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Abstract

Background: Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR).
Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents,
and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant
growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing
GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain
P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative
genomic approach to clarify the mechanisms of plant growth-promoting activity.

Results: The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding
genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted
proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding
transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501,
0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most
closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences
(CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs
were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603
conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved
genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere
colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth
promotion. The GP72 genome contained the cus operon (related to heavy metal resistance) and a gene cluster
involved in type IV pilus biosynthesis, which confers adhesion ability.

Conclusions: Comparative genomic analysis of four representative PGPR revealed some conserved regions, indicating
common characteristics (metabolism of plant-derived compounds, heavy metal resistance, and rhizosphere
colonization) among these pseudomonad PGPR. Genomic regions specific to each strain provide clues to its lifestyle,
ecological adaptation, and physiological role in the rhizosphere.
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Background
Pseudomonas (sensu stricto) is a diverse genus that occu-
pies many different niches and exhibits versatile metabolic
capacity [1]. A number of pseudomonad strains function
as plant growth-promoting rhizobacteria (PGPR). Such
strains can protect plants from various soilborne patho-
gens and/or stimulate plant growth [2]. For example,
Pseudomonas chlororaphis and Pseudomonas fluorescens
are non-pathogenic biocontrol agents, while several strains
of Pseudomonas aeruginosa and Pseudomonas stutzeri
show strong plant growth-promoting activities. Some
characteristic features associated with plant growth pro-
motion have been studied at the molecular level. For ex-
ample, effective PGPR show sufficient colonization of the
rhizosphere [3,4]. Moreover, PGPR have certain biocontrol
activities; for example, they can produce antibiotics that
prevent infection by plant pathogens [2]. Such antibiotics
include phenazine derivatives [5-7], pyoluteorin (Plt) [8,9],
pyrrolnitrin (Prn) [10], hydrogen cyanide (HCN) [11], and
so on. Some rhizobacteria directly promote plant growth
in the absence of pathogens [12]. However, a comprehen-
sive analysis of the characteristics of PGPR among differ-
ent Pseudomonas species using a comparative genomics
approach has not been reported yet.
Comparative genomics has emerged as a powerful tool

to identify functionally important genomic elements
[13-15]. As more and more genomic information becomes
available, the development of genomic technologies can
provide further insights into essential life processes [16].
As of March 2012, the complete genomic sequences of
strains representing the following Pseudomonas species
were available: the rhizobacteria P. fluorescens [14,17], P.
stutzeri [18], and Pseudomonas putida [15,19,20], and the
pathogens P. aeruginosa [21,22], Pseudomonas syringae
[23], and Pseudomonas entomophila [24]. Genomic infor-
mation for P. chlororaphis, which plays an important role
in suppressing pathogens and stimulating plant growth
[3,25-27], was first reported by our group [28].
P. chlororaphis GP72 (hereafter, GP72) was isolated

from the rhizosphere of green pepper in China. This strain
shows broad antagonistic activities [29]. It completely
suppresses the phytopathogens Coletotrichum lagenarium,
Pythium ultimum, Sclerotinia sclerotiorum, Fusarium
oxysporum f. sp. cucumerinum, Carposina sasakii, and
Rhizoctonia solani [7]. In vitro screening and in vivo gen-
etic engineering experiments showed that GP72 can
produce two phenazine derivatives, phenazine-1-carbox-
ylic acid (PCA) and 2-hydroxyphenazine (2-OH-PHZ),
which have strong fungicidal activities [30]. It also pro-
duces other secondary metabolites including HCN,
indole-3-acetic acid (IAA), and siderophores, contributing
to rhizosphere adaptability [7]. P. fluorescens Pf-5 (here-
after, Pf-5) was isolated from the rhizosphere of cotton
and is able to suppress damping-off caused by P. ultimum
[8]. As a well-recognized biocontrol agent, Pf-5 produces
a spectrum of antibiotics including Prn, Plt, and 2,4-
diacetylphloroglucinol (DAPG) [8,31], and two sidero-
phores, pyoverdine (Pvd) and pyochelin (Pch). P.
aeruginosa M18 (hereafter, M18) was isolated from the
rhizosphere of sweet melon. It produces both PCA and
Plt, which show strong antifungal activities [22,32], and it
shows biocontrol activity in the rhizosphere niche [33].
Most P. aeruginosa strains are opportunistic pathogens,
including the first-sequenced strain, P. aeruginosa PAO1
[21,34,35]. P. stutzeri A1501 (hereafter, A1501), which
belongs to the nonfluorescent Pseudomonas group, was
isolated from the rhizosphere of rice based on its
nitrogen-fixation capacity [36,37]. A1501 has been com-
mercialized for use as a crop inoculant in China. Genetic
information for A1501 has provided insights into the
mechanisms of its nitrogen-fixation ability and environ-
mental adaptability, such as its ability to mineralize aro-
matic compounds [18,38].
To identify the shared characteristics of pseudomonad

PGPR, we compared genomic information for GP72 with
those of three other representative pseudomonad PGPR:
the biological control agent Pf-5, the rhizobacterium M18,
and the nitrogen-fixing strain A1501. There were 602
genes conserved among the four species. Comparison
among these PGPR also revealed previously unknown
common traits related to plant growth promotion. This
comparative genomics analysis of different PGPR provides
information about the genetic basis of diversity and adap-
tation. The results of this study also provide foundation
knowledge to improve and exploit the plant growth-
promoting activities of PGPR in agricultural applications
via molecular techniques.

Results and discussion
General genome features and comparative genomics
The general features of the four PGPR genomes are sum-
marized in Table 1. The assembled genome of GP72 had
approximately 270-fold sequence coverage [28], with puta-
tive functions assigned to 83% of the genes. It is reason-
able to assume that the vast majority of genes are
important for cell metabolism. GP72, Pf-5, M18, and
A1501 showed a wide range of genome sizes, ranging from
4.6 to 7.1 M, resulting in different numbers of protein-
coding genes (Table 1). The genome sequences and add-
itional information related to each predicted gene, such as
gene product annotation, KEGG orthology, gene ontology,
and predicted subcellular location are available on the
IMG database (https://img.jgi.doe.gov/cgi-bin/er/main.cgi)
[39]. Predicted proteins were functionally categorized
using the COGs database [40], and COGs categories were
compared among the genomes of GP72, Pf-5, M18, and
A1501 (Figure 1). The COGs showed similar distributions
among the four strains, except for the COGs K and L,

https://img.jgi.doe.gov/cgi-bin/er/main.cgi


Table 1 General genome features of the four studied pseudomonad PGPR

GP72 Pf-5 M18 A1501

Size (base pairs) 6,663,241 7,074,893 6,327,754 4,567,418

G+C content (%) 63.13% 63.30% 66.50% 63.88%

Protein-coding genes 6091 6142 5690 4135

No. of protein-coding genes with function prediction 5062 (83.11%) 4492 (73.14%) 4115 (72.32%) 3227 (78.04%)

No. of protein-coding genes without function prediction 16.89% 26.86% 27.68% 21.96%

No. of protein-coding genes connected to KEGG Orthology 53.77% 51.84% 53.95% 57.61%

No. of protein-coding genes with COGs 82.66% 79.27% 83.88% 80.58%

No. of protein-coding genes coding signal peptides 24.48% 24.28% 25.17% 22.03%

No. of protein-coding genes coding transmembrane proteins 23.71% 23.58% 23.71% 24.76%

RNA genes 85 115 79 102

rRNA genes (5S rRNA, 16S rRNA, 23S rRNA) 4 (2, 1, 1) 16 (6, 5, 5) 13 (5, 4, 4) 13 (4,4,5)

tRNA genes 61 71 61 61

Other RNA genes 20 28 5 28

Conserved CDS 602 558 572 545

Strain-specific CDS 994 1116 1351 1195

Gene annotations and comparisons were obtained from IMG database [39]. Numbers of conserved and specific genes in each strain determined by comparison to
other PGPR genomes. Genes with homology (H) values less than 0.42 and more than 0.81 were arbitrarily defined as specific and conserved, respectively.
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which were quite different in A1501 compared with the
other strains. The percentage of genes with COG K anno-
tations, representing transcription clusters, was lower in
A1501 than in the other three strains, mainly because it
contained a smaller proportion of genes encoding tran-
scriptional regulators. COG L represents proteins with
functions in replication, recombination, and repair. There
were 50 genes encoding transposases and their inactivated
derivatives in A1501 (approximately 1.33% of the total
genes with COG annotations), compared with 0.21% in
GP72, 0.02% in Pf-5, and 0.11% in M18. The large number
of transposases in A1501 indicated that this strain would
be more suitable for transposition, providing clues to the
genetic diversity within this species and its adaptability to
changes in growth conditions.
Global alignments provide a powerful tool to identify

conserved and specific regions in the genome, which can
reveal similar biological behaviors or adaptations to specific
niches. We conducted BLASTN analysis using an online
version of the Artemis Comparison Tool (WebACT) [41],
comparing GP72, Pf-5, and M18 (Figure 2). We excluded
A1501 from this analysis, since the alignment analysis
showed very low synteny (data not shown). According to
alignments at current assemblies, the extent of conserva-
tion of regions among the different species of Pseudo-
monas was difficult to visualize by ACT, mainly because of
multiple chromosomal rearrangements. Nevertheless, the
genomes of Pf-5 and GP72 showed many regions with con-
served sequences and conserved gene order, except for 10
major inversions. BLAST atlas, which provides a quick
overview of genomic regions of gene conservation across
many genomes [42], was used to compare the reference
genome of GP72 to the other three query genomes
(Figure 3).
We established a phylogenetic tree of completely se-

quenced pseudomonads based on two housekeeping genes
(gyrB and rpoD) (Figure 4). The tree showed that GP72
was most closely related to P. fluorescens, and was more
closely related to P. aeruginosa M18 than to other oppor-
tunistic pathogenic strains of P. aeruginosa. This was
probably because the rhizosphere-originated M18 strain
has evolved strain-specific genomic features, which benefit
its environmental adaptability and competitiveness under
certain conditions in the rhizosphere niche.
An in silico subtractive hybridization analysis using the

mGenomeSubtractor web server identified specific and
conserved proteins. In this analysis, proteins with hom-
ology (H) values of less than 0.42 or more than 0.81 are
defined arbitrarily as specific or conserved, respectively
[43]. The BLASTP-based homology value distribution of
6091 predicted CDSs from P. chlororaphis GP72 was indi-
vidually compared with those of the other three subject
genomes (Figure 5A) to determine the degree of protein
conservation between GP72 and each of the other ge-
nomes. Among the genes encoded in the GP72 genome,
3,544 had counterparts in the genome sequence of Pf-5.
There were 999 genes conserved among the genomes of
GP72, Pf-5, and M18. Comparison among GP72 and all of
the other three strains (Pf-5, M18, and A1501) revealed
602 homologous genes and 994 CDSs that were strain-
specific to GP72 (Figure 5B). The number of homologs in
each genome is shown in Figure 4. In addition, GP72
contained 463 CDSs that were identified as strain-specific
(E-value <10-5) when its genome was compared with those



Figure 1 Comparison of COG categories among four
pseudomonad PGPR. Functional classifications provided by the
COG database [40] were used for functional comparisons among the
genomes of P. chlororaphis GP72, P. fluorescens Pf-5, P. aeruginosa
M18, and P. stutzeri A1501. The ordinate axis indicates the
percentage of genes in each COG functional category relative to the
genes of all COG categories. Comparison was based on 22 COGs
categories: RNA processing and modification (A), chromatin
structure and dynamics (B), energy production and conversion (C),
cell cycle control, cell division, chromosome partitioning (D), amino
acid transport and metabolism (E), nucleotide transport and
metabolism (F), carbohydrate transport and metabolism (G),
coenzyme transport and metabolism (H), lipid transport and
metabolism (I), translation, ribosomal structure and biogenesis (J),
transcription (K), replication, recombination and repair (L), cell wall,
membrane, envelope biogenesis (M), cell motility (N),
posttranslational modification, protein turnover, chaperones (O),
inorganic transport and metabolism (P), secondary metabolites
biosynthesis, transport and catabolism (Q), general function
prediction only (R), function unknown (S), signal transduction
mechanisms (T), intracellular trafficking, secretion and vesicular
transport (U), defense mechanisms (V).
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of 27 other completely sequenced Pseudomonas strains.
Further analyses of these strain-specific CDS may provide
clues to the phenotype and the specific environmental ad-
aptations of each strain.

Environmental adaptability
Catabolism
PGPR can use a wide range of nutrients to colonize the
rhizosphere successfully. The central metabolic pathways
in GP72, such as the Entner–Doudoroff pathway, the pen-
tose phosphate pathway, and the tricarboxylic acid cycle,
are consistent with those reported for other Pseudomonas
species [44]. Like other Pseudomonas strains, GP72 lacks
6-phosphofructokinase; therefore, it may not have a func-
tional Embden–Meyerhof pathway. The genomes of
GP72, Pf-5, M18, and A1501 contained genes encoding a
fructose-specific IIA component, I-phosphofructokinase.
This enzyme is involved in the fructose dissimilation path-
way, catalyzing the conversion of fructose to fructose-1,6-
diphosphate [45].
PGPR have a variety of genes related to catabolism and

transport of plant-derived compounds, such as amino
acids, fatty acids, nucleotides, organic acids, carbohy-
drates, and other exudates [46,47]. Amino acids are one of
the major components of root exudates. Accordingly,
there were at least 500 genes involved in amino acid trans-
port and metabolism in the genomes of GP72, Pf-5, and
M18, and more than 300 in the genome of A1501.
The ability to catabolize aromatic compounds in exu-

dates is one strategy that could confer a selective advan-
tage in the rhizosphere environment. Oxygenases play
key roles in the chemical transformation of recalcitrant
organic compounds [48,49]. P. putida modifies diverse
aromatics to common intermediates, which feed into
central pathways [50]. For example, P. putida KT2440 is
able to use aromatic compounds including benzoate,
phenylacetate, tyrosine, and vanillate, as the sole carbon
and energy source [51]. There were 21 genes encoding
dioxygenases (DOs) in the genome of GP72, 22 in M18,
21 in Pf-5, and 9 in A1501. The DOs in GP72, including
benzoate 1,2-dioxygenase, anthranilate 1,2-dioxygenase,
protocatechuate 3,4-dioxygenase, and catechol 1,2-
dioxygenase, were related to degradation of aromatic
compounds. We compared the degradation pathways of
aromatic compounds, including the three main pathways
(Table 2) and several peripheral pathways, among the
four species (Additional file 1).
Genes encoding components of the 3-oxoadipate

pathway, which is common in soil and plant-associated mi-
croorganisms [52], were present in the genomes of all four
PGPR analyzed in this study. The pathway has two
branches: one converting catechol and the other converting
protocatechuate. Both branches produce two tricarboxylic
acid cycle intermediates. Based on the comparative
genomic analysis, the former branch may derive from the
degradation of tryptophan [53], benzoate [54], salicylate
[55], phenol [56,57], and so on, while the protocatechuate
branch is generated from 4-hydroxybenzoate [58], and nu-
merous lignin monomers such as vanillate [59] and quinate
[60]. Analyses of aromatic compound catabolism not only
reveal the broad metabolic activities of PGPR, but also
provide insights into mediating the production of useful
secondary metabolites such as phenazine [61], pyocyanin
(PYO) [62], and C-1027 [63].
Some bacteria and fungi degrade tyrosine (Tyr) via the

central intermediate homogentisate (2,5-dihydroxy-
phenylacetate). The reaction proceeds with conversion of
Tyr into 4-hydroxyphenylpyruvate (HPP) (by tyrosine
aminotransferase), and then formation of homogentisate
(by HPP dioxygenase), which is degraded via the
homogentisate central pathway [64]. The central pathway



Figure 2 Comparison of chromosome structures among genome sequences of pseudomonad PGPR. Pair-wise alignments between
genome sequences of P. fluorescens Pf-5, P. chlororaphis GP72, and P. aeruginosa M18 were performed using WebACT [41]. Red bars indicate
collinear regions of similarity; blue bars represent regions of similarity that have been inverted in one of the two genomes. Only matches larger
than 1 kb are shown.

Figure 3 BLAST atlas diagram showing homology among pseudomonad PGPR. Comparisons between P. chlororaphis GP72 and three other
pseudomonad PGPR. Colors indicate strains, as follows (starting from the outermost line): red, P. fluorescens Pf-5 (line 1); green, P. aeruginosa M18
(line 2); blue, P. stutzeri A1501 (line 3). Lack of color indicates that genes at that position in GP72 were absent from genome of strain in that line.
Predicted CDSs of reference genome (GP72) on plus and minus strand are shown as blue and red blocks; rRNA genes are shown in green, tRNA
genes are shown in turquoise. GC skew (line 6) and percent AT (line 7) are also shown.
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Figure 4 Phylogenetic relationships among completely sequenced Pseudomonas species. Phylogenetic tree for members of the genus
Pseudomonas was constructed based on aligned concatenated sequences of gyrB and rpoD using the neighbor-joining method with 1000
bootstrap replicates. Analysis was carried out using Phylip 3.67 software and the tree was plotted using iTOL software. Colors on the phylogenetic
tree indicate membership in Pseudomonas phylogenetic groups according to NCBI taxonomy. Completely sequenced species in the genus
Pseudomonas include P. aeruginosa (yellow), P. brassicacearum (olive), P. entomophila (purple), P. fluorescens (green), P. fulva (blue),
P. mendocina (pink), P. putida (navy), P. stutzeri (magenta), and P. syringae (cyan). In this research, the tree branch of P. chlororaphis, whose draft
genome sequence was reported recently, is shown in red. Bar chart associated with nodes indicates numbers of genes conserved between GP72
and the corresponding organism. Conserved genes were determined using mGenomeSubtractor.
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involves three enzymes: homogentisate 1,2-dioxygenase
(HmgA), fumarylacetoacetate hydrolase (HmgB), and
maleylacetoacetate isomerase (HmgC), and yields fumar-
ate and acetoacetate [65]. The comparative genomic ana-
lysis indicated that GP72, Pf-5, and M18 could degrade
Tyr via the homogentisate pathway. Some Gram-positive
bacteria can convert Tyr into homoprotocatechuate (3,4-
dihydroxyphenylacetate), rather than homogentisate,
producing pyruvate and succinate [66,67]. A variety of
microorganisms contain 3,4-dihydroxyphenylacetate 2,3-
dioxygenases (HPCD) [68,69], such as Fe(II) (HPCD) and
Mn(II) (MndD). These enzymes contain different active
sites resulting in different structures and HPCD activities
[70,71]. The annotated amino acid sequence of the
HPCD from GP72 exhibited 63–64% identities with
those of the corresponding enzymes from Escherichia
coli [68] and Klebsiella pneumonia [69]. Further research
is required to characterize the activities of HPCD in dif-
ferent Pseudomonas species.
In a few organisms, phenylethylamine, an intermedi-

ate of phenylalanine degradation, can be converted
into phenylacetaldehyde by quinohemoprotein amine
dehydrogenase, and then transformed into phenylacetate
by phenylacetaldehyde dehydrogenase [72-74]. The corre-
sponding genes were predicted in the genomes of GP72
and Pf-5, but they were not located in a single operon.
Phenylacetyl-CoA is derived from various substrates

such as phenylalanine, lignin-related aromatic compounds,
and environmental contaminants, and can be degraded to
succinyl-CoA and acetyl-CoA [75,76]. Based on the gen-
omic comparison at the 60% identity threshold, we found
that the phenylacetate degradation pathway was present in
GP72 and Pf-5. However, this pathway was not detected in
M18 or A1501 at the same identity level, indicating poten-
tially different evolutionary directions in specific niches.
Five putative phenylpropionate dioxygenases and related

ring-hydroxylating dioxygenases of unknown specificity can
also participate in aromatic compound catabolism [77].
Plant-derived substances not only serve as important

carbon and energy sources for rhizosphere bacteria, but
also influence bacterial behaviors [78,79]. For example, the
ratio of rhizospheric carbon:nitrogen (C:N) can alter
the nutritional status of Rhizoctonia solani, making the
fungus a pathogen [80]. Tomato root exudates promote



Figure 5 Homology analysis between P. chlororaphis GP72 genome and three subject genomes. The mGenomeSubtractor arbitrarily
defines CDSs with homology (H) values less than 0.42 as strain-specific, and those with H values greater than 0.81 as conserved [43].
(A) Histogram of BLASTP-based homology value distribution of 6091 predicted CDSs from P. chlororaphis GP72 compared individually with those
of three other genomes: P. fluorescens Pf-5, P. aeruginosa M18, and P. stutzeri A1501. (B) Numbers of conserved and specific genes in GP72
compared with three other PGPR strains. Total numbers of conserved and specific genes are shown above columns.
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germination of spores of the tomato root pathogen F.
oxysporum f. sp. radicis-lycopersici, whereas the biocontrol
agent P. fluorescens WCS365 delays this process [81].
Microarray analyses showed that root exudates affected
the transcriptome of P. aeruginosa PAO1 by influencing
genes encoding enzymes related to alginate biosynthesis
and twitching motility [82]. Therefore, the production of
plant-derived exudates could alter the composition of
rhizospheric microorganism communities. Further re-
search is required to investigate the molecular mecha-
nisms underlying changes in community structure.

Transport
Consistent with the abundance of genes related to metabol-
ism of plant-derived substances, the four PGPR contained
many putative transport genes related to substrate uptake
and excretion (Table 3). GP72 and Pf-5 contained similar
numbers of transport genes. In bacteria, secretion systems
play an important role in transport or translocation of ef-
fectors for adaptation to their natural surroundings. The
genomes of these four PGPR contained type I, type II, type
IV, type V, and type VI secretion systems, as well as the
chaperone-usher secretion system and the twin-arginine
translocation system. M18 also contained the Type III (fla-
gellar/pathogenesis) secretion system, a key virulence factor
in pathogenic Pseudomonas [83].

Defense pathways
Previous studies showed that GP72 resists streptomycin
up to a concentration of 100 μg ml-1, and tolerates salt
(5% NaCl solution). Both of these resistances are stron-
ger than those of P. chlororaphis strain 30–84 [7].



Table 2 Comparison of putative genes related to main pathways for central aromatic catabolism among pseudomonad
PGPR

Homologs a in PGPR

Gene Product name GP72 ORF
ID MOK_0

Pf-5 ORF
ID PFL_

M18 ORF
ID PAM18_

A1501 ORF
ID PST_

3-oxoadipate (β-ketoadipate) pathway

Catechol degradation III (ortho-cleavage pathway) to 3-oxoadipate enol-lactone

catA catechol 1,2-dioxygenase [EC:1.13.11.1] 1630 3860 2532 1674

catC muconolactone D-isomerase [EC:5.3.3.4] 1631 3861 2531 1673

catB muconate cycloisomerase [EC:5.5.1.1] 1632 3862 2530 1672

catR transcriptional regulator [COG0583] 1633 3863 2529 - b

Protocatechuate degradation II (ortho-cleavage pathway) to 3-oxoadipate enol-lactone

pcaG protocatechuate 3,4-dioxygenase, alpha subunit [EC:1.13.11.3] 1264 5395 0155 1250

pcaH protocatechuate 3,4-dioxygenase, beta subunit [EC:1.13.11.3] 1265 5396 0154 1249

pcaH protocatechuate 3,4-dioxygenase, beta subunit [EC:1.13.11.4] 1266 5396 0154 1249

pcaQ LysR family transcriptional regulator, pca operon transcriptional activator [KO:K02623] 1267 5397 0153 1248

pcaH protocatechuate 3,4-dioxygenase, beta subunit [EC:1.13.11.3] 2952 1320 - -

pcaG protocatechuate 3,4-dioxygenase, alpha subunit [EC:1.13.11.3] 2953 1321 - -

pcaT MFS transporter, MHS family, dicarboxylic acid transporter PcaT [KO:K02625] 2954 1322 0225 -

pcaB 3-carboxy-cis,cis-muconate cycloisomerase [EC:5.5.1.2] 2955 1323 0226 1257

pcaC 4-carboxymuconolactone decarboxylase [EC:4.1.1.44] 2957 1325 0227 1259

3-Oxoadipate enol-lactone degradation to succinyl-CoA

pcaD 3-oxoadipate enol-lactonase [EC:3.1.1.24] 2956 1324 0226 1258

pcaI Acyl CoA:acetate/3-ketoacid CoA transferase, alpha subunit [EC:2.8.3.12] 2949 1317 0222 1254

pcaJ Acyl CoA:acetate/3-ketoacid CoA transferase, beta subunit [EC:2.8.3.12] 2950 1318 0223 1255

pcaR beta-ketoadipate pathway transcriptional regulators, PcaR/PcaU/PobR family [K02624] 2946 1315 0156 1253

pcaK MFS transporter, AAHS family, 4-hydroxybenzoate transporter [KO:K08195] 2947 1316 0231 -

pcaK MFS transporter, AAHS family, 4-hydroxybenzoate transporter [KO:K08195] 2948 1316 0231 -

pcaF 3-oxoadipyl-CoA thiolase [EC:2.3.1.174] 2951 1319 0224 1256

Homogentisate pathway and catabolism of phenylalanine and tyrosine

L-Phenylalanine degradation

phhA phenylalanine-4-hydroxylase [EC:1.14.16.1] 1525 1611 4167 3562

Tyrosine degradation I to acetoacetate and fumarate

tyrB aromatic-amino-acid transaminase [EC:2.6.1.57] 1527 1609 4169 3564

tyrB aromatic-amino-acid transaminase [EC:2.6.1.57] 3418 2045 1824 2998

hppD 4-hydroxyphenylpyruvate dioxygenase [EC:1.13.11.27] 5394 3387 - -

hppD 4-hydroxyphenylpyruvate dioxygenase [EC:1.13.11.27] 1257 5385 0238 0200

hmgA homogentisate 1,2-dioxygenase [EC:1.13.11.5] 2407 0967 3036 -

hmgC maleylacetoacetate isomerase [EC:5.2.1.2] 2409 0969 3038 -

hmgB fumarylacetoacetase [EC:3.7.1.2] 2408 0968 3037 -

Tyrosine (4-Hydroxyphenylacetate/3-Hydroxyphenylacetate) degradation II to succinate

hpaC 4-hydroxyphenylacetate-3-hydroxylase small chain [EC:1.14.13.3] 5674 3357 0848 -

hpaB 4-hydroxyphenylacetate-3-hydroxylase large chain [EC:1.14.13.3] 5675 3356 0849 -

hpaD 3,4-dihydroxyphenylacetate 2,3-dioxygenase [EC:1.13.11.15] 5409 3373 0815 -

hpaE 5-carboxymethyl-2-hydroxymuconic-semialdehyde dehydrogenase [EC:1.2.1.60] 5410 3372 0816 -

hpaF 5-carboxymethyl-2-hydroxymuconate isomerase [EC:5.3.3.10] 5528 1486 - -

hpaF 5-carboxymethyl-2-hydroxymuconate isomerase [EC:5.3.3.10] 5408 3374 0814 -
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Table 2 Comparison of putative genes related to main pathways for central aromatic catabolism among pseudomonad
PGPR (Continued)

hpaG 5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase, C-terminal subunit [EC:4.1.1.68] 5411 3371 0817 -

hpaG 5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase, N-terminal subunit [EC:4.1.1.68] 5412 3370 0818 -

hpaA 4-hydroxyphenylacetate catabolism regulatory protein [KO:K02508] 5413 3369 0819 -

hpaH 2-oxo-hept-3-ene-1,7-dioate hydratase [EC:4.2.1.-] 5406 3376 0812 -

hpaI 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase [EC:4.1.2.-] 5405 3377 0811 -

hpaI 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase [EC:4.1.2.-] 2721 - - -

gabD succinate-semialdehyde dehydrogenase (NADP+) [EC:1.2.1.16] 5324 0185 0260 0096

gabD succinate-semialdehyde dehydrogenase (NADP+) [EC:1.2.1.16] 2687 0185 - 0740

Phenylethylamine degradation II to phenylacetate

peaD quinohemoprotein amine dehydrogenase, beta subunit [TIGR03907] 1726 4117 - -

peaC quinohemoprotein amine dehydrogenase, gamma subunit [pfam08992] 1727 4118 - -

peaA quinohemoprotein amine dehydrogenase, alpha subunit [TIGR03908] 1729 4120 - -

peaE phenylacetaldehyde dehydrogenase [EC:1.2.1.39] 1734 4130 - -

peaE phenylacetaldehyde dehydrogenase [EC:1.2.1.39] 5496 3217 0867 -

Phenylacetyl-CoA pathway

paaF phenylacetate-CoA ligase [EC:6.2.1.30] 0341 3132 - -

paaD acyl-CoA thioesterase [EC:3.1.2.-] 0343 3131 - -

paaG phenylacetate-CoA oxygenase, PaaG subunit [KO:K02609] 0340 3133 - -

paaH phenylacetate-CoA oxygenase, PaaH subunit [KO:K02610] 0339 3134 - -

paaI phenylacetate-CoA oxygenase, PaaI subunit [KO:K02611] 0338 3135 - -

paaJ phenylacetate-CoA oxygenase, PaaJ subunit [KO:K02612] 0337 3136 - -

paaK phenylacetate-CoA oxygenase, PaaK subunit [KO:K02613] 0336 3137 - -

paaN MaoC_dehydratas/NAD-dependent aldehyde dehydrogenases [KO:K02618] 0332 3140 - -

paaE 3-oxoadipyl-CoA thiolase [EC:2.3.1.16] 0342 1319 0224 1256

paaB enoyl-CoA hydratase [EC:4.2.1.17] 0345 3130 - -

paaA enoyl-CoA hydratase [EC:4.2.1.17] 0346 - - -

paaC 3-hydroxybutyryl-CoA dehydrogenase [EC:1.1.1.157] 0344 - - -

paaY phenylacetic acid degradation protein PaaY [KO:K08279] 0347 3129 - -

paaX phenylacetic acid degradation operon negative regulatory protein PaaX [KO:K02616] 0348 3128 - -
a Homologous genes were analyzed at 60% identity threshold using IMG software.
b “-” No homologs were present in the compared genome.
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Antibiotic resistance assays showed that GP72 displays
resistance to penicillin, spectinomycin, streptomycin,
and tetracycline. Here, our genomic analyses confirmed
different kinds of defenses in the four PGPR, including
resistance/tolerance to heavy metals, temperature stress,
osmotic stress, oxidative stress, and multiple drugs.
Many essential trace elements contain metal ions that

are important components of the active sites of many
enzymes. As such, they play a vital role in many bio-
logical processes, including photosynthetic and respira-
tory pathways. However, most heavy metals are toxic at
higher concentrations. For example, copper ions can
damage the cytoplasmic membrane of E. coli by catalyz-
ing harmful redox reactions [84]. In many regions, agri-
cultural soils are heavily contaminated with various
heavy metals originating from chemical fertilizers and
industrial processes. Consequently, certain soil bacteria
have developed resistance to toxic metals, either via ac-
tive efflux mechanisms to pump the toxic metals out
[85], or by enzymatic detoxification to convert a toxic
ion into a harmless one [86,87]. Our genomic analysis
revealed many genes related to heavy metal resistance
(summarized in Table 4).
The four pseudomonad PGPR studied contained at least

two different copper resistance systems, which resemble
those identified in the plant growth-promoting endophytic
bacterium P. putida W619 [15]. One system is periplasmic
detoxification encoded by copABCDGcopRS, which is well-
characterized in the plasmid pPT23D from P. syringae pv.
tomato strain PT23.2 [88]. This system is also widely



Table 3 Numbers of putative genes encoding
transporters in genomes of four pseudomonad PGPR

GP72 Pf-5 M18 A1501

Carbohydrate transporter genes 125 108 103 46

Major facilitator family (MFS) 76 75 75 17

ATP binding cassette (ABC) family 32 19 11 11

Tripartite ATP-Independent
periplasmic transporter family

5 5 10 14

Phosphotransferase system (PTS) 6 6 4 3

Gluconate transporter GntT 6 5 3 1

Amino acid transporter genes 181 207 109 71

ABC transporter 137 156 70 55

Lysine exporter (LysE) family 18 24 13 11

Amino acid-polyamine-organocation
(APC) family

16 21 21 5

Drug/metabolite transporter (DMT)
family

10 6 5 0

Transporter genes related to
defense

79 78 48 38

ABC transporter 37 46 24 19

Resistance-nodulation-cell-division
(RND) family

35 25 15 15

Multidrug and toxic compound
extrusion (MATE) family

3 4 2 2

Small multidrug resistance
(SMR) family

4 3 7 2
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distributed in other Pseudomonas species [15,88,89]. An-
other copper resistance system is the cytoplasmic detoxifi-
cation system cue, which maintains a strict quota of cellular
copper in other organisms [90,91]. The Cu(I)-responsive
transcriptional regulator CueR [91] activates expression of a
copper-translocating P-type ATPase (CopA) [92], a peri-
plasmic multicopper oxidase (CueO) [93], and a copper
chaperone (CopZ) [90] under mild copper stress. CopA ex-
ports Cu(I) from the cytoplasm to the periplasm, and then
Cu(I) is converted into the less toxic Cu(II) form by CueO.
A third copper resistance strategy in the genome of GP72
consisted of cusFABBC (MOK_00020-00016) and copRS
(MOK_00012-00013). The cus operon is related to periplas-
mic detoxification, and is exclusively found in Gram-
negative bacteria [94,95]. Therefore, the mechanism for
copper resistance in P. chlororaphis is very complex, and
has not been completely characterized yet. Further research
is required to clarify the details of this system.
Pseudomonas spp. have arsenic-resistance genes

(arsRB, arsCH and arsC) that are dispersed throughout
the genome. The chromosomal ars operon was charac-
terized in P. aeruginosa. A homologous ars operon was
detected in some, but not all, Pseudomonas species, indi-
cating that some other mechanisms are involved in arsenic
resistance in pseudomonads [96]. Our genomic analysis in-
dicated that the GP72 genome lacked a homologous gene
encoding an arsenite- and antimonite-stimulated ATPase
(ArsA). However, a previous study showed that ArsB could
export arsenite ions in the absence of ArsA in E. coli [97].
Since ArsB was predicted in the genome of GP72, we can
assume that this strain also shows arsenic resistance. The
czcABCRD operon encoding a cation-proton antiporter,
which is responsible for cobalt, zinc, and cadmium resis-
tances [98], was predicted in the genomes of GP72 and Pf-
5. Other genes found in their genomes may also be related
to heavy metal resistance, such as homologs of chrA and
chrB genes involved in chromate resistance [99], and ho-
mologs of genes encoding siderophores that participate in
metal homeostasis in P. aeruginosa [100].
In recent years, multidrug resistance has reached

alarming levels, especially in the field of medicine [101].
Such resistance mechanisms have been fully described by
Alekshun and Levy [102]. Some PGPR strains contain a
broad spectrum of putative multidrug resistance genes, in-
cluding genes related to well-developed efflux systems
[103], penicillin-binding protein-mediated resistance [104],
and enzymes that degrade antibiotics (Additional file 2).
Efflux systems contribute significantly to resistance to
multiple antimicrobial compounds. This is a very import-
ant mechanism to enhance biological fitness [105]. Like
other Pseudomonas species, GP72 contained 37 putative
ABC transporters, which potentially participate in the up-
take or efflux of toxic metabolites and other drugs. Some
secondary transport system genes were also present in
GP72 (Table 3); there were 35 genes encoding RND family
members, three genes for MATE family members, and
four genes for SMR family members. All pseudomonad
PGPR contained genes encoding the efflux pumps TtgABC
and TtgDEF (toluene tolerance genes). These enzymes
prevent the accumulation of toluene and other related aro-
matics, such as phenol [106]. Genes encoding an MexEF-
OprN efflux pump, a member of the RND family, were
also present in the genomes of GP72, Pf-5, M18, and
A1501, but the order of the efflux pump genes in the gen-
ome differed among the four strains. The efflux pump op-
eron is upregulated by MexT under nitrosative stress and
chloramphenicol stress [107]. Overexpression of this sys-
tem can decrease the production of several secondary me-
tabolites such as PYO, elastase, and rhamnolipids [108].
AcrB (homologous to MOK_00261 in the GP72 genome),
which also belongs to the RND family [109], plays a role in
pumping out basic dyes (such as acriflavine), most antibi-
otics (except aminoglycosides), and detergents (such as
bile salts, Triton X-100, and SDS) [110]. In conclusion, the
genomic data indicated that these PGPR harbor genes that
can confer resistance to multiple drugs, including penicil-
lin, aminoglycosides, fluoroquinolones, trimethoprim-
sulfamethoxazole, lipid A, and acriflavine.
Bacteria that inhabit the rhizosphere of plants can use

plant-derived compounds as nutrients; however, they must



Table 4 Summary and comparison of putative genes related to metal resistance in four pseudomonad PGPR genomes

Homologs a in PGPR

Gene Product name GP72 ORF
ID MOK_0

Pf-5 ORF
ID PFL_

M18 ORF
ID PAM18_

A1501 ORF
ID PST_

Copper resistance

copG predicted metal-binding protein 0288 2891 4821 3385

copD putative copper export protein 0289 - b - -

copC uncharacterized protein, homolog of Cu resistance protein CopC 0290 - - -

copB uncharacterized protein involved in copper resistance 0291 2892 2980 3381

copA copper-resistance protein, CopA family 0292 2893 2979 3383

- uncharacterized copper-binding protein 3441 1966 2156 -

copR heavy metal response regulator 3442 1965 2154 2712

copS heavy metal sensor kinase[EC:2.7.13.3] 3443 1964 2153 -

copC uncharacterized protein, homolog of Cu resistance protein CopC 3597 2543 - -

copD putative copper export protein 3598 2542 - -

cueO putative multicopper oxidases 0816 4929 1176 3006

cueR Cu(I)-responsive transcriptional regulator 4686 0709 4886 3614

copA copper-(or silver)-translocating P-type ATPase[EC:3.6.3.4] 4687 0710 1020 3613

copZ copper chaperone 4689 0712 1410 -

Copper/silver resistance

cusR two-component system, OmpR family, copper resistance phosphate regulon
response regulator CusR

0912 5050 3694 -

cusS two-component system, OmpR family, heavy metal sensor histidine kinase CusS
[EC:2.7.13.3]

0913 5051 - -

cusC heavy metal RND efflux outer membrane protein, CzcC family 0016 - - -

cusB heavy metal RND efflux outer membrane protein, CzcC family 0017 - - -

cusB Cu(I)/Ag(I) efflux system membrane protein CusB 0018 - - 2082

cusA Cu(I)/Ag(I) efflux system membrane protein CusA 0019 - - 2083

cusF Cu(I)/Ag(I) efflux system periplasmic protein CusF 0020 - - -

Arsenic resistance

arsR predicted transcriptional regulators 0160 - 2763 2096

arsB arsenical pump membrane protein 0161 2185 2762 -

arsC-2 arsenate reductase 5909 2184 2761 -

arsH arsenical resistance protein ArsH 5910 2183 2760 2097

arsC-1 arsenate reductase (glutaredoxin)[EC:1.20.4.1] 5052 4456 4088 2824

Cobalt/zinc/cadmium resistance

czcA heavy metal efflux pump (cobalt-zinc-cadmium) 1084 5218 2519 3425

czcB RND family efflux transporter, MFP subunit 1085 5219 2518 -

czcC outer membrane protein 1086 5220 - -

czcR heavy metal response regulator 1087 5221 2516 3421

czcD cation diffusion facilitator family transporter 1088 5222 0397 -

Chromate resistance

chrA chromate transporter, chromate ion transporter (CHR) family 0320 3149 4378 -

chrB uncharacterized conserved protein 4261 - - 2920

chrA chromate transporter, chromate ion transporter (CHR) family 4262 - - 2921
a Homologous genes were analyzed at 60% identity threshold using IMG software.
b “-” No homologs were present in the compared genome.
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Figure 6 Numbers of predicted enzymes with roles in oxidative
stress response. Predicted proteins with roles in the oxidative stress
response found in P. chlororaphis GP72, P. fluorescens Pf-5, P. aeruginosa
M18, and P. stutzeri A1501. Four types of enzymes (glutathione
S-transferase, peroxidase, catalase, and superoxide dismutase) were
compared among the four species.
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be able to tolerate damaging compounds produced by
plants, such as reactive oxygen species (ROS). Several
ROS are continuously produced during aerobic metabol-
ism of plants. They participate in regulating plant cell ex-
pansion [111] and other biological processes. ROS show
antimicrobial activities [112], as they can damage proteins,
nucleic acids, and cell membranes. Rhizospheric bacteria
produce several enzymes to resist oxidative stress [113].
Genes encoding these enzymes have already been identi-
fied in the genomes of Pf-5 and A1501 [17,18]. Putative
ROS-detoxifying enzymes in GP72 included 11 peroxi-
dases, five catalases, two superoxide dismutases, and 19
glutathione S-transferases. There was no significant differ-
ence in the numbers of these enzymes among the four
PGPR (Figure 6). Genes encoding regulators of the oxida-
tive stress response, including the two-component regula-
tor GacS/GacA [114], SoxR, and OxyR [113,115] were
present in the genomes of GP72, Pf-5, M18, and A1501.
However, a homolog of SoxR in P. aeruginosa did not
function as a key regulatory player in the bacterial oxida-
tive stress response [116]. Exopolysaccharides such as al-
ginate [117] and polyhydroxyalkanoates (PHAs) [118] are
important for tolerance to oxidative stress under ambient
pressure. For instance, PHA accumulation enhances the sur-
vival of pseudomonads under salinity stress, oxidative stress,
and cold-shock [119,120]. Additionally, a pyrroloquinoline-
quinine (PQQ) synthase expressed in E. coli improves its re-
sistance to photodynamically produced ROS [121].
Rhizosphere bacteria usually survive in a changeable en-

vironment; therefore, they have evolved several traits re-
lated to adaptation [122]. The genomes of GP72, Pf-5,
M18, and A1501 contained homologs of genes related to
tolerating cold-shock, including cspACDG, which is con-
stitutively expressed at 37°C [123]. In P. aeruginosa cells, a
temperature increase from 30 to 45°C enhances produc-
tion of 17 proteins, including the heat-shock proteins
DnaK and GroEL [124]. A chaperone system formed by
DnaK, DnaJ, and GrpE proteins modulates the heat-shock
response in E. coli [125] (Additional file 2). As an oppor-
tunistic pathogen, P. aeruginosa has evolved to survive in
diverse stressful environments. A microarray analysis
showed that P. aeruginosa synthesizes osmoprotective
compounds, such as hydrophilins and osmoprotectants, to
cope with osmotic stress [126,127]. Glycine betaine (GB),
a major osmoprotectant for many bacteria [128], can accu-
mulate via de novo synthesis or via absorption from the
environment [126]. Mutant analyses and 13C NMR studies
confirmed GB catabolism in P. aeruginosa [129]. Previ-
ously, it was shown that GP72 shows strong osmotic stress
tolerance [7]. The genomic analysis in this study showed
that the genomes of GP72, Pf-5, and M18 contained at
least one complete gene set required for conversion of GB
to glycine; this gene set included gbcAB, dgcAB, and
soxGADB. In contrast, A1501 contained only a homolog
of the betAB operon, which encodes a system for oxida-
tion of choline to GB under osmotic stress conditions
[130]. Osmoregulated periplasmic glucans are highly
branched oligosaccharides found in the periplasm of
Gram-negative bacteria. They are probably produced in
response to periplasmic osmolality, which is controlled by
the products of mdoD and mdoG [131]. Enteric bacteria
can modulate their cytoplasmic osmolality through mobil-
izing K+, glutamate, and other compatible solutes, such as
trehalose, proline, and GB [132]. K+ first responds to os-
motic upshifts via the transporters Trk and Kdp, possibly
acting as a putative osmoregulatory second messenger
[126,133]. The genes related to osmotic stress tolerance
are listed in Additional file 2.
We found that resistance genes were present in the ge-

nomes of all four PGPR, although some genes showed low
similarity to others. These results indicated that PGPR may
undergo long-term evolution to adapt to specific ecological
niches. To adapt to changeable environments, each pseudo-
monad PGPR strain has a complex array of regulatory net-
works, including sigma factors, transcriptional regulators,
and a variety of two-component transcriptional regulators.

Rhizosphere colonization
A confocal laser scanning microscopy analysis showed that
P. fluorescens WCS365 and P. chlororaphis PCL1391 are
able to effectively colonize the tomato rhizosphere [134],
and the major traits for niche competition were identified
[135]. Development of new genetic approaches such as
in vivo expression technology (IVET) together with “omic”
technologies has provided opportunities to identify genes
required for rhizosphere competence, and to elucidate
the genetic mechanisms of plant–microbe interactions
[14,136]. Pseudomonad PGPR show certain competitive
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colonization traits, such as motility and the ability to
attach to the root surface.
First, motility is a major trait for the competitive tomato

root-tip colonization of P. fluorescens, based on chemotaxis
[137,138]. We found genes related to chemotaxis and mo-
tility in the genomes of the four PGPR; GP72 contained 14
genes responsible for various aspects of chemotaxis, includ-
ing genes encoding a two-component system (CheA/CheY).
The activity of the histidine kinase CheA can be regulated
by methyl-accepting chemoreceptor proteins (MCPs) dur-
ing chemotaxis [139]. Swimming behavior can be initiated
when the phosphorylated CheY binds to the flagellar switch
protein, Flim [140]. In the present study, we found 28 genes
encoding MCPs and 40 genes associated with flagella bio-
synthesis, including the flg and fli operons.
The second trait of competitive colonization is attach-

ment to the root surface. In this study, several genes in-
volved in attachment were predicted in the PGPR genomes
(Additional file 3). The functions of some genes have been
confirmed experimentally in certain Pseudomonas species,
including genes associated with type IV pili and twitching
motility [141], genes for biosynthesis of alginate [142], he-
molysin [135,143], filamentous hemagglutinin [144], and
lipopolysaccharide O-antigen [145], and genes for other
enzymes or factors involved in adhesion [135]. For in-
stance, twitching motility, a type of flagella-independent
surface motility mediated by type IV pili, is a mechanism of
rapid bacterial colonization [141]. As well as the common
type IV pilus assembly proteins, we identified a second set
of genes in P. chlororaphis GP72 that were previously
reported to play roles in the biogenesis of the Flp subfamily
of type IVb tight adherence (Tad) pili [146]. However, tad
genes were not found in the genomes of the other three
PGPR at the 60% identity threshold, when compared with
the genome of GP72. Tad pili are an essential and con-
served host-colonization factor in Bifidobacterium species
[147]. Therefore, we can speculate that the tad genes are
probably derived from organisms outside of the genus
Pseudomonas. In strain P. putida KT2440, a series of rap
genes (root-activated promoters) were identified during
maize root colonization by IVET [148]. Some of the pro-
moters isolated by rap fusions responsible for adhesion
were present in the genomes of GP72, Pf-5, and M18, such
as secB (rap1-2 fusion) [135] and algD (rap2-45 fusion) [142].
The genetic locus aggA, which is involved in agglutination
and adherence [149], was also predicted in the genomes of
GP72 and Pf-5. Espinosa-Urgel et al. [143] characterized
several mus (mutants unattached to seeds) loci in P. putida,
and confirmed that mutants of these loci show impaired at-
tachment to corn seeds. The genome of GP72 contained
four mus loci: mus-13, mus-21, mus-24, and mus-27,
with possible functions as a carbon starvation protein,
transporter, calcium-binding protein, and hemolysin, re-
spectively. Genes involved in competitive rhizosphere
colonization have been well studied in P. fluorescens. These
include xerC, which encodes a site-specific recombinase.
xerC is a homolog of sss in P. chlororaphis PCL1391;
sss plays a role in phase variation caused by DNA
rearrangements [3,150]. The nuo operon encodes subunits
of NADH: ubiquinone oxidoreductase, which is related to
ATP-dependent rotation of flagella [145]. Some of the
genes isolated by IVET and identified to play roles in
plant–microbe interactions [14,151] were present in the ge-
nomes of GP72, Pf-5, M18, and A1501 when compared
with the genome of P. fluorescens SBW25 (data not shown).
However, it remains to be confirmed whether these genes
specifically contribute to rhizosphere competence.
GP72, Pf-5, and A1501 lacked virulence factors found in

plant pathogens, such as the type III secretion system,
phytotoxins, and exoenzymes associated with cell wall
degradation. Homologs of genes encoding phytotoxins
produced by P. syringae (coronatine, syringomycin,
syringopeptin, tabtoxin, and phaseolotoxin) [152] were also
absent from the genomes of GP72, Pf-5, M18, and A1501.
Their genomes did not contain genes related to the biosyn-
theses of cellulases, pectinases, or pectin lyases, which play
roles in the degradation of cell wall components. Therefore,
the lack of these genes can result in efficient rhizosphere
colonization and improvement of plant growth.

Biocontrol activities
Biocontrol activities are important mechanisms by which
PGPR suppress plant pathogens. The main biocontrol
strategy is the production of a spectrum of antibiotics [2].
The antibiotics produced by the biocontrol agents GP72,
Pf-5, and M18 are listed in Table 5. Phenazines are versa-
tile secondary metabolites produced by P. fluorescens,
P. chlororaphis, and Pseudomonas aureofaciens [153].
These compounds play critical roles in the biological con-
trol activities of Pseudomonas spp. [5]. Previous studies
showed that GP72 can completely suppress various phyto-
pathogens, mainly because of the production of PCA and
2-OH-PHZ. Clusters of phenazine-compound biosynthetic
genes were present in the genomes of both GP72 and
M18, but the genes differed between the two species. The
GP72 genome contained phzO, encoding an aromatic
monooxygenase [154] that converts PCA to 2-OH-PHZ,
whereas M18 contained two phz gene clusters and one set
of modified phzMS genes. phzM and phzS encode a puta-
tive S-adenosylmethionine-dependent N-methyltransferase
and a putative flavin-dependent hydroxylase, respectively.
They participate in the conversion of PCA to PYO in P.
aeruginosa. PYO is a virulence factor to cystic fibrosis
patients infected by pathogenic pseudomonads [155].
However, M18 does not produce detectable levels of PYO
at 28°C, mainly because of the temperature-dependent ex-
pression of phzM and its regulatory genes lasI and ptsP.
The biocontrol activity of M18 is, therefore, not attributed



Table 5 Secondary metabolites produced by
pseudomonad biocontrol strains

GP72 Pf-5 M18

Phenazine PCA, 2-OH-PCA - a PCA, PYO b

Pyoluteorin (Plt) - Plt Plt

Pyrrolnitrin (Prn) Prn Prn -

2,4-diacetylphloroglucinol (DAPG) - DAPG -

Hydrogen cyanide (HCN) HCN HCN HCN

P. fluorescens insecticidal toxin (Fit) Fit Mcf -

Pyoverdine (Pvd) Pvd Pvd Pvd

Pyochelin (Pch) - Pch Pch

Achromobactin (Acr) Acr - -
a “-” Secondary metabolite is absent from that strain, based on previous
studies and genomic sequence information.
b M18 did not produce detectable levels of PYO at 28°C [33].
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to PYO but to PCA [33], and it shows lower pathogenicity
than other closely related strains. Previous studies showed
that some plant pathogens are more strongly inhibited by
2-OH-PHZ than by PCA [154]. Another important anti-
biotic is Plt, which is produced by both Pf-5 and M18.
Strains with the ability to produce the insect toxin ‘Fit’ (P.
fluorescens insecticidal toxin) [156] show potent insecticidal
activity [157]. The fitD gene encoding the cytotoxin in
GP72 showed 84% identity to that in Pf-5. The amino acid
sequence of Fit shared 77% amino acid identity with the in-
sect toxin Mcf (makes caterpillars floppy) produced by the
entomopathogen Photorhabdus luminescens [157].
Fluorescent pseudomonads can produce pyoverdin

(Pvd), a fluorescent siderophore, and chelate Fe(III) effi-
ciently under low-iron conditions to improve their biocon-
trol activity [158,159]. The fluorescent pseudomonads
GP72, Pf-5, and M18 contained the complete Pvd biosyn-
thetic gene cluster. In addition, Pf-5 and M18 contained
genes encoding another siderophore, Pch, which has anti-
fungal activity [160]. GP72 lacked these genes, but it
contained putative genes for synthesis of achromobactin
(Acr), a temperature-regulated secondary siderophore. The
related biosynthetic gene clusters in GP72 included
acsFDECBA, yhcA, and acrABCD, which are responsible
for the biosynthesis of Acr, permease, and a specific outer
membrane receptor, respectively [161,162]. Siderophores
can bind metals other than iron [163] and, therefore, can
play roles in sequestering toxic metals including aluminum,
cobalt, copper, and lead [100]. GP72 contained a locus
(MOK_02694) encoding a nickel-uptake substrate-specific
transmembrane protein, adjacent to the acr operon. Acr in
GP72 may be involved in metal transport, signaling path-
ways, or antimicrobial activities. The comparative genomic
analysis indicated that there was no homology of the acr
operon between Pf-5 and M18. As well as producing their
own siderophores, Pseudomonas can also use siderophores
produced by other microorganisms. For example, A1501
may obtain iron via heterologous siderophores, since it
lacks pathways for siderophore biosynthesis [18]. Genes in-
volved in the uptake of soluble Fe(III) complexes, that is,
those encoding putative outer membrane receptors, were
present in the genomes of the four pseudomonads: 31
genes in GP72, 45 in Pf-5, 36 in M18, and 24 in A1501.
The variable iron acquisition systems among Pseudomonas
reflect their large capacity for niche colonization, providing
insights into how their biocontrol abilities can be im-
proved. Therefore, the availability of complete genome se-
quences provides an excellent opportunity to explore the
diversity and evolution of biosynthetic pathways in differ-
ent species/strains [153,164].

Direct plant-growth promotion
Rhizobacteria can directly promote plant growth, and some
strains have been developed as ‘biofertilizers’. The
mechanisms underlying plant-growth promotion include
nitrogen fixation, increased nutrient availability, production
of phytohormones, and so on [165]. The biofertilizers Azo-
tobacter [12] and P. stutzeri [18], both of which belong to
the Pseudomonadaceae, are able to fix nitrogen. The gen-
ome of A1501 contains a cluster of 59 genes specific to ni-
trogen fixation, and the nif operon shows a high degree of
similarity to that in the genome of Azotobacter vinelandii.
Therefore, we compared A1501 with GP72, Pf-5, and M18
at a threshold of 30% identity to screen for putative genes
related to nitrogen fixation. The analyses revealed 13, 13,
and 14 homologous genes in GP72, Pf-5, and M18, re-
spectively (Additional file 4); however, these three strains
lacked the nitrogenase complex-encoding genes nifDK
[166,167]. We conducted a similar screen for denitrifica-
tion genes; of 45 genes in A1501, 7 homologs were found
in the genome of Pf-5, and 21 in the genome of GP72. We
can speculate that the low identities may be because of the
relatively distant evolutionary relationship, as shown in the
phylogenetic analysis (Figure 4). GP72 and M18 contained
several genes involved in denitrification: narL and narX,
which encode a two-component regulatory system;
narGHJI, which encodes respiratory nitrate reductase
[168]; and nor genes, which are involved in nitric oxide
metabolism. Previous studies reported that P. fluorescens
and P. chlororaphis produce N2O as the only detectable
gaseous product of denitrification [169], while P. stutzeri
emits only N2, and P. aeruginosa produces both N2 and
N2O [170]. Thus, the denitrification process can accom-
modate large quantities of anthropogenic nutrients,
converting nitrate into nitrogen. This could decrease ni-
trate accumulation and counteract eutrophication in the
environment [171].
Limited quantities of soluble phosphate can restrict

plant growth. The genomes of GP72, Pf-5, M18, and
A1501 contained several genes encoding nonspecific
phosphatases, inositol phosphate phosphatases, and C-P
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lyases. These enzymes catalyze the conversion of insoluble
phosphorus into plant-available forms, thereby facilitating
plant growth [172]. In addition, many PGPR can produce
phytohormones to stimulate plant growth. GP72 can
synthesize IAA [7] via a tryptophan-dependent pathway
[173], since it contained genes encoding tryptophan-2
-monooxygenase (iaaM, MOK_03651/04103/05943) and
indoleacetamide hydrolase (iaaH, MOK_00889/01660/
02975). A1501 lacks the putative IAA synthesis pathway
[18]. The genomes of GP72, Pf-5, M18, and A1501
contained putative 1-aminocyclopropane-1-carboxylate
(ACC) deaminases. This enzyme can counteract the ethyl-
ene response in plants by degrading the ethylene precur-
sor ACC. In other Pseudomonas strains, ACC deaminases
promote root elongation and suppress plant diseases
[174]. Biosynthetic genes for PQQ, a plant-growth promo-
tion factor, are clustered in the conserved pqqABCDEF
operon [175]. This operon was present in the genomes of
Pf-5, M18, and A1501. GP72 lacked pqqA, but the enzyme
encoded by pqqA is not required for biosynthesis of PQQ
in Methylobacterium [176].

Conclusions
We analyzed plant growth-promoting traits by a compara-
tive genomics analysis of four representative pseudomo-
nad PGPR strains. The genes that were conserved among
the different Pseudomonas species have provided clues to
the common characteristics of pseudomonad PGPR, such
as rhizosphere competence traits (nutrient catabolism and
transport, resistance to various environmental stresses,
and rhizosphere colonization). The strain-specific genes
differentiated each strain on the basis of its lifestyle,
specific ecological adaptations, and physiological role in
the rhizosphere. The recently reported genome of P.
chlororaphis, together with other sequenced strains of dif-
ferent species of pseudomonad PGPR, provides insights
into the genetic basis of diversity and adaptation to spe-
cific environmental niches. Comparative genomic ana-
lyses, combined with certain IVET-based analyses, can
reveal many genetic factors related to plant growth pro-
motion. First, the strong adaptability of PGPR to their en-
vironment is related to putative genes involved in
catabolism and transport of plant-derived compounds and
resistance to various environmental stresses (heavy metals,
ROS, cold-, heat-, or osmotic-shock, and multiple drugs).
These genes were very common in the genomes of PGPR,
especially those of P. chlororaphis and P. fluorescens, and
provide the foundation for rhizosphere fitness. Second, we
compared genes involved in rhizosphere colonization.
Some related genes showed low similarity between P.
chlororaphis GP72 and the other three strains, including
biosynthetic genes for the O-antigen and type IV pilus as-
sembly. Hence, GP72 may have stronger rhizosphere com-
petence than the other three strains. Third, we analyzed
genes related to biocontrol activities, namely those encod-
ing production of antifungal metabolites such as PCA and
Plt. The genomic information indicated that the secondary
metabolites differ markedly among the four PGPR. For ex-
ample, GP72 contained putative gene clusters for biosyn-
thesis of the siderophore Acr, whereas the other strains
contained gene clusters for biosynthesis of different
siderophores. Some rhizobacteria cannot produce antifun-
gal compounds, but promote plant growth in the absence
of pathogens. One such strain was P. stutzeri A1501, which
fixes nitrogen. Therefore, the metabolic pathways, trans-
porters, and regulators related to cell metabolism provide
directions to improve plant growth-promoting activities.
Genetic modification may accelerate the commercialization
of PGPR as biocontrol agents, which could further contrib-
ute to sustainable development of agriculture.

Methods
Medium and growth conditions for P. chlororaphis GP72
P. chlororaphis GP72 (deposited in China General Micro-
biological Culture Collection Center; collection number
1748), isolated from green pepper rhizosphere in eastern
China, was incubated at 28°C in King’s medium B [177].

Genome sequencing and annotation
The genome of P. chlororaphis GP72 was sequenced using
the Illumina GAIIx platform and assembled using VELVET
1.1.07. The genome of GP72 was automatically annotated
using the RAST server [178], and proceeded with manual
curation and comparative analysis using the IMG/ER sys-
tem (https://img.jgi.doe.gov/cgi-bin/er/main.cgi) [179]. The
genome sequence is available at the IMG database [39]. In-
formation of COGs [40], combined with that from the
Conserved Domain Database, was also used in the compar-
isons. The metabolic pathways were examined using KAAS
(KEGG Automatic Annotation Server) [180] and the
MetaCyc database [181].

Nucleotide sequence accession number
This whole genome shotgun project has been deposited
in DDBJ/EMBL/GenBank under the accession number
AHAY00000000.

Genome comparisons
The genome sequence of GP72 was aligned against se-
quences of other Pseudomonas genomes from NCBI’s
Entrez database and the IMG database. Pair-wise align-
ments were performed using WebACT (http://www.
webact.org/WebACT/home) [41]. BLAST atlases [42] were
generated using the CBS DTU online tool, GeneWiz
browser 0.94 server (http://www.cbs.dtu.dk/services/
gwBrowser/). Strain-specific and conserved genes were
identified using the mGenomeSubtractor web server

https://img.jgi.doe.gov/cgi-bin/er/main.cgi
http://www.webact.org/WebACT/home
http://www.webact.org/WebACT/home
http://www.cbs.dtu.dk/services/gwBrowser/
http://www.cbs.dtu.dk/services/gwBrowser/
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(http://bioinfo-mml.sjtu.edu.cn/mGS/) [43]. The con-
served CDSs were identified using a homology (H) value
cut-off of 0.42 at E-value <10-5. Comparative genomic ana-
lyses of GP72, Pf-5, M18, and A1501 were conducted
using the tool set available at the IMG website; genes
homologous to those in GP72 were computed with an
E-value < 10-2 and at 60% identity; BLAST comparisons
between PGPR and P. stutzeri A1501 were screened at
the 30% identity threshold.

Phylogenetic analysis
The phylogenetic relationships among completely se-
quenced Pseudomonas were determined by a multilocus
sequence analysis using a concatenated data set of gyrB and
rpoD genes. Multiple-sequence alignments were carried
out with Clustal W (http://www.genome.jp/tools/clustalw/)
[182]. Evolutionary distances were calculated using the
neighbor-joining method [183] with 1000 bootstrap repli-
cates, using Phylip 3.67 software (http://evolution.genetics.
washington.edu/phylip.html). The phylogenetic tree was
generated using interactive tree of life (iTOL) software
[184].
Additional files

Additional file 1: Comparison of putative genes related to
peripheral pathways for aromatic catabolism among pseudomonad
PGPR.

Additional file 2: Putative genes involved in tolerance to
antibiotics, osmotic-, and temperature-shock in the pseudomonad
PGPR genomes.

Additional file 3: Comparison of putative genes related to
attachment to plant rhizosphere among pseudomonad PGPR.

Additional file 4: Comparison of putative genes involved in
nitrogen fixation and denitrification process among pseudomonad
PGPR.
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