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Abstract

Background: New sequencing technologies have tremendously increased the number of known molecular
markers (single nucleotide polymorphisms; SNPs) in a variety of species. Concurrently, improvements to genotyping
technology have now made it possible to efficiently genotype large numbers of genome-wide distributed SNPs
enabling genome wide association studies (GWAS). However, genotyping significant numbers of individuals with
large number of SNPs remains prohibitively expensive for many research groups. A possible solution to this
problem is to determine allele frequencies from pooled DNA samples, such ‘allelotyping’ has been presented as a
cost-effective alternative to individual genotyping and has become popular in human GWAS. In this article we have
tested the effectiveness of DNA pooling to obtain accurate allele frequency estimates for Atlantic salmon

(Salmo salar L) populations using an lllumina SNP-chip.

Results: In total, 56 Atlantic salmon DNA pools from 14 populations were analyzed on an Atlantic salmon SNP-chip
containing probes for 5568 SNP markers, 3928 of which were bi-allelic. We developed an efficient quality control
filter which enables exclusion of loci showing high error rate and minor allele frequency (MAF) close to zero. After
applying multiple quality control filters we obtained allele frequency estimates for 3631 bi-allelic loci. We observed
high concordance (r > 0.99) between allele frequency estimates derived from individual genotyping and DNA
pools. Our results also indicate that even relatively small DNA pools (35 individuals) can provide accurate allele
frequency estimates for a given sample.

Conclusions: Despite of higher level of variation associated with array replicates compared to pool construction,
we suggest that both sources of variation should be taken into account. This study demonstrates that DNA pooling
allows fast and high-throughput determination of allele frequencies in Atlantic salmon enabling cost-efficient
identification of informative markers for discrimination of populations at various geographical scales, as well as
identification of loci controlling ecologically and economically important traits.
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Background

Technological advances in polymorphism detection and
genotyping have made the single nucleotide polymorph-
isms (SNPs) the marker of choice for many high density
genotyping studies [1,2]. High-throughput microarrays
containing assays for thousands of SNPs are becoming
available for a number of non-model organisms [1-3], and
being used more frequently in ecological and evolutionary
studies, including population genetics studies e.g. [4-7],
QTL identification e.g. [8], parentage determination e.g.
[9-11], and mixed stock analysis e.g. [12-15].

Despite the recent technical advances, genotyping large
numbers of individuals with thousands of SNPs remains
prohibitively expensive for many research groups. Further-
more, many population genetic studies are based on popu-
lation allele frequency rather than individual genotype
data. Therefore, determination of allele frequencies from
pooled DNA samples, i.e. ‘allelotyping; has been suggested
more than 30 years ago as a cost-effective alternative to in-
dividual genotyping (reviewed by Sham et al. [16]). Several
studies have successfully used this approach in genome-
wide association studies that compare the allele frequen-
cies between cases and controls e.g. [17-23]. These studies
have demonstrated satisfactory accuracy and repeatability,
and the DNA pooling approach can reduce costs by as
much as 100-fold depending on the number of samples
[16,21,23].

While the allelotyping of DNA pools can substantially re-
duce the costs compared to individual sample by sample
genotyping, this approach is not without disadvantages.
First, various sources of error occur during the allele fre-
quency estimation from DNA pools. According to Earp
et al. [23], variation introduced to allele frequency esti-
mates can be divided into four categories: (i) within array;
(ii) between arrays; (iii) between independently constructed
identical pools, and (iv) between pools constructed from
different individuals of the same population (biological
replicates). Therefore, in order to obtain reliable allele fre-
quency estimates using DNA pooling it is important to
evaluate the magnitude and relative importance of different
sources of error [23,24]. In addition, DNA pooling gener-
ally does not provide information about haplotype fre-
quency and despite recent computational improvements
[25,26] resolving the phase ambiguity remains a challenge
for large number of loci [27]. However, despite the popu-
larity of DNA pooling in genetic association studies, only
few studies to date have utilized allelotyping approach to
characterize inter-population variation e.g. [28].

Here, we tested the usefulness of DNA pooling for a first
time using an Atlantic salmon (Salmo salar L.) Illumina
SNP-chip to obtain accurate allele frequency estimates for
multiple Atlantic salmon populations and evaluated the
importance of different sources of errors arising from alle-
lotyping. First, we assessed the effect of DNA pool
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construction and between-array variations on allele fre-
quency estimates. Subsequently, the effect of cluster separ-
ation scores (parameter that summarizes the separation of
three genotype classes in the theta dimension), two alterna-
tive sources of theta (a value between 0 and 1 which
defines the genotype; 0 = AA, 1 = BB, 0.5 = AB) and DNA
pool size on allele frequency estimation were evaluated.
Finally, two alternative quality control (QC) filters were
tested to select optimal sets of SNP loci for subsequent
population genetic analysis.

Results and discussion

In total, 56 Atlantic salmon DNA pools from 14 popula-
tions were analyzed using an Atlantic salmon SNP-chip
[29,30] carrying probes for 5568 SNP markers 3928 of
which were bi-allelic. After excluding 1640 non bi-
allelic markers and 31 bi-allelic loci due to low call rate
(< 95%) (see Additional file 1, Figure Sla) the repeat-
ability of allelotyping from DNA pools was tested for
3897 loci.

Array- vs. pool-construction variation

The experimental design described in Table 1 provided 56
estimates of array-variation and 52 of pool-construction
variation in the theta value. The mean array-variation per
SNP varied from theta 0.000 to 0.089, whereas the mean
pool-construction variation of theta ranged from 0.000 to
0.069. The estimated variation of theta between different
arrays (Le. array-variation using identical DNA pools) was 20%
higher compared to variation arising from DNA pool con-
struction (mediangy,y = 0.012 vs. medianggolconstruction = 0-010,
non-parametric Mann—Whitney U-test, P < 0.0001) (Figure 1).
These results suggest that it is more important to consider
variation arising from different arrays than variation asso-
ciated with pool construction [22-24,31]. This is in line
with the earlier studies suggesting that running the same
DNA pool in multiple arrays should be preferred over con-
struction and analysis of multiple DNA pools within the
same array [18,22,32]. However, considering the relatively
similar levels of variation associated with the array and pool
replicates, future studies should incorporate both sources of
variation in the experimental design for reliable estimation
of allele frequencies from DNA pools.

Estimation of allele frequencies from DNA pools

The allele frequencies for 3631 SNPs that passed the qual-
ity control (see below) were estimated from DNA pools
using reference values of theta provided by CIGENE and
reference values of theta derived from the genotyping of
106 individuals used in pool construction. Comparison of
the two sets of theta values revealed a small, but significant,
difference in allele frequency estimates. Using individual geno-
types from this study to derive reference values of theta pro-
vided slightly higher accuracy in allele frequency estimates
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Table 1 Information about populations, their geographic locations, number of individuals and number of pool

replicates studied

Population Number of individuals included in the pools and number of array Number of samples for individual genotyping
and pool construction replicates (in brackets)
Pool-size 1 Pool-size 2 Pool-size 3
Norwegian Sea coast
Alta 502, 2) 70 (2,2) 6
Laukhelle 35 (2, 0) 43 (2, 2) 5
Repparfjordelv 50 (2, 2) 69 (2, 2)
Barents Sea coast
Lakselva 50(2,2) 67 (3,2)
Vestre Jakobselv 50 (2, 2) 70 (2, 2)
Tana Bru (Teno) 50 (2, 0) 60 (2, 0)
Karasjoki (Teno) 50 (2, 2) 70 (2, 2)
Inarijoki (Teno) 50 (2, 0) 67 (2, 2)
lesjoki (Teno) 6
Neiden 50 (2,2) 63 (2, 2)
Ura 35(2,0) 46 (2, 2)
Titovka 50 (2, 2) 70 (2, 2)
Kola 35(@3,3) 503, 3) 70 (3,3) 67
Pechora Unya 6
White Sea coast
Ponoi 50 (2, 2) 70 (2,
Varzuga 50 (2, 2) 70 (2, 6
Onega
Baltic Sea coast
Narva 4
Total pooled 905
Total individual 106

compared to the larger (n = 300) but unrelated dataset pro-
vided by CIGENE (median error;os = 0.020 — 0.023 vs. me-
dian errorcigeng = 0.025 — 0.028; Mann—Whitney U-test,
all tests, P < 0.0001; Figure 2). Errors associated with
allele frequency estimations using reference values of
theta from two different sources were significantly
correlated (Pearson’s r = 0.640 — 0.684, P < 0.0001)
suggesting that small number of SNPs suffer from lar-
ger error irrespective of the source of reference values
of theta while the majority of loci have relatively low
error rates. Taken together, these results suggest that
even relatively small number of individuals (~ 100) is
sufficient to generate reliable reference values of
theta. However, because all three genotype classes are
needed for accurate estimation of allele frequencies,
using relatively small number of individuals resulted in
loss of SNPs as not all genotypes were observed in the
reference datasets (3631 vs. 3138 SNPs based on
CIGENE and our data, respectively).

We observed very high concordance between allele fre-
quency estimates derived from DNA pools and from indi-
vidual genotyping (Pearson’s r = 0.991 — 0.992, all tests,
P < 0.0001, Figure 3). This demonstrates the accuracy of
the DNA pooling approach in Atlantic salmon and is con-
sistent with earlier studies in other species using Illumina
bead-array platform. For example, high correlation be-
tween allele frequency estimates derived from individual
genotyping and DNA pools have been observed in humans
(Pearson’s r = 0.969) and cattle (Pearson’s » = 0.992 — 0.994)
[18,33]. The number of individuals in the DNA pool had
only a minor effect on the allele frequency estimation
(Figure 3) as the error between true and estimated al-
lele frequencies was small and similar for all three
pool sizes (median error = 0.023 — 0.025, Figure 2). There-
fore, our results suggest that it is possible to obtain accur-
ate allele frequency estimates using DNA pools consisting
of relatively small number of individuals (n > 35). How-
ever, larger pool sizes should be always preferred over
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Figure 1 Box-plot showing estimated array- and pool-construction variation of theta (Mann-Whitney U-test, P < 0.0001). Horizontal line,
grey square, whiskers, open circles, and stars indicate median, 25th and 75th quartiles, non-outlier range, outliers and extreme outliers,

pool-construction

small ones as small number of individuals may not be rep-
resentative of the whole population.

Quality control

One of the important parameters for accurate determin-
ation of genotypes and subsequent allelotyping is cluster
separation score that quantifies the discrimination between
genotype clusters for particular SNP (see Additional file 1:
Figure S1b, ¢, d). Since the heterozygous cluster can be

indistinguishable from one or both homozygous clusters
for SNP with low cluster separation score, exclusion of loci
demonstrating low cluster separation scores has been often
applied [34,35]. To date, most of the studies have used a
cluster separation score cut-off <0.35 to exclude low quality
SNPs e.g. [36,37]. Based on visual inspection of SNP clus-
ters in Atlantic salmon, however, cut-off value of 0.4 was
chosen to efficiently exclude SNPs showing ambiguous
genotype classes. This resulted in selection of 3631 out of
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Figure 2 Box-plot showing error in allele frequency estimates calculated using theta cluster mean values provided by CIGENE or
obtained from 106 individuals (Mann-Whitney U-test, all tests, P < 0.0001). Horizontal line, grey square, whiskers, open circles, and stars
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Allele frequency from individuals

Allele frequency from pools

Figure 3 Scatter plot of estimated allele frequencies from
individual genotyping vs. pooled DNA. True’ allele frequencies
from individual genotyping for Kola population were compared with
estimated allele frequencies for three different pool sizes: (a) Kola-35
(n =35, r =0.992), (b) Kola-50 (n = 50; r = 0.991) and (c) Kola-70
(n=70; r=0992).
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3897 markers for subsequent analysis. As expected, the error
in allele frequency estimates of SNPs having cluster separ-
ation score < 0.4 was higher compared to SNPs with cluster
separation score > 04 (Mann—Whitney U test, both for
array and pool replicates, P < 0.0001) (see Additional file 1:
Figure S2a, b). Moreover, the correlation between allele
frequency estimates derived from three DNA pools and
from individual genotyping for SNPs demonstrating low
cluster separation scores (< 0.4) was lower than for mar-
kers with cluster separation scores > 0.4 (Pearson’s r =
0.960 — 0.969 vs. Pearson’s r = 0.991 — 0.992). In addition,
the estimated variation of theta was negatively corre-
lated with the cluster separation score both for array
(Pearson’s r = — 0.346, P < 0.0001) and pool construction
(Pearson’s r = — 0.246, P < 0.0001) replicates (see Additional
file 1: Figure S3a, b).

While application of QC filter based on cluster separ-
ation excludes SNPs having low quality genotypes, it is not
able to remove all loci showing relatively high variation in
allele frequency estimates (see Additional 1: Figure S3a, b).
Therefore, application of additional QC filters, e.g. based
on comparisons between ‘true’ and estimated allele fre-
quencies or based on combination of variation in allele
frequency estimates and heterozygosity have been sug-
gested e.g. [28,36,37].

Here, we tested two alternative QC filters (uniform
and spherical cut-off) that use heterozygosity and vari-
ation in allele frequency estimates (Figure 4). This
resulted selection of 2879 vs. 2880 loci for uniform and
spherical cut-off, respectively (Table 2). Majority of loci
(2777) that passed both filters were the same (Figure 4).
However, spherical filtering is expected to be more useful
than uniform cut-off as it retains larger proportion of poly-
morphic loci with mean allele frequency 0.2 — 0.8 across
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Figure 4 A plot of mean estimated allele frequencies across 14
populations against array-variation. Solid and dashed lines
indicate the boundaries of spherical and uniform cut-offs,

respectively.
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Table 2 Number of loci retained after applying spherical
or uniform QC filtering of 3631 SNPs

Filter Mean allele frequency across 14 populations
<01 01-04 04-06 06-09 >09 Total
Before filtering 326 1110 845 1044 306 3631
Spherical 275 877 690 787 251 2880
Uniform 308 860 639 785 287 2879

populations, while uniform filter increases the proportion
of less variable loci (Table 2, Figure 4, Additional 1:
Figure S4). Therefore, for identification of reliable and in-
formative SNPs, application of spherical filter is preferable
over uniform since it effectively excludes loci with rela-
tively high error rate compared to the information content.

Conclusions

This study tested the effectiveness of DNA pooling to
obtain accurate allele frequency estimates for large num-
ber of Atlantic salmon populations using an Illumina
SNP-chip. We demonstrated that pooled DNA approach
provides a reliable, accurate and cost-effective means for
obtaining genome-wide allele frequency estimates for
multiple populations. We proposed a novel quality con-
trol filter based on spherical cut-off which enables effi-
cient exclusion of loci showing high error rate and
minor allele frequency close to zero. Our results indicate
that even relatively small DNA pools (35 individuals)
provide accurate allele frequency estimates for a given
sample. Despite of higher levels of variation associated
with array replicates compared to pool construction we
suggest that both sources of variation should be taken into
account. Taken together, this study demonstrates that
DNA pooling allows fast and high-throughput determin-
ation of allele frequencies in Atlantic salmon enabling
cost-efficient identification of informative markers for dis-
crimination of salmon populations at various geographical
scales, as well as identification of loci controlling ecologic-
ally and economically important traits. Moreover, the
main findings of our study based on Atlantic salmon SNP-
chip were in line with those observed for human SNP-
chips, and thus the technical approaches described herein
are encouraging for employing allelotyping approach in
other species using Illumina SNP-chips or other SNP
genotyping systems and arrays.

Methods

DNA samples

In total, 927 Atlantic salmon individuals representing 19
populations from Northern Europe were used for individ-
ual genotyping and/or construction of DNA pools (Table 1).
Tissue samples (fin clips) were collected from juveniles
during 2006 — 2010 and preserved in ethanol. Total gen-
omic DNA was extracted according to Elphinstone et al.
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[38] or using Qiagen DNeasy 96 Blood & Tissue kits
(Qiagen™) following manufacturer’s recommendations.

Quality control of DNA extracts

Prior to pool construction, quality control of individual
DNA extracts was performed in two steps. First, samples
were examined for degradation by visual inspection on
1% agarose gels. Samples containing low molecular
weight DNA (indicative of degradation) were excluded
from further analysis. Each extract was then tested for
contamination (the presence of DNA from multiple indi-
viduals) by screening individual samples using 18 micro-
satellite loci [39]; V. Wennevik, unpublished data] and
only non-contaminated Atlantic salmon samples were
selected for further analysis.

Construction of DNA pools and SNP genotyping

In total, 56 DNA pools were constructed using indivi-
duals from 14 Atlantic salmon populations (Table 1).
The adjustment of DNA concentration was carried out
in two steps. The initial concentration of DNA samples
was first adjusted to 20 ng/pl, measured in duplicate
with the NanoDrop™ 1000 (Thermo Scientific) and sub-
sequently diluted to 10 ng/ul. Individual DNA samples
were pooled (50 ng per individual) and subsequently
concentrated using a DNA concentrator Eppendorf
5301. The final concentration of the pools was adjusted
to 50 ng/pl. Constructed DNA pools were analyzed
using an Atlantic salmon Illumina SNP-chip [29,30] at
the Centre for Integrative Genetics (CIGENE), Norway.
In addition, 106 salmon samples used in pool construc-
tion were genotyped individually to guide cluster posi-
tioning and to obtain the ‘true’ allele frequency for each
locus for the population from the River Kola (Table 1).

Quality control

Genotyping of the 106 individual samples was performed
using Genotyping module v. 1.9.4 (Genome Studio software
v. 2011.1, [lumina Inc.), only those samples with > 97%
call rates were included when calculating ‘true’ allele fre-
quencies. SNPs with call rates < 95% (i.e. the proportion
of individual samples successfully genotyped in a locus)
were eliminated from the data set. Thresholds for quality
control (QC) filtering were determined as in Murray
et al. [37] and for estimation of allele frequencies from
DNA pools, SNPs with cluster separation scores < 0.4
were excluded.

Estimation of allele frequencies in a pooled DNA samples

In [lumina genotyping, the genotype is assigned after con-
verting raw color signal data into a theta value which ranges
from 0 to 1 and reflects the relative signal contribution
for the 2 alternate alleles. In theory, an individual
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homozygous for the B allele would have a theta value close
to 1, an individual homozygous for the A allele a value close
to 0 and a value of 0.5 would indicate a heterozygous geno-
type. However, in reality a SNP’s theta for genotype clus-
ters (AA, AB and BB) may vary from 0, 0.5 and 1,
therefore for estimation of allele frequency in a pooled
sample, the theta value for each SNP is compared to the
mean theta values for AA, AB and BB genotypes calcu-
lated by genotyping individual samples, i.e. the allele fre-
quency of the DNA pool can be derived by applying
correction algorithms from comparing pool-specific
value of theta with the reference values of theta from in-
dividual genotyping data e.g. [40,41].

To obtain the allele frequency estimate for allele B in
the pool B,,, Sample position of each pool along the
axis of normalized theta values were compared to the
reference values of AA, AB and BB genotype cluster
positions for each SNP (reference values of theta) as in
Janicki & Liu [41].

The following equations were applied [41]:

if Opoot < O, then By =0 or
if0aa < Opoot < Oapthen Bpog

=0.5x (Hpogl — GAA)/(GAB — Ou4) or
ifOap < Opoot < Opp,then Byl

=0.540.5 X (Bpoot — 048) /(048 — Oap) or
if Opoor 2 Opp, then By, = 1, where

Opoor is the sample position and G4, Oup Opp are
means of the cluster positions of the corresponding
reference genotypes along the axis of normalized theta
values. The frequency of allele A was calculated as
Apool = I_Bpool-

Reference values for AA, AB and BB genotype positions
along the axis of normalized theta values were obtained
from individual genotyping of 300 Atlantic salmon speci-
mens genotyped in previous studies by CIGENE. As this
data did not include samples from all the populations used
to construct the DNA pools, the mean cluster position
values were also derived from the genotype classes of 106
individuals originating from 8 populations across the study
area (Rivers: Alta, Laukhelle, Iesjoki, Kola, Varzuga, Onega,
Pechora Unya and Narva). For subsequent analyses,
however, reference values of theta provided by CIGENE
were used.

The accuracy of allele frequency estimates was quantified
as an absolute difference between allele frequencies derived
from individual genotypes (referred to as ‘true’) and allele
frequencies estimated from DNA pools from the River
Kola population (35, 50 and 70 individuals per pool).
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Estimation of array- and pool-construction variation
To estimate the within-pool variation of theta, replicates of
the same DNA pool were run on different arrays (array
replicates, as in Earp et al. [23]) (Table 1). To assess the
variation in theta values introduced by pool construction,
independently constructed pools consisting the same DNA
extracts were run on same array (pool construction repli-
cates, as in Earp et al. [23]) (Table 1). To evaluate the effect
of number of individuals in the DNA pool on allele fre-
quency estimation, DNA pools with varying number of in-
dividual DNA extracts were constructed (Table 1).
Variation of theta within a SNP locus was estimated simi-
lar to Macgregor [31]. The array-variation was calculated as
the mean difference of all possible pair-wise comparisons of
theta values among technical replicates of the same pool
allelotyped on different arrays. The pool-construction vari-
ation was calculated as the mean difference of all possible
pair-wise comparisons of theta values among technical
replicates of the independently constructed DNA pools
containing same individuals allelotyped on the same array.

Additional file

Additional file 1: Figure S1. Example of SNP loci failed to pass QC:

a) call rate < 95%; b) cluster separation < 0.40; and SNP loci met QC
requirements: ¢) cluster separation = 041 and d) call rate 100%, cluster
separation = 1.00. Figure S2. Box-plot showing estimated variation of
theta in two sets of SNPs with cluster separation score < 04 and > 04
for (a) array and (b) pool construction replicates (both tests, Mann—
Whitney U test, P < 0.0001). Horizontal line, grey square, whiskers, open
circles, and stars indicate median, 25th and 75th quartiles, non-outlier
range, outliers and extreme outliers, respectively. Figure S3. A significant
negative correlation between (a) array-(Pearson’s r = — 0.346, P < 0.0001)
and (b) pool-construction (Pearson’s r = — 0.246, P < 0.0001) variation and
cluster separation scores. Figure S4. Proportion of loci remained in each
allele frequency class after application of (a) uniform and

(b) spherical filter.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

M.O. constructed the DNA pools, performed the data analysis and lead in
drafting the manuscript. J-P.V. and AV. designed the study and significantly
contributed to the data analysis and the writing of the manuscript. V.W. took
part in designing the study, provided microsatellite data and together with
EN. and S.P. collected biological samples. MK. performed SNP array
screening and initial data analysis. All authors read and approved the final
manuscript.

Acknowledgements

We thank Rogelio Diaz-Fernandez and Kristiina Haapanen for laboratory
assistance and two anonymous reviewers for their helpful comments in
improving this manuscript. This study was funded by the European Union,
Kolarctic ENPI CBC project KO197 (M.O,, EN. and S.P), Academy of Finland
(J-P.V)), Norwegian Directorate of Nature Management (V.W.), Norwegian
Research Council (V.W.) and Estonian Science Foundation (grant numbers
6802, 8215 to AV.). This publication has been produced with the assistance
of the European Union, but the contents can in no way be taken to reflect
the views of the European Union.


http://www.biomedcentral.com/content/supplementary/1471-2164-14-12-S1.docx

Ozerov et al. BMC Genomics 2013, 14:12
http://www.biomedcentral.com/1471-2164/14/12

Author details

'Kevo Subarctic Research Institute, University of Turku, Turku 20014, Finland.
’Department of Biology, Division of Genetics and Physiology, University of
Turku, Turku 20014, Finland. 3Institute of Marine Research, PO Box 1870,
Nordnes N-5817, Bergen, Norway. “Finnish Game and Fisheries Research
Institute, Rakentajantie 3,PL 413, 90014, Oulun yliopisto, Finland. *Freshwater
Resources Laboratory, Knipovitch Polar Research Institute of Marine Fisheries
and Oceanography, 6. Knipovitch Street, 183767, Murmansk, Russia. SCentre
for Integrative Genetics (CIGENE), Department of Animal and Aquacultural
Sciences (IHA), Norwegian University of Life Sciences, PO Box 5003, As,
Norway. "Department of Aquaculture, Institute of Veterinary Medicine and
Animal Science, Estonian University of Life Sciences, 51014, Tartu, Estonia.

Received: 27 June 2012 Accepted: 2 January 2013
Published: 16 January 2013

References

1. Garvin MR, Saitoh K, Gharrett AJ: Application of single nucleotide
polymorphisms to non-model species: a technical review. Mol Ecol Res
2010, 10:915-934.

2. Seeb JE, Carvalho G, Hauser L, Naish K, Roberts S, Seeb LW: Single-
nucleotide polymorphism (SNP) discovery and applications of SNP
genotyping in nonmodel organisms. Mol Ecol Res 2011, 11:1-8.

3. Coates BS, Sumerford DV, Miller NJ, Kim KS, Sappington TW, Siegfried BD,
Lewis LC: Comparative performance of single nucleotide polymorphism
and microsatellite markers for population genetic analysis. J Hered 2009,
100:556-564.

4. OMalley KG, Camara MD, Banks MA: Candidate loci reveal genetic
variation between temporally divergent migratory runs of Chinook
salmon (Oncorhynchus tshawytscha). Mol Ecol 2007, 16:4930-4941.

5. Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, Visscher
PM: Recent human effective population size estimated from linkage
disequilibrium. Genome Res 2007, 17:520-526.

6. Zenger KR, Khatkar MS, Cavanagh JAL, Hawken RJ, Raadsma HW: Genome-
wide genetic diversity of Holstein Friesian cattle reveals new insights
into Australian and global population variability, including impact of
selection. Anim Genet 2007, 38:7-14.

7. Keller I, Veltsos P, Nichols RA: The frequency of rDNA variants within
individuals provides evidence of population history and gene flow
across a grasshopper hybrid zone. Evolution 2008, 62:333-844.

8. Boulding EG, Culling M, Glebe B, Berg PR, Lien S, Moen T: Conservation
genomics of Atlantic salmon: SNPs associated with QTLs for adaptive
traits in parr from four trans-Atlantic backcrosses. Heredity 2008,
101:381-391.

9. Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, Keele
JW, Smith TP, Chitko-McKown CG, Laegreid WW: Selection and use of SNP
markers for animal identification and paternity analysis in U.S. beef
cattle. Mamm Genome 2002, 13:272-281.

10.  Anderson EC, Garza JC: The power of single nucleotide polymorphisms
for large-scale parentage inference. Genetics 2006, 172:2567-2582.

11. Tokarska M, Marshall T, Kowalczyk R, Wéjcik JM, Pertoldi C, Kristensen TN,
Loeschcke V, Gregersen VR, Bendixen C: Effectiveness of microsatellite and
SNP markers for parentage and identity analysis in species with low
genetic diversity: the case of European bison. Heredity 2009, 103:326-332.

12. Smith C, Templin W, Seeb J, Seeb L: Single Nucleotide Polymorphisms
(SNPs) provide rapid and accurate estimates of the proportions of U.S.
and Canadian Chinook salmon caught in Yukon River fisheries. N Am J
Fisher Man 2005, 25:944-953.

13. Narum SR, Banks M, Beacham TD, Bellinger MR, Campbell MR, Dekoning J,
Elz A, Guthrie CM 3rd, Kozfkay C, Miller KM, Moran P, Phillips R, Seeb LW,
Smith CT, Warheit K, Young SF, Garza JC: Differentiating salmon
populations at broad and fine geographical scales with microsatellites
and single nucleotide polymorphisms. Mol Ecol 2008, 17:3464-3477.

14. Hess JE, Matala AP, Narum SR: Comparison of SNPs and microsatellites for
fine-scale application of genetic stock identification of Chinook salmon
in the Columbia River Basin. Mol Ecol Res 2011, 11(Suppl 1):137-149.

15. Karlsson S, Moen T, Lien S, Glover KA, Hindar K: Generic genetic differences
between farmed and wild Atlantic salmon identified from a 7K
SNP-array. Mol Ecol Resour 2011, 11(Suppl 1):247-253.

16. Sham P, Bader JS, Craig |, O'Donovan M, Owen M: DNA Pooling: a tool for
large-scale association studies. Nat Rev Genet 2002, 3:862-871.

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34.

Page 8 of 9

Stokowski RP, Pant PV, Dadd T, Fereday A, Hinds DA, Jarman C, Filsell W,
Ginger RS, Green MR, van der Ouderaa FJ, Cox DR: A genomewide
association study of skin pigmentation in a South Asian population. Am
J Hum Genet 2007, 81:1119-1132.

Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L,
Dowezell K, Cichon S, Hillmer AM, O'Donovan MC, Williams J, Owen MJ, Kirov
G: A genome-wide association study for late-onset Alzheimer’s disease
using DNA pool construction. BMC Med Genomics 2008, 1:44.

Brown KM, Macgregor S, Montgomery GW, Craig DW, Zhao ZZ, lyadurai K,
Henders AK, Homer N, Campbell MJ, Stark M, Thomas S, Schmid H, Holland
EA, Gillanders EM, Duffy DL, Maskiell JA, Jetann J, Ferguson M, Stephan DA,
Cust AE, Whiteman D, Green A, Olsson H, Puig S, Ghiorzo P, Hansson J,
Demenais F, Goldstein AM, Gruis NA, Elder DE, Bishop JN, Kefford RF, Giles
GG, Armstrong BK, Aitken JF, Hopper JL, Martin NG, Trent JM, Mann GJ,
Hayward NK: Common sequence variants on 20q11.22 confer melanoma
susceptibility. Nat Genet 2008, 40:838-840.

Comabella M, Craig DW, Camina-Tato M, Morcillo C, Lopez C, Navarro A, Rio
J, BiomarkerMS Study Group, Montalban X, Martin R: Identification of a
novel risk locus for multiple sclerosis at 13g31.3 by a pooled
genomewide scan of 500,000 single nucleotide polymorphisms.

PLoS One 2008, 3:23490.

Macgregor S, Zhao ZZ, Henders A, Nicholas MG, Montgomery GW, Visscher
PM: Highly cost-efficient genome-wide association studies using DNA
pools and dense SNP arrays. Nucleic Acids Res 2008, 36:e35.

Huang Y, Hinds DA, Lihong Q, Prentice RL: Pooled versus individual
genotyping in a breast cancer genome-wide association study.

Genet Epidemiol 2010, 34:603-612.

Earp MA, Rahmani M, Chew K, Brook-Wilson A: Estimates of array and pool
construction variation for planning efficien DNA-pool construction
genome wide association studies. BMC Med Genomics 2011, 4:81.
Macgregor S, Visscher PM, Mongomery G: Analysis of pooled DNA samples
on high density arrays without prior knowledge of differential
hybridization rates. Nucleic Acid Research 2006, 34:e55.

Kirkpatrick B, Armendariz CS, Karp RM, Halperin E: HAPLOPOOL: improving
haplotype frequency estimation through DNA pools and phylogenetic
modeling. Bioinformatics 2007, 23:3048-3055.

Zhang H, Yang H-C, Yang Y: PoooL: an efficient method for estimating
haplotype frequencies from large DNA pools. Bioinformatics 2008,
24:1942-1948.

Kuk AYC, Xu J, Yang Y: A study of the efficiency of pooling in haplotype
estimation. Bioinformatics 2010, 26:2556-2563.

Chiang CW, Gajdos ZK, Korn JM, Kuruvilla FG, Butler JL, Hackett R, Guiducci
C, Nguyen TT, Wilks R, Forrester T, Haiman CA, Henderson KD, Le Marchand
L, Henderson BE, Palmert MR, McKenzie CA, Lyon HN, Cooper RS, Zhu X,
Hirschhorn JN: Rapid assessment of genetic ancestry in populations of
unknown origin by genome-wide genotyping of pooled samples. PLoS
Genet 2010, 6:1-11.

Bourret V, Kent MP, Primmer CR, Vasemégi A, Karlsson S, Hindar K,
McGinnity P, Verspoor E, Bernatchez L, Lien S: SNP-array reveals genome
wide patterns of geographical and potential adaptive divergence across
the natural range of Atlantic salmon (Salmo salar). Mol Ecol. doi:10.1111/
mec.12003.

Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW,
Kent MP: A dense SNP-based linkage map for Atlantic salmon (Salmo salar)
reveals extended chromosome homeologies and striking differences in
sex-specific recombination patterns. BMC Genomics 2011, 12:615.
Macgregor S: Most pool construction variation is array-based DNA pool
construction is attributable to array error than pool construction error.
Eur J Hum Genet 2007, 15:501-504.

Shifman S, Bhomra A, Smiley S, Wray NR, James MR, Martin NG, Hettema
JM, An SS, Neale MC, van der Oord EJCG, Kendler KS, Chen X, Boomsma D,
Middeldorp CM, Hottenga JJ, Slagboom PE, Flint J: A whole genome
association study of neuroticism using DNA pool construction. Mo/
Psychiatr 2008, 13:302-312.

Uemoto Y, Sasago N, Abe T, Okada H, Maruoka H, Nakajima H, Shoji N,
Maruyama S, Kobayashi N, Mannen H, Kobayashi E: Practical capability of a
DNA pool-based genome-wide association study using BovineSNP50
array in a cattle population. Anim Sci J 2012. doi:10.1111/}.1740-
0929.2012.01022.x.

Hyten D, Song Q, Choi I-Y, Yoon M-S, Specht JE, Matukumalli LK, Nelson RL,
Shoemaker RC, Young ND, Creagn PB: High-throughput genotyping with


http://dx.doi.org/10.1111/mec.12003
http://dx.doi.org/10.1111/mec.12003
http://dx.doi.org/10.1111/j.1740-0929.2012.01022.x
http://dx.doi.org/10.1111/j.1740-0929.2012.01022.x

Ozerov et al. BMIC Genomics 2013, 14:12 Page 9 of 9
http://www.biomedcentral.com/1471-2164/14/12

the GoldenGate assay in the complex genome of soybean. Theor Appl
Genet 2008, 116:945-952.

35. Leppoittevin C, Frigerio J-M, Garnier-Géré P, Salin F, Cervera M-T, Vornam B,
Harvengt L, Plomion C: In vitro vs. in silico detected SNPs for the
development of a genotyping array: what can we learn from a
non-model species? PLosOne 2010, 5:11034.

36. Kwee LG, Liu Y, Haynes C, Gibson JR, Stone A, Schichman SA, Kamel F,
Nelson LM, Topol B, Van Den Eeden SK, Tanner CM, Cudkowicz ME, Grasso
DL, Lawson R, Muralidhar S, Oddone EZ, Schmidt S, Hauser MA: A high-
density genome-wide association screen of sporadic ALS in US veterans.
PLoS One 2012, 7:e32768.

37. Murray SS, Smith EN, Villarasa N, Nahey T, Lande J, Goldberg H, Shaw M,
Rosenthal L, Ramza B, Alaeddini J, Han X, Damani S, Soykan O, Kowal RC,
Topol EJ, GAME Investigators: Genome-wide association of implantable
cardioverter-defibrillator activation with life-threatening arrhythmias.
PLoS One 2012, 7:225387.

38.  Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ: An inexpensive and
high-throughput procedure to extract and purify total genomic DNA for
population studies. Mol Ecol Notes 2003, 3:317-320.

39. Vaha J-P, Erkinaro J, Niemela E, Saloniemi |, Primmer CR, Johansen M,
Svenning M, Brars S: Temporally stable population-specific differences in
run timing of one-sea-winter Atlantic salmon returning to a large river
system. Evol Appl 2011, 4:39-53.

40.  Wilkening S, Chen B, Wirtenberger M, Burwinkel B, Forsti A, Hemminki K,
Canzian F: Allelotyping of pooled DNA with 250 K SNP microarrays.

BMC Genomics 2007, 8:77.

41, Janicki P, Liu J: Accuracy of allele frequency estimates in pool DNA analyzes by
high-density lllumina Human 610-Quad microarray. Proteomics: Internet J
Genom; 2009:5.

doi:10.1186/1471-2164-14-12

Cite this article as: Ozerov et al.: Cost-effective genome-wide estimation
of allele frequencies from pooled DNA in Atlantic salmon (Salmo salar
L.). BMC Genomics 2013 14:12.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Array- vs. pool-construction variation
	Estimation of allele frequencies from DNA pools
	Quality control

	Conclusions
	Methods
	DNA samples
	Quality control of DNA extracts
	Construction of DNA pools and SNP genotyping
	Quality control
	Estimation of allele frequencies in a pooled DNA samples
	Estimation of array- and pool-construction variation

	Additional file
	Competing interests
	Authors&rsquor; contributions
	Acknowledgements
	Author details
	References

