potentially abnormal contribution

↓ Paternal

↑ Paternal

↑ Maternal

↓ Maternal

ful for the POD method. Given specific parental genotype combinations, when
e of a departure from expected biallelic inheritance. The ↑ symbol indicates an
lleles). The ↓ symbol indicates an unexpected depression of the BAF value



Table 2 Informative SNPs for parental abnormality
detection with the POD method

Child Parent 1 Parent 2 BAF

AB BB ↑

AB AA ↓

AA AA, AB, NC ↑

BB AB, BB, NC ↓

The POD method can also be employed to detect parental abnormalities.
Given specific genotype combinations between a parent and child, when the
other parent’s BAF value is an outlier of the normal BAF distribution, it may be
indicative of a departure from expected biallelic inheritance. The ↑ symbol
indicates an unexpected elevation of the BAF value (unexpectedly high
proportion of B alleles). The ↓ symbol indicates an unexpected depression of
the BAF value (unexpectedly low proportion of B alleles).
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3. POD region detection. Informative SNPs are
analyzed using overlapping windows. The ratios of
parental abnormal SNP contributions are evaluated
using a two-tailed binomial test along each
chromosome. Overlapping abnormal windows are
combined and expanded until evidence of a change
in contribution is encountered. Remaining normal
segments are evaluated for low-level mosaicism.

4. Streak-based region detection. The PODhd,
PODmi1, and PODcr algorithms detect
abnormalities by identifying statistically significant
streaks of abnormal SNPs.

5. The boundaries of detected abnormal regions are
refined using an optimized bidirectional cumulative
sums (CUSUM) approach applied to the LRR values
or mirrored BAF (mBAF) values (BAF values
reflected about the nonhomozygous BAF mean [8]).

6. Steps 2 – 5 are then repeated, following a
refinement of the BAF and LRR parameters, which
are generally derived from the normal regions of the
local chromosome arm.

7. Overlapping detected regions are combined or
spliced and annotated for parent-of-origin, type of
abnormality, and inheritance pattern.

8. The abnormal regions can be viewed as tabular and/
or graphical output (Figure 1).

Implementation of the POD method
Genetic abnormalities can be detected using a parental
contribution model derived from the principles of inher-
itance. Normal biparental inheritance results in progeny
who share approximately 50% of their genome with each
parent. Inheritance of a parental chromosome harboring
a mutation (a germline mutation) or the acquisition of a
somatic mutation alters the expected 1:1 parental contri-
bution ratio for that region. The triPOD implementation
of the POD method is based on a statistical model in
which the parental contributions revealed by informative
SNPs in regions of biparental inheritance can be viewed
as a sequence of Bernoulli trials where the outcomes
occur with equal probability. So in a set of n informative
SNPs, the number k that indicate paternal contribution
can be viewed as the outcome of the binomial random
variable Xn ~ B(n, 0.5). Thus, a two-tailed binomial test
can be applied to identify statistically significant devia-
tions from the expected distribution over a region of the
genome, indicating the presence of a chromosomal
abnormality.
Informative SNPs are detected using a combination of

genotypes and progeny BAF values exceeding a thresh-
old. To specify the BAF thresholds, the mean BAF values
of heterozygous and homozygous SNPs in normal auto-
somal chromosomes for each sample are calculated, and
thresholds are defined as a specified number of standard
deviations (SDs) of the mean. The default number of
SDs for heterozygous SNPs is

ffiffiffi
2

p
based on Chebyshev's

inequality, such that for any BAF distribution, a mini-
mum of 50% of SNPs with normal BAFs will be identi-
fied and removed from the analysis as uninformative.
Chebyshev's inequality sets a distribution-independent
minimum threshold for the percentage of values
within k SDs of the mean, defined as 1− 1

k2
for all k > 1.

An initial search for informative SNPs using autosomal
BAF thresholds allows for an observation of the distribu-
tion of windows containing different amounts of infor-
mation content (see Methods: Detection of normal
chromosomes).
The informative SNPs are first evaluated using over-

lapping windows (default = 100 SNPs) in single SNP in-
crements along each chromosome arm. For each
window the binomial test is applied and the p-value of
the observed outcome of the random variable Xn is cal-
culated. The probability mass function for the binomial
distribution is defined to be

B k; n; pð Þ ¼ n
k

� �
pk 1−pð Þn−k ;

where
n
k

� �
¼ n!

k! n−kð Þ!
� �

, n is the number of trials, k is

the number of successes, and p is the probability of suc-
cess. The formula for calculating the p-value for the
two-tailed binomial test is

P k; n; pð Þ ¼

Xk
i¼0

B i; n; pð Þ þ
Xn
i¼n−k

B i; n; pð Þ; k < n=2

1; k ¼ n=2Xn−k
i¼0

B i; n; pð Þ þ
Xn
i¼k

B i; n; pð Þ; k > n=2

;

8>>>>>><
>>>>>>:

where, in our case, p = 0.5 and k is the number of SNP
positions with abnormal paternal contribution out of n
informative SNPs in a window. The null hypothesis, that
the window lies in a region of biparental inheritance, is
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rejected if the p-value falls below the significance thresh-
old, indicating a chromosomal abnormality within or
including the current window.
Each overlapping window which contains a new set of

informative SNPs and is not inside of an abnormal re-
gion constitutes a new binomial test. Due to the unusual
dependency structure created by tests applied to over-
lapping windows, the most appropriate method of con-
trolling the familywise error rate (FWER) is derived
from the field of scan statistics, which focuses on the
clustering of events observed while scanning time or
space. We first compute the expected number of win-
dows E(Wk) containing k informative SNPs given by

E Wkð Þ ¼ N−k þ 1ð Þ
XN
i¼k−1

B i;N ;
w
M

� �
;

where M is the total number of SNPs, N is the total
number of informative SNPs, and w is the window size
[19] (adaptation of Equation 17.4). Then at a given
threshold β, the probability of making a type I error is
given by

PFWER βð Þ ¼
X
k

XE Wkð Þ

i¼1

B i;E Wkð Þ; γk
� �

;

where

γk ¼ max P j; k; 0:5ð Þ P j; k; 0:5ð Þ≤β and j≤kgÞ:jfð
Thus we can control the FWER by finding a β such

that PFWER(β) is below the α-value. Since our set of pos-
sible p-values is discrete and relatively small, this can be
done efficiently, and in our implementation we test the
values βk = P(k; k, 0.5) for increasing k. The first βk satis-
fying PFWER(βk) < α becomes our significance threshold
for the individual binomial tests.
When an abnormal window is identified, it becomes

the seed of an abnormal region, which is expanded until
there is evidence of a change-point in the distribution of
parental contributions. The boundary is then retracted
to the most recent significantly abnormal window and
further retracted to the first and last informative SNPs
with contribution from the appropriate parent. The re-
gion boundaries are then refined using the bidirectional
CUSUM approach (see Boundary refinement).
In an abnormal region, all informative SNPs should

show abnormal contribution from the same parent
unless a genotyping error has occurred. Most detectable
errors in an abnormal region will show up as informative
for the opposite parent. Therefore we can view each
SNP in the window as a Bernoulli trial for which the
probability of success (in this case success is defined as
the SNP being informative for the opposite parent) is
the estimated error rate e (see Methods: Data quality
adjustments). As before, we can apply a binomial test to
assess deviations from the expected distribution which
would indicate that the abnormal region has ended and
initiate boundary retraction. In this case the applicable
test is one-tailed, and the p-value is equal to
∑n
i¼kB i; n; eð Þ:
Chromosomal regions without detected abnormalities

undergo further analysis using a larger overlapping win-
dow size (default = small window ×5). This analysis is
specifically designed to enhance the detection of large
low-level mosaic abnormalities and illustrates the utility
of employing multiple window sizes within the POD
method. A large window analysis has higher sensitivity
and lower specificity than a small window analysis. By
implementing an initial analysis with smaller windows, a
large majority of abnormalities will be detected with
highly specific boundaries before any remaining low-
level mosaic abnormalities would be detected during the
subsequent large window analysis. This allows for an ele-
vation of overall sensitivity with a minimal reduction in
overall specificity.
Streak detection
When analyzing trios, there are many additional ways to
evaluate parental contribution data. To complement the
POD approach, triPOD employs a streak-based algo-
rithm for detection of HD- and MI1-based abnormal-
ities, as well as abnormal regions lacking sufficient
parental information content. A streak is comprised of
adjacent informative SNPs. Informative SNPs are defined
differently depending on the algorithm used for streak
detection and autosomal rates are calculated (see
Methods: Autosomal rate calculations). The minimum
number of adjacent informative SNPs which can be con-
sidered a statistically significant abnormality is calculated
by computing the minimum m for which the p-value of
the occurrence of m adjacent informative SNPs falls
below the user defined α-value. A highly accurate ap-
proximation of the p-value of a streak of size m is given
by

Ps m; n; pð Þ ¼ 1−Q2 Q3=Q2ð Þ n=mð Þ−2;

where

Q2 ¼ 1−pm 1þmqð Þ;

Q3 ¼ 1−pm 1þ 2mqð Þ þ 0:5p2m 2mq þm m−1ð Þq2� �
;

n is the total number of SNPs, and p is an autosomal
rate of informative SNPs [19] (Equation 4.9).
For HD detection, since the source of parental DNA is

considered an appropriate proxy for the individual gam-
etes comprising the zygote, HD regions in a parent
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Figure 2 CUSUM-based boundary refinement. This figure
illustrates the CUSUM-based approach to boundary refinement
applied to the LRR values in a large amplification event. The two
peaks of the CUSUM plots denote the change-points (boundaries) of
the region. The optimized k value allows for similar slopes on either
side of the detected boundaries (max Sn).
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indicate a total absence of genetic contribution and are
thus detected and reported as abnormalities in the child.
In the PODhd algorithm, an HD SNP is defined as
having a LRR value sufficiently outlying the distribution
ofsingle-copy deletion values centered near −0.5 (de-
fault = < −1.5). For each trio member, the minimum size
of a significant HD streak is computed as above with
p defined as the autosomal rate of HD SNPs. All HD
streaks larger than the minimum size are detected. The
overlapping streaks are combined and expanded using
the bidirectional CUSUM approach applied to the LRR
values. Non-HD regions in the child which correspond
to a parental HD region are evaluated using the CUSUM
approach and spliced into adjacent abnormal regions of
different types, when necessary.
In the PODmi1 algorithm, informative MI1 SNPs are

defined as all genotype combinations from which a
single inheritance error can be inferred, including all
informative SNP combinations with an abnormal BAF
value which exceeds 5SD of the normal heterozygous
BAF mean. The minimum PODmi1 region size and re-
gion detection is performed as above with n defined as
the total number of polymorphic SNPs and p as the
autosomal rate of MI1 SNPs. PODmi1 detection is very
useful for identifying small non-mosaic or high-level
mosaic abnormalities frequently below the detection
limit of the POD method. It is also useful for resolving
instances in which the POD method detects a small ab-
normality but is unable to completely refine the bound-
aries (see Overlap and annotation).
We define cryptic regions as having a statistically sig-

nificant presence of outlier BAF values. The autosomal
rate of non-homozygous SNPs with BAF values which
exceed 2SD of the normal autosomal mean is calculated.
The minimum size of a streak is computed as above
with n defined as the total number of polymorphic SNPs
and p as the autosomal rate of outlier BAF values. Win-
dows with a significant rate of outlier BAF values may
be due to a local asymmetry in BAF [20], and are thus
evaluated by the distribution of BAF outliers above and
below the distribution center. A two-tailed binomial test
is applied, where n is the total number of outlier BAF
values and k is the minimum number of the upper or
lower values. Windows for which the null hypothesis is
rejected, given the α-value corrected for number of
detected cryptic regions, are evaluated and undergo
boundary refinement with unknown parental origin. Par-
ent of origin is assigned, if possible, during the annota-
tion stage.

Boundary refinement
The detection of abnormal regions prior to boundary de-
termination requires a unique application of change-
point analysis for detection of single change-points
bidirectionally from within an abnormality. The cumula-
tive sums (CUSUM) approach is a standard method of
change-point analysis developed to detect small changes
hidden in a continuous process [21]. A basic one-sided
CUSUM equation is

Sn ¼ max 0; Sn−1 þ xn−kð Þð Þ;

in which the change-point is the maximum partial sum
Sn, x is a dataset with n members, and k is commonly
the in-control sample mean or target value. We adapt
this equation for boundary detection as follows: Sn is a
region boundary defined by a change-point between the
normal and abnormal distributions, optimized k = (me-
dian of the abnormal region – local baseline median)/2,
and x is a sequence of LRR or non-homozygous mBAF
values. Our assignment of k maximizes the value of the
change-point by creating approximately equal slopes on
either side. This estimation of k is only optimal when
variation between distributions is similar. Since the HD
variation is much larger than the other distributions, k ≤
1.5 is considered to be more appropriate. From within
an abnormal region the abnormal values will generally
be > k, creating a positive slope which will peak at the
change-point, after which the values in the normal re-
gion will generally be < k, creating a negative slope
(Figure 2).
For an abnormal region to undergo LRR-based

CUSUM boundary refinement, the LRR median must
meet the LRR threshold requirements (|median| ≥ 0.1 +
the local baseline LRR median). If a region does not
meet the LRR requirements, it will undergo BAF-based
CUSUM boundary refinement if the BAF median meets
the BAF threshold requirements (|median| > 0.1 + the
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local baseline mBAF median). For the application of a
one-sided CUSUM approach, the LRR values for regions
with a median < 0 are reflected about 0 and a maximum
change-point is detected. The members of x evaluated
by CUSUM are determined as follows:

for i ¼ 2;
s0 ¼ end; sn≤start−10
e0 ¼ start; en≥end þ 10

	

3≤i≤3min;
s0 ¼ crit j cen; sn≤start−5i
e0 ¼ crit j cen; en≥end þ 5i

	

i > 3min;
s0 ¼ start þmin inf ; sn≤start−25
e0 ¼ end−min inf ; en≥end þ 25

	
;

where i = number of SNPs in the abnormal region, s0 =
x0 and sn = xn for the start boundary calculation, e0 = x0
and en = xn for the end boundary calculation, start = the
initial start position of the abnormal region, end = the
initial end position of the abnormal region, min = mini-
mum POD region size, min inf = a min number of in-
formative SNPs, crit = the position of the maximum
LRR value in the region which is not equal to start or
end, and cen = the position of the center informative
SNP for BAF CUSUM. The variables s0 and e0 are SNP
positions located inside the abnormal region and sn and
en, respectively, are upstream and downstream baseline
SNP positions located outside of the region. The sn and
en values are determined by iterative moving median cal-
culations of the data immediately adjacent to the abnor-
mal region boundaries. Median values are calculated for
5i ≤ 25 SNPs in overlapping single SNP increments.
When the median value is < k, it is determined that the
window extends into the adjacent baseline data and sn or
en = the most distant SNP evaluated. Since a detected
region likely includes false positive SNPs in addition to
the true abnormality, when 3 ≤ i ≤ 3min, s0 = e0 = the
position of the maximum LRR value in the abnormal
region to ensure that CUSUM begins within the true
abnormality. For BAF-based CUSUM of similar regions,
CUSUM begins from the center informative SNP, since
extreme values are less informative. In order to reduce
the chance that CUSUM finds an incorrect local max-
imum when evaluating a large region, the analysis begins
min inf SNPs from start and end when i > 3min.
A series of rules are designed to control for unusual

situations. If a max peak is not detected, the boundary
defaults to the initial value. If the median of the adjacent
data is twice as large as or larger than the median of the
abnormal region, it is deemed likely that there is an adja-
cent unique abnormality and the initial boundary
remains, unless a CUSUM minimum was detected.
Random HD LRR outliers in a hemizygous deletion re-
gion are ignored. Random BAF outliers > the region me-
dian + 0.1 are ignored.
Overlap and annotation
For occasions when regions called by different triPOD
detection methods overlap, rules have been created to
prioritize, combine, and splice such regions. PODhd re-
gions are predominantly small regions and are reported
as detected without fragmenting larger overlapping re-
gions. Non-mosaic or high-level mosaic abnormalities
can be detected by multiple methods. Since the PODmi1
algorithm is more adept at defining small regions than
the POD algorithm, in certain cases we assume that both
algorithms are detecting the same small abnormalities
and give the PODmi1 region priority. When a POD re-
gion overlaps no more than two PODmi1 regions and
the information content within non-overlapping POD
segments is not larger than the minimum acceptable
region size, the POD region is discarded in favor of the
PODmi1 region(s). Otherwise, overlapping regions are
combined or spliced based upon various factors, includ-
ing size of region, number of informative SNPs, parental
contribution, and type of abnormality.
Detected regions are annotated by parent-of-origin,

type of abnormality and inheritance. The type of abnor-
mality is assigned using a threshold-based approach ap-
plied to the normalized median LRR value. This value is
compared to a threshold normalized to the local baseline
LRR median as follows: amplification (AMP) ≥ 0.1, dele-
tion (DEL) > −1.5 and ≤ −0.1, and HD ≤ −1.5. Detected
regions with normalized median LRR values > −0.1
and < 0.1 may be any of the following: a UPD region, a
region of low-level mosaicism of any type (AMP, DEL,
UPD), or a region containing a small abnormality along
with many normal SNPs. Within this group, unipa-
rental heterodisomy (UPhD) is assigned to otherwise
unannotated regions if the child’s genotypes exactly
match the genotypes of the parent of origin, taking into
account the estimated error rate. Uniparental isodisomy
(UPiD) is assigned to unannotated regions if ≥ 90%
of the child’s genotypes are homozygous or if the
normalized median mBAF value is > 0.55 and LRR
values are > −0.05 and < 0.05. Noisy LRR values may
affect proper annotation of small regions. When the in-
heritance pattern indicates that an abnormality was
likely inherited, an annotation of inherited (INH) or
inherited with a unique CN state (INH-CN) is provided.
The INH state is defined as follows: an AMP is inherited
if the contributing parent also has an AMP; a DEL is
inherited if the contributing parent also has a DEL; an
HD region is inherited if the contributing parent(s) have
any heritable combination of HD and DEL regions not
indicative of a unique CN state. The INH-CN state is
defined as follows: an INH-CN DEL exists when the con-
tributing parent has an HD region and the opposite parent
is normal; an INH-CN HD region exists when both parents
have a single-copy DEL. We make no judgment as to the
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inheritance state of any region which does not fall within
the above stated parameters.
triPOD provides graphical (Figure 1) and annotated

tabular output for detected abnormalities, including
parent-of-origin, type of abnormality, inheritance pat-
tern, detection method, region size, number of inform-
ative SNPs, and the median mBAF and LRR values for
all trio members. The reported regional mBAF and LRR
values are normalized as the distance from the median
local baseline values. If > 75% of a chromosome arm is
abnormal, the medians are normalized to the baseline
values of the adjacent chromosome arm. In the case of
aneuploidy, the medians are normalized to the auto-
somal baseline values. Since a parent-of-origin determin-
ation is dependent upon the type of abnormality, when
the type of abnormality is not called, the detected paren-
tal contributor will be designated in the output.
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Figure 3 Sensitivity benchmarking on a simulated mosaicism dataset
programs (paired BAFsegmentation, genoCNA, MAD, PennCNV joint, and P
0% to 100% normal cells in intervals of 5%. The sensitivity of detection was
mosaic level for each sample was plotted as a percentage of normal cells.
Benchmarking with simulated data
For benchmarking purposes, we adapted a simulated
tumor dilution dataset made available by Staaf et al. [8],
which has been frequently used for testing the sensitivity
and specificity of detection for new algorithms
[8,9,12,22] (see Methods: Datasets). This dataset con-
tains 10 simulated abnormalities ranging from 0% to
100% normal cells in intervals of 5%, totaling 21 sam-
ples. For use with triPOD, microarray data was obtained
for HapMap [23] samples NA06993 and NA06985, the
father and mother, respectively, of NA06991, the sample
upon which the simulation was constructed. Similar to
Staaf et al., we assumed that the simulated abnormalities
were the only aberrant regions in this dataset.
The dataset was analyzed using triPOD’s POD method

and five leading software programs for chromosomal
abnormality detection: paired BAFsegmentation (circular
BAFseg paired
MAD
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. triPOD’s POD implementation was benchmarked against five software
SCN) on a dataset containing 10 simulated abnormalities ranging from
calculated for each region. In keeping with previous reports, the
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binary segmentation applied to paired tumor/normal
samples), genoCNA (a 9 state HMM for CN aberration
detection), MAD (Mosaic Alteration Detection, GADA-
based segmentation applied to BAF), PennCNV joint
(HMM which jointly calls CNVs in trios), and PSCN (a
parent-specific copy number segmentation-based HMM
algorithm) [8,9,11-13]. Sensitivity and specificity were
calculated at each level of mosaicism for each abnormal-
ity as in Staff et al. [8] (see Methods: Performance calcu-
lations). triPOD outperformed all other methods based
on sensitivity of detection, displaying a large improve-
ment at low levels of mosaicism (Figure 3). For
consistency with previous publications, the level of mo-
saicism was plotted as a percentage of normal cells, in
which case a high percentage of normal cells corre-
sponds to a low-level mosaic abnormality. triPOD’s in-
crease in sensitivity is apparent in all types of simulated
abnormalities. The mean sensitivity at each level of mo-
saicism is presented in Figure 4a. At low levels of mosai-
cism (85-95% normal cells), triPOD displayed a mean
sensitivity of 99%, 98%, and 83%, respectively, compared
to the next best performing method (PSCN) with 33%,
(a)

(b)

(c)
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Figure 4 Mean benchmarking performance statistics. triPOD’s
POD implementation was benchmarked against five software
programs (paired BAFsegmentation, genoCNA, MAD, PennCNV joint,
and PSCN) on a dataset containing simulated mosaic abnormalities.
(a) The mean sensitivity, (b) specificity, and (c) positive predictive
value (PPV) are plotted for detection of 10 simulated abnormalities
across 21 mosaic states.
20%, and 0%. Mean detection thresholds were calculated
as the mean of the percent normal cells (> 50%) at which
the sensitivity of detection first drops to zero. triPOD’s
mean detection threshold of 96% greatly exceeded all
other programs, followed by PSCN (82%) and
BAFsegmentation (81%) (Table 3). The high level of
consistency displayed by triPOD is evidenced by the fact
that 91% of the mosaic abnormalities were detected at a
level > = 95% sensitivity, compared to PSCN (79%) and
BAFsegmentation (78%) (Table 3). The similarity be-
tween a program’s mean detected region size and the
mean size of the simulated regions reveals its ability to
detect a large abnormality as a single region. Compared
to the mean simulated region size of 7355 SNPs, triPOD’s
mean region size was 6874 SNPs, BAFsegmentation had
4481, and the others were much smaller (Table 3). The
specificity of triPOD, PennCNV, BAFsegmentation, MAD,
and genoCNA were comparable and very high (> 0.999),
while the specificity for PSCN was much lower (~0.97)
(Figure 4b). The reduced specificity of the default PSCN
settings allows for an elevation of sensitivity in this com-
parison. Positive predictive value measurements (Figure 4c)
highlight the precision of triPOD’s detection, which is su-
perior to the other programs at low levels of mosaicism,
maintaining greater than 0.999 across all levels of mosai-
cism (excluding 100% normal).
Low-level mosaicism comparisons
In order to illustrate triPOD’s ability to detect low-level
mosaicism in real data, progeny samples harboring large
low-level mosaic abnormalities were identified by tri-
POD in Illumina HumanHap550 trios provided by the
Autism Genetic Resource Exchange (AGRE) Consortium
[24]. Twelve representative trios were chosen, in which
a chromosome in the progeny sample harbored an
abnormality which met the following criteria: the change-
point is visually identifiable, large (>1000 SNPs), low-
level mosaic (estimated < 0.04 deviation of heterozygous
BAF values from baseline, which corresponds to < 8.5%
mosaicism for UPD events and deletions and < 24% for
amplifications), segmental (to aid in graphical visibility),
and of reasonable quality (all trio members < 2% NCs).
These samples underwent analyses with default parame-
ters using triPOD, BAFsegmentation, genoCNA, MAD,
PennCNV joint, and PSCN. For these regions, compari-
sons between triPOD and the other programs are not
strictly benchmarking, since the appropriate regions
were first identified using triPOD, by necessity. They
serve mainly to illustrate the capabilities of each pro-
gram for detection of similar regions and to lend real-
world support to the results of the simulation analyses.
For each region, a CUSUM-based approach applied to
a subset of the BAF range (see Methods: AGRE



Table 3 Sensitivity benchmarking statistics

triPOD paired BAFseg PSCN genoCNA MAD PennCNV joint

Mean detection threshold 0.96 0.81 0.82 0.71 0.78 NA

Proportion detected >= 95% 0.91 0.78 0.79 0.69 0.37 0.31

Mean Region Size (SNPs) 6874 4481 376 579 705 246

Detection statistics are compared between triPOD and other benchmarked programs. The mean detection threshold is the mean of the percent normal cells
(> 50%) at which the sensitivity of detection first drops to zero. The proportion detected >= 95% refers to the proportion of the total number of simulated
abnormalities detected with >= 95% sensitivity. The mean region size serves as an indication of a program’s ability to call an entire abnormality as a single
abnormal region.
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boundary detection) was used to successfully validate
the existence of appropriate change-points correspond-
ing to regions wholly or partially detected by triPOD
and visually identifiable as a widening or splitting of the
heterozygous BAF band. The calculated change-points
served as estimates of the region boundaries. A single
CUSUM boundary was calculated for terminal abnor-
malities. Sensitivity was calculated as the ratio of the
number of detected abnormal SNPs out of the total ab-
normal SNPs for each region. A detection threshold
was set at a minimum of 10% sensitivity. triPOD dra-
matically outperformed the other software, based on
the number of regions detected and the average sensi-
tivity (91%) (Table 4). PSCN was able to detect 6 of 12
regions, for which the average sensitivity was 69%.
MAD was able to detect two of the regions,
BAFsegmentation and genoCNA detected a single re-
gion, and PennCNV joint was unable to detect any of
the low-level mosaic abnormalities. These results are
graphically illustrated in Figures 5, 6, 7. Note that sev-
eral of the programs (BAFsegmentation, genoCNA, and
PSCN) called a larger number of abnormal regions in
Table 4 Analysis of large low-level mosaic abnormalities in th

Region Sample Chr Size(SNPs) % Mosaic triP

1 AU031003 5 9664 2.1 - 6.4 0

2 AU036104 22 4970 4.9 - 12.6 0

3 AU051503 7 7707 3.7 - 10.7 0

4 AU068604 5 1499 5.6 - 16.5

5 AU072004 1 19981 6.5 - 18.7

6 AU073006 8 1710 8.4 - 24 0

7 AU0871303 11 5219 2.8 - 8.1 0

8 AU1271304 9 3202 2.5 – 6.8 0

9 AU1285302 13 7455 7.3 – 21.5

10 AU1346302 19 3241 6.7 - 19.2

11 AU1462303 9 15601 2.2 - 6.0 0

12 AU1585303 9 15421 2.8 - 8.1 0

The sensitivity of abnormal region detection for 12 samples in the AGRE autism dat
were analyzed by triPOD, BAFsegmentation (unpaired), genoCNA, MAD, PennCNV jo
column is the estimated percent mosaicism calculated, using BAF values >= the ba
median from the baseline median and the expected distance of a 100% mosaic abn
abnormality is difficult to distinguish based on LRR values, thus a range is provided
percentage) or an amplification.
many chromosomes, compared to triPOD, PennCNV
joint, and MAD, many of which we assume to be false
positives.

Cross-chip performance: HapMap samples
HapMap CEU and YRI datasets processed on four differ-
ent Illumina microarray chips and available in the NCBI
GEO database [25] were analyzed by triPOD (NC ≤ 5%).
Summary results are presented in Tables 5 and 6. Trios
which were present in all four datasets and met quality
controls were analyzed. The average percentage of NCs
ranged from 0.6% to 4.4%. Detected abnormalities were
evaluated for overlapping calls (≥ 50% overlap) within
the other datasets. The trio including offspring NA10856
was excluded from the overlap analyses due to the emer-
gence of multiple large mosaic abnormalities described
below. For abnormal regions with ≥ 10 informative
SNPs, 6% of the regions were unique to a single dataset,
while 86%, 6%, and 2% overlapped regions called in one,
two, or three other datasets. For regions with ≥ 50 in-
formative SNPs, 2% of the regions were unique to a sin-
gle dataset, while 20%, 30%, and 48% overlapped regions
e AGRE autism dataset

OD PSCN MAD BAFseg genoCNA PennCNV

.96 0.02 0 0.02 0.06 0

.89 0.02 0 0 0 0

.69 0.03 0 0 0 0

1 0 0 0 0 0

1 0.93 0 0.03 0.05 0

.97 0.87 0.99 0.05 0 0

.99 0 0 0.02 0.03 0

.73 0.39 0 0.01 0.02 0

1 1 0.93 1 0.91 0

1 0.45 0 0 0 0

.81 0.48 0 0 0 0

.92 0.02 0 0.01 0.07 0

aset harboring a large low-level mosaic abnormality is presented. The samples
int, and PSCN. (Sensitivity results < 0.01 are reported as 0). The % Mosaic
seline median and < 0.7, as the ratio of the distance of the abnormal BAF
ormality from the baseline median. For low-level mosaicism, the type of
to account for regions resulting from a deletion or UPD event (smaller



Figure 5 Detection of low-level mosaic abnormalities in AGRE - Regions 1–4. triPOD was compared to BAFsegmentation, genoCNA, MAD,
PennCNV joint, and PSCN for detection of large low-level mosaic abnormalities in the AGRE autism dataset. Plots of Regions 1–4 are shown for
samples AU031003, AU036104, AU051503, and AU068604. For each sample, the top panel is a plot of the LRR values with the moving average
(25 SNPs) highlighted in green. The middle panel is a plot of the BAF values with dashed horizontal lines at 0.35 and 0.65 to improve visualization
of mosaic splitting of the heterozygous BAF band. The red vertical dashed line indicates the region boundary as detected by our CUSUM-based
approach. The lower panel is a graphical representation of the regions detected by each of the six programs. Regions detected by triPOD are
colored based on parental contribution: blue = paternal contribution, red = maternal contribution, black = abnormal biparental or
undetermined contribution.

Figure 6 Detection of low-level mosaic abnormalities in AGRE - Regions 5–8. triPOD was compared to BAFsegmentation, genoCNA, MAD,
PennCNV joint, and PSCN for detection of large low-level mosaic abnormalities in the AGRE autism dataset. Plots of Regions 5–8 are shown for
samples AU072004, AU73006, AU0871303, and AU1271304. The plots for each sample are as described in Figure 5.
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Figure 7 Detection of low-level mosaic abnormalities in AGRE - Regions 9–12. triPOD was compared to BAFsegmentation, genoCNA, MAD,
PennCNV joint, and PSCN for detection of large low-level mosaic abnormalities in the AGRE autism dataset. Plots of Regions 9–12 are shown for
samples AU1285302, AU1346302, AU1462303, and AU1585303. The plots for each sample are as described in Figure 5.
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called in one, two, or three other datasets. These results
are illustrated in Figure 8. The 660W and Omni1
datasets contain many more detected abnormalities due
to the increase in CNV-specific probes (see Table 5). Re-
gions with ≥ 10 informative SNPs in the 660W and
Omni1 datasets had 94% concordance. We conclude
Table 5 HapMap CEU datasets

1M 660W Omni1 CytoSNP12

Accession GSE16894 GSE17208 GSE17197 GSE17123

# Trios 27 27 27 27

Markers 1128030 634750 1014080 277297

CNV-specific 29367 62095 88450 467

Date Processed 5/19/2008 2/10/2009 6/29/2009 7/1/2009

Abnormalities:

AMP 77 63 84 18

DEL 225 248 277 8

HD 401 3877 4231 17

UPhD 0 0 0 0

UPiD 9 13 10 6

Unk 159 50 108 20

Total 871 4251 4710 69

1M: Human1M-Duov3; 660W: Human660W-Quadv1; Omni1: HumanOmni1-
Quadv1; CytoSNP12: HumanCytoSNP-12v2-1; Accession: accession identifier in
the NCBI GEO database; Markers: approximate number of autosomal markers
following conversion; CNV-specific: the number of autosomal CNV-specific
probes; Date Processed: the processing date reported in the Illumina final
report. AMP amplification, DEL hemizygous deletion, HD homozygous deletion,
UPhD uniparental heterodisomy, UPiD uniparental isodisomy, Unk detected
abnormalities of undetermined type.
that, as expected, small regions were much more likely
to overlap regions on one similar chip, and that triPOD
results for these regions are highly concordant. Also, as
expected, large regions were most frequently present in
all four datasets and that triPOD showed good concord-
ance given the known fluctuation of mosaic of anomalies
in cell lines (highlighted below).
The ability to detect newly emerging mosaic abnor-

malities is illustrated in Figures 9, 10, 11, in which tri-
POD results are provided for chromosomes 8, 12, and
13 of sample NA10856. Several large mosaic
Table 6 HapMap YRI datasets

1M 660W Omni1 CytoSNP12

Accession GSE16896 GSE17210 GSE17203 GSE17126

# Trios 29 29 29 29

Markers 1128030 634750 1014080 277297

CNV-specific 29367 62095 88450 467

Date Processed 5/20/2008 2/10/2009 6/30/2009 7/1/2009

Abnormalities:

AMP 109 57 98 24

DEL 278 231 263 10

HD 395 3295 4009 17

UPhD 1 0 0 0

UPiD 9 4 3 0

Unk 113 45 56 15

Total 904 3632 4429 66

Rows and columns are defined in Table 5.
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Figure 8 Cross-chip concordance of detected abnormalities.
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abnormalities, detected by triPOD and visually identifi-
able, are present in the Omni1 and CytoSNP12 samples:
a large mosaic amplification on chromosome 8qter; a
large low-level mosaic abnormality on chromosome 12
qter; a large low-level mosaic abnormality on chromo-
some 13q. As presented in Table 5, the 1M and 660W
samples were processed at earlier dates than the Omni1
and CytoSNP12 samples. We believe that these large ab-
normalities occurred during passaging and expansion of
this cell line and were thus present and detectable only
in the more recently processed samples. triPOD also
detected a large very low-level abnormality on chromo-
some 5q of CEU sample NA07029 (not shown), which
was possibly not present in the 660W and 1M samples
and below the resolution of the CytoSNP12 sample.
Newly emerging large mosaic abnormalities were not
Figure 9 Emerging mosaicism in HapMap sample NA10856 chromoso
HumanOmni1-Quadv1; CytoSNP12: HumanCytoSNP-12v2-1.
detected in the YRI trios, although a previously reported
[13,26] mosaic amplification of the entire chromosome 9
in NA19208 was detected in all four datasets.

GENEVA cleft lip/palate and AGRE samples
The cleft lip/palate dataset is a part of the Gene Envir-
onment Association Studies initiative (GENEVA) and
described in [27]. It consists of parent–child trios run on
the Illumina Human610 Quadv1_B microarray platform.
Most of the DNA samples were obtained from whole
blood, with limited samples from buccal brush/swap,
saliva, mouthwash, and dried blood. Of the 2029 trios,
1962 trios passed quality control before analysis with tri-
POD. The autosomes of 1930 of those were successfully
analyzed by triPOD (NC ≤ 3%).
The AGRE trios were previously run on the Illumina

HumanHap550 microarray, which does not contain
CNV-specific probes. The DNA for these samples was
derived from cultured lymphoblastoid cell lines. The
autosomal data of 1587 trios was successfully analyzed
by triPOD (NC ≤ 3%).
The total numbers and ratios of detected abnormalities

by type (AMP, DEL, HD, UPhD, UPiD, Unknown (Unk))
are presented in Table 7. The presence of CNV-specific
probes on the Human610 chip used for the cleft data
vastly increases the number of detected regions and
alters the ratios. The distributions of the sizes for each
type of abnormality in the cleft and AGRE datasets are
presented in Figure 12. While the medians are similar
between datasets, it is evident that the whiskers extend
lower for the cleft findings (likely due to small CNV
me 8. 1M: Human1M-Duov3; 660W: Human660W-Quadv1; Omni1:



Figure 10 Emerging mosaicism in HapMap sample NA10856 chromosome 12. Abbreviations are as defined for Figure 9.
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regions) and the outliers tend to be larger and more
abundant within the AGRE abnormalities.
For both the cleft and AGRE datasets, the large, highly

informative abnormalities were identified. These regions
with ≥ 250 informative SNPs were visually investigated
and multiple reports for single abnormalities were com-
bined (e.g. each abnormality which encompasses a whole
chromosome is expected to be reported as at least two
Figure 11 Emerging mosaicism in HapMap sample NA10856 chromos
regions since triPOD analysis considers each chromo-
some arm separately). The resulting regions are
presented in Tables 8 and 9. As mentioned above, these
large abnormalities occur much more frequently in the
AGRE dataset. The proportion of autosomes harboring
at least one large informative abnormality in the cleft
dataset was 13 of 42460 autosomes (0.0003), while
the AGRE dataset contained 49 of 34914 autosomes
ome 13. Abbreviations are as defined for Figure 9.



Table 7 AGRE and cleft datasets

AGRE Cleft

# Trios 1587 1930

Markers 547458 600470

CNV-specific 0 17879

Abnormalities:

AMP 1398 (0.09) 3499 (0.06)

DEL 10680 (0.65) 12259 (0.22)

HD 2821 (0.17) 37804 (0.66)

UPhD 2 (0) 3 (0)

UPiD 329 (0.02) 496 (0.01)

Unk 1211 (0.07) 3072 (0.05)

Total 16439 57130

Rows are defined in Table 5. Values in parentheses are proportions of the total
abnormalities for each dataset.
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(0.0014). Thus the AGRE dataset is 4.7 times more likely
to harbor large abnormalities than the cleft dataset
(p = 6.1e-8).
A large study on the presence of mosaic abnormalities

(≥ 50 kb) in GENEVA datasets was recently reported by
Laurie et al. [28]. Since the cleft dataset consists of
parent–child trios, we were able to compare regions
detected in the offspring. They reported 10 mosaic
abnormalities in 9 offspring samples within the cleft
dataset, the identifiers of which were provided upon
request by the authors. These findings are presented in
Table 10 along with the overlapping triPOD findings.
triPOD detected all of the previously reported abnormal-
ities with an average concordance of 99.9%. triPOD also
detected a vast number of additional abnormalities,
many of which are presumed to be mosaic based on nor-
malized median mBAF values, although triPOD does
not attempt to distinguish mosaic from non-mosaic
abnormalities.
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1e
+0

0
1e

+0
2

1 e
+0

4
1e

+0
6

1e
+0

8

(a) (

Figure 12 Size distributions of detected abnormalities. Boxplots of the
AGRE datasets.
Discussion
The ability to accurately detect all types of chromosomal
abnormalities is vital to advance the understanding of
normal and disease processes. Sensitive and specific de-
tection is the first step in uncovering the effects of low-
level mosaic alterations on human health. In addition to
the role of mosaicism in disease, several groups have hy-
pothesized that the prevalence of large mosaic abnor-
malities in the brain and liver suggests a role in normal
physiological function, possibly associated with a favor-
able increase in genetic diversity and unique neuronal
signaling processes [29-32]. Recent reports have also
highlighted a strong correlation between clonal mosai-
cism and aging, with interesting similarities to cancer
[28,33]. We hope that increasingly sensitive techniques
for the detection of low-level mosaicism will fuel a surge
in mosaicism research. It is also important, for many
types of disease research, to be able to detect the pres-
ence of large low-level mosaic cell line artifacts in
cultured cells [6].
The implementation of the POD method in triPOD

greatly increases the ability to detect mosaic abnormal-
ities in SNP array data. Benchmarking with simulated
and real mosaic abnormalities reveals the superior sensi-
tivity of the triPOD software. The analysis of large mo-
saic abnormalities within the AGRE autism dataset
reveals that triPOD allows for identification of previously
undetected mosaic abnormalities. Since the AGRE sam-
ples are derived from transformed cell lines, it is impos-
sible to distinguish large regions of low-level mosaicism
originating in the patient from cell line artifacts. How-
ever, the ability to detect such regions is crucial since
low-level aneuploidy has been proposed as a genetic risk
factor for idiopathic autism, as detected using extensive
cytogenetic analyses in cultured peripheral blood cells
[3]. Since triPOD demonstrates superior performance on
simulated cancer data when compared with algorithms
AMP DEL HD Unk UPhD UPiD
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Table 8 Large abnormalities in cleft samples

CIDR_Name Chr Loc Type PO SNPs Inf Det mBAF LRR #Reg

12254_01 16 pT UPiD M 3830 574 MI1 0.51 −0.037 1

12254_01 16 pC,q UPhD M 13095 971 POD 0.50 −0.027 2

16194_01 10 qT DEL F 2578 431 MI1 0.94 −0.475 1

17008_01 2 W UPiD F 49497 6727 MI1 0.87 0.008 2

18113_01 11 qT DEL F 1883 337 MI1 0.88 −0.408 1

19004_01 13 qT AMP F 13467 1776 POD 0.64 0.240 1

19143_01 18 qT DEL F 4150 613 MI1 0.92 −0.521 3

20127_01 11 qT UPiD F 16191 2064 POD 0.55 0.004 1

20183_01 13 qT UPiD F 21216 2505 POD 0.56 0.022 1

21089_01 20 q UPiD M 7420 937 POD 0.58 −0.018 1

21098_01 21 q UPhD M 8817 588 POD 0.50 0.003 1

21186_01 17 q NA F(C) 10102 422 POD 0.52 0.012 1

21230_01 11 pI AMP M 4836 380 POD 0.64 0.227 1

23020_01 18 qT DEL F 4358 672 MI1 0.89 −0.614 1

CIDR_Name sample identifier from the Center for Inherited Disease Research; Loc the location of the abnormality on the chromosome (p=p arm, q=q arm,
W=entire chromosome, T=telomeric end, C=centromeric end, I=interstitial); PO parental origin (F=paternal origin, M=maternal origin, F(C)=paternal contribution, M
(C)=maternal contribution); SNPs=number of SNPs in the detected region; Inf=number of SNPs in the detected region which were informative for the detection
algorithm; Det=detection algorithm; #Reg=the number of separate regions reported within a single large abnormality.
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designed for cancer sample analysis, including the paired
mode of BAFsegmentation, we suggest that a POD trio-
based approach modified for cancer research may pro-
vide more sensitive detection than paired tumor/normal
approaches.
Differences in abnormality detection are expected

across microarray chips due to differences in the num-
ber/density of probes, the number of CNV-specific
probes, DNA preparation and quality, flux in the levels
of mosaicism during expansion or passage of individual
samples, and the frequent appearance of new mosaic ab-
normalities in transformed cell lines [6]. In spite of these
underlying confounders, triPOD was shown to be robust
when applied to HapMap trios across four different
Illumina microarray chips. Detected abnormalities were
highly concordant between chips with similar numbers
of CNV-specific probes. While small abnormalities were
most likely to overlap one other dataset, large inform-
ative abnormalities were most likely to be detected
across all chip types. triPOD showed good concordance
of large abnormalities with 48% matching across all four
chips and 78% matching three or more chips, given the
confounding effects of mosaic flux and new abnormal-
ities (Figure 8). Although triPOD was developed for
microarray data from the Illumina platform, automated
adjustments for sample-specific levels of quality and
variation allow for application to other platforms from
which SNP-specific genotypes, allelic ratios, and copy
number data can be derived. We also anticipate an adap-
tation of the POD method for analysis of mosaicism in
next-generation sequence data.
A comparison of two large datasets reveals that the
presence of CNV-specific probes results in a great in-
crease in detected abnormalities. It was discovered that
the AGRE dataset harbored significantly more large
informative abnormalities than the cleft lip/palate
dataset. While there may be multiple reasons for this
difference, the source of DNA offers a likely explan-
ation. Large abnormalities may occur with increased
frequency or with neutral or advantageous results in
cell culture, resulting in frequent mosaic events due to
the process of clonal selection. Additional datasets
from cultured and in vivo sources will be helpful to
identify global patterns resulting from the source of
DNA and those resulting from disease-associated pro-
cesses. triPOD’s findings were highly concordant with
all of the previously reported [28] large mosaic abnor-
malities in the cleft lip/palate dataset. Although soft-
ware was not released to facilitate benchmarking, it is
apparent that triPOD has greater sensitivity than the
Laurie et al. approach.
Although validation of the newly discovered very low-

level mosaic abnormalities by additional experimental
approaches would be ideal, the correlation between al-
terations of the heterozygous BAF band and underlying
mosaic abnormalities has been rigorously validated by
multiple groups [9,18,34], as noted by Laurie et al. [28].
The current validation approaches are largely infeasible
for proving false positives for regions < 5% mosaic. We
hope that increasingly sensitive detection algorithms
will spur the development of new sequence-based
validation techniques.



Table 9 Large abnormalities in AGRE samples

ID Chr Loc Type PO SNPs Inf Det mBAF LRR #Reg

AU002503 12 pT UPiD F 3882 603 POD 0.73 0.022 1

AU0025312 17 pT UPiD F 4221 670 POD 0.61 0.001 1

AU005304 5 W NA M(C) 23269 881 POD 0.51 0.017 4

AU016404 6 pT DEL M 8574 1365 POD 0.80 −0.385 1

AU016404 15 qT AMP F 5964 967 POD 0.62 0.249 1

AU031003 5 qT NA F(C) 9497 363 POD 0.51 0.000 4

AU038006 21 W UPiD F 8140 722 POD 0.54 0.002 1

AU060704 7 qT NA M(C) 14016 508 POD 0.51 −0.095 1

AU070003 11 qT UPiD M 14593 2580 MI1 0.82 0.013 3

AU072004 1 q NA F(C) 19976 1299 POD 0.53 −0.007 1

AU075208 6 qT DEL M 12589 1664 POD 0.67 −0.208 1

AU075208 13 qT AMP M 9961 1486 POD 0.59 0.184 1

AU075307 21 W AMP M 8250 882 POD 0.65 0.331 1

AU077705 12 qT NA M(C) 5016 854 POD 0.65 0.084 1

AU078803 9 W AMP M 26873 3833 POD 0.58 0.161 2

AU0871303 5 W NA F(C) 33022 1966 POD 0.53 0.067 2

AU0871303 11 qT NA F(C) 5178 263 POD 0.52 0.048 1

AU0871303 12 W AMP M 26968 1870 POD 0.53 0.150 2

AU0903303 6 W NA F(C) 35910 1969 POD 0.52 −0.063 2

AU0924301 12 W NA M(C) 27011 2153 POD 0.53 0.073 2

AU0962301 12 W NA F(C) 17431 629 POD 0.50 0.000 4

AU0983302 3 pT UPiD M 10954 1316 POD 0.58 0.033 1

AU1060301 3 qT UPiD M 1890 326 POD 0.66 0.015 1

AU1157303 9 q UPiD M 15535 2086 POD 0.57 0.026 1

AU1227303 21 W AMP M 8250 553 POD 0.65 0.291 1

AU1227304 12 W NA M(C) 26967 2321 POD 0.53 0.057 3

AU1243301 9 qT AMP F 5779 419 POD 0.56 0.139 1

AU1277303 12 W NA M(C) 16009 649 POD 0.50 −0.036 2

AU1285302 13 qI NA M(C) 7510 982 POD 0.54 0.114 1

AU1321301 6 W NA F(C) 35956 2604 POD 0.52 −0.069 2

AU1346302 19 pT NA M(C) 3301 291 POD 0.53 0.012 1

AU1388302 10 qT AMP M 17918 2363 POD 0.59 0.176 1

AU1388302 11 qI AMP F 3517 498 POD 0.59 0.093 1

AU1388302 11 qT DEL F 10173 1649 POD 0.69 −0.331 1

AU1462301 9 W NA F(C) 25921 1688 POD 0.52 0.054 2

AU1462303 6 pT UPiD M 9294 1489 POD 0.69 0.014 1

AU1462303 9 q NA F(C) 12655 451 POD 0.51 −0.030 3

AU1497301 14 qI UPiD M 5337 ? MI1 1 −0.017 1

AU1497301 14 qI UPhD M 9148 ? MI1 0.52 −0.002 1

AU1497301 14 qT UPiD M 3774 ? MI1 1 0.029 1

AU1529301 19 pT UPiD F 2599 374 POD 0.56 −0.005 1

AU1544303 12 W NA M(C) 26590 1885 POD 0.52 0.053 2

AU1585303 9 q NA F(C) 14175 655 POD 0.51 −0.002 3

AU1590302 6 pT NA F(C) 7117 399 POD 0.53 0.010 1
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AU1594303 6 W DEL M 38044 5388 POD 0.59 −0.132 2

AU1594303 9 W AMP M 26276 2372 POD 0.54 0.089 3

AU1601302 12 W NA M(C) 26900 1563 POD 0.52 0.056 2

AU1650306 11 qT NA F(C) 4955 621 POD 0.55 −0.101 1

AU1650307 9 W NA M(C) 26736 2000 POD 0.53 0.070 2

AU1695303 12 W AMP F 27318 3128 POD 0.55 0.102 2

AU1791303 9 W NA F(C) 26393 1296 POD 0.52 0.056 3

AU1822302 16 p+qC UPhD M 14865 1187 POD 0.50 −0.014 2

AU1822302 16 qT UPiD M 1866 344 POD 0.91 −0.025 1

Abbreviations as described in Table 8. Note – a large abnormality detected in sample AU1497301 was manually annotated as adjacent regions of UPD.

Baugher et al. BMC Genomics 2013, 14:367 Page 18 of 22
http://www.biomedcentral.com/1471-2164/14/367
We have several recommendations for triPOD usage.
triPOD may be used concurrently with a CNV-specific
algorithm, in order to benefit from both types of special-
ized detection capabilities. Care should be taken when
interpreting large abnormalities in commonly variable
regions due to a tendency to combine small adjacent ab-
normalities of the same type. Interesting findings should
be graphically investigated until the user has gained ex-
pertise with the strengths and weaknesses of the various
detection and annotation methods employed by triPOD.
Only in very rare instances of consanguineous relation-
ships (offspring from siblings or bilineal relationships) in
which a significant portion of the parental genomes are
identical, would there be a large reduction in the num-
ber of informative SNPs for analysis. To identify such
cases we recommend examining the relationship status
of trios using a specialized software program such as
kcoeff [35].
We believe that many of our algorithmic approaches,

including applications of scan statistics, abnormal
chromosome detection using k-means clustering and the
jump method, CUSUM applied to boundary refinement
Table 10 Comparison of offspring abnormalities reported by

Laurie et al.

CIDR_Name ID Type Chr Start Stop

13069_01 58 loss 17 26056501 27338617

17008_01 330 aupd 2 23012 242692820

19173_01 160 loss 2 165344115 166416787

19173_01 160 loss 4 101577666 106585658

19218_01 248 aupd 5 170750020 180837061

20127_01 357 aupd 11 63941311 134433812

20183_01 82 aupd 13 23271930 114108295

21089_01 269 aupd 20 29945359 62207762

22144_01 75 loss 9 89688030 89910321

23020_01 207 loss 18 60033312 75686888

aupd acquired UPD; Concordance: the proportion of base pairs in agreement betwe
Additional abbreviations as described in Table 8. Columns 4-11 correspond to the t
following region detection, and error rate estimation,
may be novel applications for abnormality detection in
SNP array data. We expect that such methods can be
generalized and of benefit for alternative analyses of gen-
omic data or similar clustering of observed events
over time.

Conclusions
Application of the POD method to trio-based SNP array
data provides a highly sensitive and specific means for
detecting chromosomal abnormalities, especially low-
level mosaicism. Our software implementation, triPOD,
outperformed comparable programs when benchmarked
with simulated mosaic data. Examples from the AGRE
autism dataset in which a progeny chromosome har-
bored a large low-level mosaic abnormality highlighted
the superior performance of triPOD for sensitive detec-
tion of mosaic events. triPOD analyses were shown to be
robust across multiple types of microarray chips. Signifi-
cant differences in the abundance of large abnormalities
between two large datasets were revealed, likely due to
the DNA source. triPOD makes significant advances in
Laurie et al. [28]

triPOD

Type PO Mb mBAF LRR Concordance

DEL F 1.28 0.61 −0.166 0.9977

UPiD F 6.08 0.87 0.008 0.9996

DEL F 1.07 0.68 −0.209 0.9997

DEL M 5.01 0.68 −0.216 0.9997

UPiD M 10.09 0.58 0.040 0.9994

UPiD F 70.49 0.55 0.004 1.0000

UPiD F 90.84 0.56 0.022 0.9999

UPiD M 11.09 0.58 −0.019 0.9932

NA F(C) 0.22 0.54 −0.028 1.0000

DEL F 15.65 0.89 −0.614 0.9965

en the regions reported by triPOD and those reported by Laurie et al.
riPOD analysis.
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reducing the mosaicism detection barrier and increasing
the accessibility of mosaicism-directed research.

Methods
Datasets
A simulated tumor dilution dataset made available by
Staaf et al. [8] was adapted and improved for use with
triPOD. The dataset is based on Illumina HumanHap550
Genotyping BeadChip data from HapMap sample
NA06991, to which 10 simulated abnormalities were
added in a series of 21 mosaic states ranging from 0
to 100 percent normal cells in intervals of 5%. For use
with triPOD, Illumina HumanHap550-Duov3 data was
obtained for the father (NA06993) and the mother
(NA06985) of the simulated sample from the NCBI
GEO database (accession GSE16912) and converted as
described below. Since any non-simulated chromosomal
abnormality contains information revealing the parental
origin (e.g. an extra copy of the paternal chromosome or
loss of the maternal copy), the simulation dataset was
improved by an addition of simulated parental origin for
each aberrant region. Parental origin was added by
assigning a parent to each of the 10 simulated abnormal-
ities, evaluating the heterozygous SNPs for information
content, and reflecting the BAF about the 0.5 axis of any
informative SNP which was randomly indicating contri-
bution from the opposite parent. The following abnor-
malities were assigned paternal origin: hemizygous loss Chr
5q22, single copy gain Chr 8q24, hemizygous loss Chr 9p,
hemizygous loss Chr 13q13.1, UPD Chr 17p13.1-p12, and
UPD Chr 17q. The following abnormalities were assigned
maternal origin: UPD Chr 5p, single copy gain Chr 8p,
single copy gain Chr 8q24, hemizygous loss Chr 10q23.1-
q23.33, and trisomy Chr 12. One of the remaining limita-
tions in the simulated dataset is that the genotypes are
unaltered as the mosaicism changes.
Datasets containing HapMap samples run on Illumina

microarray chips were obtained from the NCBI GEO
database (see Tables 5 and 6). The datasets were sepa-
rated into individual samples, annotated, and formatted
for analysis by triPOD. The genotyping alleles were
converted from HapMap format (ATCG) to Illumina
format (AB) by simple replacement (AA = AA, TT; BB =
CC, GG; AB = AC, AG, TC, TG; -- = NC). Any markers
with alternative genotyping combinations (e.g. CG) were
discarded due to the increased complexity of performing
the Illumina conversion [36].
The cleft dataset is available in dbGaP (accession

phs000094.v1.p1).

Benchmarking with simulated data
Benchmarking analyses were performed on the
autosomes of the simulated dataset using the default
parameters with the following programs: PennCNV
joint version 2011Jun16, paired sample analysis
with BAFsegmentation version 1.2.0, PSCN version 1.0
(*.longlist.update1.txt output), and genoCN version 1.0.0.
MAD, as part of R-GADA version 0.9-5, was performed
with example parameters from the User’s Guide (aAlpha =
0.8, T = 9, MinSegLen = 75) due to an absence of default
parameters. triPOD analyses were performed using only the
POD detection algorithm with default parameters. The
other optional detection methods were excluded using the
following flags: --nohd --nomi1 --nopodcr.

Performance calculations
Sensitivity and specificity calculations were performed as
indicated in Staaf et al. [8], with one minor correction.
Note that the start position for Aberration 9 was incor-
rectly reported as 22800000, and is actually 22300000.
Briefly, sensitivity was calculated using the ratio of the
number of true positive modified heterozygous SNPs in
each region/(true positives + false negatives). This calcu-
lation was performed for each simulated abnormality
with the results of each software program. Overall sensi-
tivity was calculated similarly, using the total modified
heterozygous SNPs. Specificity was calculated using the
ratio of true negative heterozygous SNPs/(true negatives
+ false positives). The positive predictive value was cal-
culated using the ratio of true positive heterozygous
SNPs/total positives. The results were then plotted
(Figures 3 and 4) for comparison with Staaf et al. and
publications with similar plots [8,9,12,22].

AGRE boundary detection
Boundary estimation, used for sensitivity calculations,
was obtained as local minima or maxima provided by a
CUSUM-based approach. CUSUM was applied to a sub-
set of BAF values (≥ the median of the chromosome-
specific heterozygous BAF values (0.3 – 0.7) and < 0.7).
The k parameter was calculated as described above (see
Boundary refinement). CUSUM was applied to each of
the 12 chromosomes harboring low-level mosaic abnor-
malities and was able to detect an appropriate change-
point for each abnormal region boundary.

Data quality adjustments
Data quality detection and adjustments have an integral
role in maintaining high resolution. The number of
undetectable single errors was estimated by mutating all
genotype combinations of normal inheritance to all possible
single error combinations (Err) and expressed as the ratio,

X
ErrX
MI1

¼ 90
24

¼ 3:75;

which relates Err to the detectable errors (MI1). Assuming
that the frequency of occurrence of MI1 combinations is an
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adequate representation of the error frequency, the overall
error rate e is estimated as 3.75 times the MI1 rate. This is
a conservative rate estimate which does not distinguish
between technical and biological causes of MI1 calls in
normal regions and includes MI1 inference based on
BAF (see Methods: Autosomal rate calculations).
Acceptable levels of quality-related variables were de-

termined based on empirical observation of samples
with relationship and DNA quality issues. The analysis
of a trio with an estimated MI1 rate ≥ 2% (default) or an
autosomal NC rate ≥ 3% (default) for any member is
halted, due to a high likelihood of a relationship annota-
tion error or DNA quality issues, respectively, which
could invalidate the applicability of the statistical model.
BAF and LRR thresholds are calculated both globally

and locally for each sample, adjusting for quality-related
variation between samples and chromosomes.

Detection of normal chromosomes
Normal chromosome arms serve as the basis of several
parameter and probability calculations. A two-step
process is employed to refine global calculations. The
SDs of the autosomal heterozygous BAF values are ana-
lyzed as described below to remove outlier chromosome
arms before calculating the initial BAF thresholds for
informative SNP detection. Informative SNPs are then
identified, allowing for the calculation of the scan statis-
tic for each arm. The scan statistic, Sw, is defined as the
largest number of events (informative SNPs) in a win-
dow of size w, given N number of points (SNPs) [19].
This novel application of the scan statistic provides sen-
sitive identification of arms harboring small abnormal-
ities, which are ignored as the BAF thresholds,
autosomal rates, and probability calculations are
performed using values from normal arms and imputed
values for abnormal ones.
In order to distinguish the normal chromosome arms

from those harboring an abnormality, k-means cluster-
ing (k = 2) is applied to both the heterozygous BAF SDs
and to the scan statistic of each arm. Cluster results are
then evaluated using the jump method [37]. The jump
method is a distribution-independent method for deter-
mining the optimal number of clusters in a dataset, in-
cluding a single cluster. Based on rate distortion theory,
the jump method detects a “jump” in the properly
transformed distortion curve at the optimal number of
clusters. The following equations are employed,

K� ¼ argmaxK JK ;

JK ¼ d̂Y
K−d̂

Y
K1;

where K* is the optimal number of clusters, JK are the

jumps in the transformed distortion curve, d̂K is the
distortion (mean squared error) of k-means clusters and
is an estimation of the minimum achievable distortion
by fitting K centers to a dataset (dK), and Y is the trans-
formation factor. The recommended value of Y is ≤ p/2,
where p is the dimensionality of the dataset. The Y value
can be modified to prevent over-clustering. We employ
the jump method iteratively to identify a single cluster
containing the normal values. Initially, the dataset is
clustered (k = 2) and transformed using Y = 0.5. If K* = 1,
the members of the dataset are considered to be normal.
If K* ≠ 1, the cluster with the lowest mean is assumed to
contain the normal values and is iteratively reclustered
and evaluated with Y = 0.475 until the K* = 1. The itera-
tive approach allows for filtering of abnormalities with
dissimilar sizes and levels of mosaicism. Lowering Y in-
creases the likelihood that members of the normal distri-
bution will remain in a single cluster. Outliers 4SDs
from the mean of the normal cluster are then removed.
Autosomal rate calculations
Several probability estimations are dependent upon
autosomal rate calculations. For such calculations, we
consider adjacent abnormal SNPs to be more likely
of biological origin than error or chance and treat
non-adjacent abnormal SNPs identically regardless of
biological or technical origin. We assume that the non-
adjacent abnormal SNPs in normal regions can provide
an adequate estimate of the number of abnormal SNPs
expected by chance.
Parental abnormalities
Since the POD method is modeled upon normal inherit-
ance patterns, somatic abnormalities in parental data,
such as cell line artifacts, may be identified as a region
of abnormal contribution. Heterozygous MI1 calls (e.g.
AA, AA, AB), indicate a novel allele in the child and can
be due to a genotyping error, a single nucleotide variant
in the child, or a parental somatic alteration. The rate of
heterozygous MI1 calls should not be elevated in a
detected region unless the detected abnormal inherit-
ance was due to a somatic change in a parent. Once
again we can view each polymorphic SNP in the region
as a Bernoulli trial where success is defined as a hetero-
zygous MI1 call. We apply a one-tailed binomial test to
check for deviations from the expected distribution,
where n = the number of polymorphic SNPs in the
region, k = the number of heterozygous MI1calls, and
p = the autosomal heterozygous MI1 rate. Regions for
which the p-value falls below a corrected threshold are
indicative of a parental abnormality and are removed
from the output. Although the current implementation
of triPOD reports only abnormalities in the child, the
POD algorithm is adaptable to any member of the trio.



Baugher et al. BMC Genomics 2013, 14:367 Page 21 of 22
http://www.biomedcentral.com/1471-2164/14/367
Availability
triPOD is available for download as a command-line
version for use on a Unix-like operating system and as a
web application [38]. triPOD is licensed under the terms
of the GNU General Public License version 3. See the
GNU General Public License for more details. The
adapted simulation dataset formatted for use with tri-
POD is available for download [38]. The current version
of triPOD is also provided as Additional file 1.

Additional file

Additional file 1: triPOD software.
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