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Abstract

Background: Reduced representation bisulfite sequencing (RRBS) was developed to measure DNA methylation of
high-CG regions at single base-pair resolution, and has been widely used because of its minimal DNA requirements
and cost efficacy; however, the CpG coverage of genomic regions is restricted and important regions with low-CG
will be ignored in DNA methylation profiling. This method could be improved to generate a more comprehensive
representation.

Results: Based on in silico simulation of enzyme digestion of human and mouse genomes, we have optimized the
current single-enzyme RRBS by applying double enzyme digestion in the library construction to interrogate more
representative regions. CpG coverage of genomic regions was considerably increased in both high-CG and low-CG
regions using the double-enzyme RRBS method, leading to more accurate detection of their average methylation
levels and identification of differential methylation regions between samples. We also applied this double-enzyme
RRBS method to comprehensively analyze the CpG methylation profiles of two colorectal cancer cell lines.

Conclusion: The double-enzyme RRBS increases the CpG coverage of genomic regions considerably over the
previous single-enzyme RRBS method, leading to more accurate detection of their average methylation levels. It will
facilitate genome-wide DNA methylation studies in multiple and complex clinical samples.
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Background
Through a process of post-replicative covalent modification,
5-methylcytosine is considered as a “fifth base” in mammals.
5-methylcytosine is formed by the addition of a methyl
group to the 5-position of a cytosine ring and is catalyzed
by DNA methyltransferases (DNMTs) [1]. The correct
localization of this modification on the chromosomes is
crucial for diverse biological processes, such as embryonic
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reproduction in any medium, provided the or
development, genomic imprinting and X-chromosome
inactivation [2-4]. Aberrant DNA methylation is associated
with many human diseases, including cancers [5].
Multiple methods have been developed to probe the

distribution of 5-methylcytosine on a genome-wide scale.
The Infinium Methylation 450 K array [6,7], based on
quantitative genotyping of the C/T polymorphism gener-
ated by bisulfite conversion, is now widely used because
of its cost-efficiency. However, its CpG coverage is lim-
ited. Next generation sequencing-based methods can de-
tect extensive genome-wide cytosine methylation. These
methods can be classified into two categories. Firstly,
bisulfite-treatment-based approaches, including whole
genome bisulfite sequencing (WGBS) [8,9], reduced
representation bisulfite sequencing (RRBS) [10], and
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target-region capture followed by a bisulfite sequencing
strategy, which we and others developed recently [11,12].
Secondly, affinity-purification-based approaches, including
MeDIP-Seq [13] and MBD-Seq [14,15]. Among the above-
mentioned methods, WGBS has been widely used to profile
DNA methylation at single-base resolution genome wide;
however it consumes micrograms of genomic DNA at a
high cost, which is not feasible for many clinical samples,
such as tumors obtained by laser capture microdissection
or rare stem cell populations [16]. RRBS representatively
interrogates DNA methylation at single-nucleotide reso-
lution in genomic regions that are especially enriched for
CpG islands (CGIs) and promoters. Promoter-associated
CGIs represent important cis regulatory elements in the
human genome: ~70% of annotated gene promoters are
associated with a CGI [17] and about half of all CGIs con-
tain transcription start sites (TSSs) [18,19]. Studies of can-
cer genomes also reveal that aberrant methylation of
promoter-associated CGIs is acquired during tumorigenesis
[5,20]. Promoter-associated CGIs are therefore of special
interest to biomedical researchers. RRBS is the first choice
for DNA methylation analysis of clinical samples because
of its minimal DNA requirements and low cost, based on
reduced representation of the genome.
However, the majority of intergenic regions and CGI

shores are beyond the detection range of current RRBS
strategies [16,21], and DNA methylation in these regions
also plays important roles in various biological processes.
Methylation of intergenic or intragenic regions has been
suggested to be involved in regulating alternative splicing
[22,23] and expression of non-coding RNAs (ncRNA), such
as miRNAs and snoRNAs in tumorigenesis [20,24,25].
Methylation of CGI shores might also be important as
tissue-specific differential methylation regions (T-DMRs)
and cancer-specific differential methylation regions
(C-DMRs), both of which are preferentially located in
CGI shores [22,26]. Furthermore, although RRBS can
representatively interrogate nearly 65% of all promoters, it
can only cover about 30% of the CpG dinucleotides of the
promoters detected, which may not sufficiently represent
their actual methylation levels [16,21].
Based on in silico simulation of enzyme digestion on

human and mouse genomes, we improved the current
single-enzyme (MspI) RRBS (sRRBS) strategy by adding
another enzyme (ApeKI) to interrogate more representa-
tive regions. We applied this double-enzyme strategy
(dRRBS) to a lymphoblastoid (YH) cell line and a mature
dendritic (mDC) cell line [11], and confirmed that the
CpG coverage of CGIs, CGI shores, promoters and
introns were considerably increased. Furthermore, the
average methylation levels in genomic regions varied
along with increasing CpG coverage, indicating that the
dRRBS strategy can more accurately reflect their average
methylation levels. Additionally, we comprehensively
characterized the DNA methylation profiles of a colorec-
tal carcinoma cell line pair (HCT116 and DKO, which
was generated through double knock-out of DNMT1
and DNMT3b in HCT116) [27]. As expected, genome-
wide demethylation in DKO cells was observed. Surpris-
ingly, we also observed that DNA methylation of certain
regions was maintained, suggesting a selection mechan-
ism for cancer cells’ survival, as reported previously [28].
In summary, the improved dRRBS strategy will increase
CpG coverage of genomic regions and improve accuracy
in detecting their average methylation levels, thus aiding
future methylome studies of diverse clinical samples.

Results
Design of the double-enzyme RRBS method
Recently, two groups systematically assessed the sRRBS
technology and demonstrated that it is able to enrich the
promoter and CGI regions [29,30]. We further applied
pair-end sequencing with a 50 bp read length (PE50)
strategy to increase the cytosine coverage, but the pro-
portion of detected CpG dinucleotides within other gen-
etic elements (e.g. functional regions, such as, the
promoter, 5-UTR, and CDS) were still low. sRRBS has
several advantages (e.g. in detection of formalin-fixed,
paraffin-embedded samples or minimal amount of start-
ing genomic DNA) [16]; therefore, we sought to improve
the technology by adding another restriction enzyme to
further fragment the genome. By proper size-selection,
the number of CpGs detected and the coverage of other
genomic regions, such as CGI shores and introns can be
further increased. We performed in silico simulation of
enzyme digestion on the human genome (hg18) and the
mouse genome (mm9) by MspI combined with other
methylation insensitive restriction endonucleases, in-
cluding HpyCH4V, AluI, BstNI, HaeIII, HpyCH4III,
ApeKI, BanII, BglII, TaqαI, SphI, BamHI, BssSI and KpnI.
Two different ranges of size-selection (40-220 bp or
40-300 bp) for in silico digested DNA fragments were
evaluated. The interrogated CpG dinucleotides, based on
50 bp forward reads, were generally increased on differ-
ent genomic elements by double-enzyme digestion in
comparison with single-enzyme MspI digestion in both
human and mouse genomes (Additional file 1: Table S1).
Depending on the specific experimental requirements,

researchers can select an appropriate combination of
enzymes for the RRBS library construction. The recogni-
tion sites of MspI are mostly located in high-CG regions
[16]; therefore, the MspI-digested DNA will be further
fragmented by adding an enzyme with CG inside its
recognition sites; however, the genomic coverage on
regions with low CG density was only slightly increased
(exemplified by TaqαI (T|CGA) and BssSI (C|ACGAG),
Additional file 1: Table S1). A more representative coverage
in low-CG regions can be achieved using an enzyme such
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as ApeKI, which has no CG inside its recognition site. It is
clear the cost rises inline with improvement in CpG cover-
age; thus, considering both increased coverage and cost,
we chose a combination of MspI and ApeKI digestion to
test the feasibility of the dRRBS strategy. This strategy
achieves an approximately two-fold increase in CpG cover-
age. Other combinations, such MspI and BstNI, also in-
crease CpG coverage, but with more sequencing required
(Additional file 1: Table S1). Moreover, the PE90 (with
read length of 90 bp) sequencing strategy can cover more
CpG sites than the PE50 sequencing strategy, based on
current high-throughput platforms, such as Illumina
Hiseq2000. However, the PE50 sequencing strategy is
more cost-effective, considering the amount of data
required (Additional file 1: Table S2). Thus, in present
study, we applied a PE90 sequencing strategy to generate
data, which can be further excised into PE50 sequencing
data by cutting off 50 bp from the sequencing reads in
silico. We then systematically evaluated the CpG coverage
and data requirements from different sequencing strat-
egies of the dRRBS approach.

Data generation and coverage evaluation
Using a double-enzyme (MspI plus ApeKI) RRBS strat-
egy for genome-wide DNA methylation detection, we
constructed sequencing libraries from the genomic DNA
of YH (with 40-220 bp insert fragments) and mDC cell
lines (with 40-300 bp insert fragments). We then
compared the sequencing results to sRRBS results with
40-220 bp fragments digested by MspI (newly generated
for the mDC cell line, but previously generated for YH
[21]). As a result, 64.84 M (YH) and 71.73 M (mDC)
uniquely aligned high-quality PE90 reads with an average
of 10× sequencing depth were generated by dRRBS, while
63.45 M (YH) and 98.71 M (mDC) uniquely aligned PE50
reads with an average of 20× sequencing depth were gen-
erated by sRRBS [21] (Additional file 1: Table S3).
To evaluate the increased coverage of CpGs in specific

genomic regions caused by addition of ApeKI digestion,
we excised the PE90 reads for YH generated by dRRBS
into 50 bp reads, and compared the data with sRRBS.
Two types of measurements were applied in parallel.
One approach simply counted the numbers of individual
CpGs, as suggested in the original RRBS method [16].
We examined different genomic regions of the YH sam-
ple, including promoters, CpG islands, CGI shores,
enhancers and introns (Figure 1a), as well as four other
types of genomic region (5-UTR, CDS, 3-UTR and regions
downstream of genes) (Additional file 2: Figure S1). A
considerable increase in coverage for all these regions,
especially 6.6% for promoters, 5.7% for CpG islands,
13.0% for CGI shores and 10.6% for introns were
detected, with more than 25 individual CpGs measure-
ments (corresponding to the sum of high-quality
sequencing coverage over all CpG dinucleotides in a re-
gion), as described previously [16]. The second method
was to calculate and compare the percentage of CpG
dinucleotides detected. As indicated in Figure 1b, the
coverage of total CpGs was nearly doubled (13.32% in
dRRBS in comparison with 7.08% in sRRBS) in the YH
genome by PE50 sequencing with 40-220 bp size selection.
Accordingly, the CpG coverage within different genomic
elements largely increased, especially for CGI shores and
gene bodies. Furthermore, applying a sequencing strategy
with longer reads or choosing a wider range of size-
selection of digested fragments would expand the
coverage of CpG sites, as exemplified in the comparison
between different strategies using the mDC sample
(Figure 1b). Such scale of increased coverage might
enable more accurate analysis of DMRs, not only for
large regions, as exemplified by one randomly selected
region across chr7:98,550,000-99,050,000 (Additional file 2:
Figure S2a), but also for specific genes, as exemplified by
two tumor suppressor genes (TSGs) with CGI and one
randomly selected gene without CGI. In particular, we
clearly show that dRRBS detected more CpG of CGIs in
promoters of the TBX6 and IRF8 genes than sRRBS
(Additional file 2: Figure S2b).
As the genome-wide coverage of CpG sites increased,

one major concern would be whether the sequencing
cost would also increase. Therefore, we estimated the
cost efficiency in term of reads per informative CpG
measurement. For CpGs with more than 1× and 5× se-
quencing depth, reads per informative CpG were 0.99
and 1.06, respectively, for dRRBS based on the same size
selection (40-220 bp) and read length (PE50) in the YH
sample. For sRRBS, values of 0.83 and 0.85 were
observed, indicating that the cost efficiency is similar be-
tween the two methods. Indeed, the average sequencing
depth of dRRBS would be less than that for sRRBS given
similar amount of raw data (Additional file 1: Table S3).
However, taking CpG sites with 5× and 10× sequencing
depth from both dRRBS and sRRBS, we observed that
3.73% and 2.24% of additional CpGs could be detected
by dRRBS, respectively, with the same size selection
(40-220 bp) and read length (PE50) in the YH sample
(Additional file 2: Figure S3a, S3b). These results suggest
that dRRBS is more applicable in genome-wide studies of
DNA methylation with more representative CpG cover-
age, especially considering recent rapidly decreasing costs
of high-throughput sequencing.

Accuracy and efficiency of methylation detection of DMRs
To evaluate the accuracy of dRRBS, we used whole
genome bisulfite sequencing (WGBS) data for the YH
[31] and mDC [11] samples that were previously gen-
erated. We used data with at least five-fold sequen-
cing depth to assess the methylation status of
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individual CpG dinucleotides by Pearson correlation
analysis. A general consistency of methylation levels
of CpGs was observed between RRBS and WGBS, in
which the Pearson correlation coefficients were similar for
the two RRBS methods (Additional file 2: Figure S4,
Additional file 1: Table S4).
As more CpGs within each genomic element were

detected by the dRRBS method and different CpG cover-
age in a genomic element generated different distribu-
tions of CpG methylation when comparing sRRBS with
dRRBS (Additional file 2: Figure S5), we were interested
in whether there was a discrepancy in the detection of
general methylation levels of a genomic element by the
two strategies. We described the average methylation
levels of elements using sRRBS and dRRBS data sets of
the mDC sample. Interestingly, the methylation levels of
elements extracted by the two strategies showed greater
differences in the promoter, CGI shore and intron
regions than for common CpGs (CpGs that covered by
both sRRBS and dRRBS) in those regions (Figure 2a, 2b).
The methylation accuracy of CpG sites was confirmed
by the Pearson correlation coefficients (Additional file 1:
Table S4). Consistent results were also observed in scat-
ter analysis (Figure 2c, 2d, Additional file 2: Figure S6).
Taking promoters as an example, the Pearson correlation
coefficient of methylation between the two strategies
was 0.77 (Figure 2c), while the correlation coefficient
was increased to 0.98 when the common CpGs were
analyzed (Figure 2d).
As averaging over more CpGs is likely to be more accur-

ate, we then selected the genomic features with more CpG
sites enriched by dRRBS than sRRBS, and compared their
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methylation levels with WGBS. Generally, higher Pearson
correlation coefficients between dRRBS and WGBS were
observed than the values for sRRBS, indicating that
dRRBS is more accurate (Additional file 2: Figure S7).
These results indicated that the average methylation levels
could be biased by the coverage of CpGs in specific gen-
omic regions when detected by techniques with different
scales of representation. It is important to achieve a full
coverage of CpGs to get an accurate estimation of regional
DNA methylation.

Genome-wide profiling of DNA methylation in HCT116
and DKO cell lines
Colorectal carcinoma cell line HCT116 and its derivative
cell line DKO, which bears homozygous deletions of
both DNMT3b and DNMT1, are widely used models
to study target genes of DNA methylation-mediated
silencing, especially for tumor suppressor genes (TSGs)
[32-36] and miRNAs [24,37]. Researchers also observed
that a few key regions preferentially maintain their methy-
lation when global DNA methylation is artificially
reduced in DKO cells, indicating that cancer cells might
depend on DNA methylation for survival [28]. However,
genome-wide methylation status accompanied with gene
expression profiling has not yet been completed. The full
methylome profile for these two cell lines would provide
basic data for researchers to fully address the above-
mentioned issues. We then used the dRRBS method to
analyze the methylation status coupled with gene expres-
sion profiling by digital gene expression (DGE) for the
paired cell lines (Additional file 1: Table S5). As expected,
large amounts of hypomethylation in different genomic
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elements were present in DKO cells compared with
HCT116 cells (Figure 3). A total of 4542 out of 11391
genes showed significantly different levels of DNA
methylation within their promoter regions (P-value < 0.01,
methylation level differences between two cell lines was
greater than 20%). Among these genes, 4526 genes were
significantly hypomethylated in DKO cells compared with
HCT116 cells. Furthermore, 372 of the hypomethylated
genes were significantly upregulated in DKO cells
(Additional file 1: Table S5). Functional analyses revealed
that these 372 genes were enriched in a broad spectrum
of KEGG pathways, including those related to cancer in
the MAPK signaling pathway and Jak-STAT signaling
pathway (Additional file 1: Table S6). This result sug-
gested that some of these 372 genes might be tumor
suppressor genes (TSGs). Thus, the global DNA methyla-
tion, as well as local methylation, in most of the methy-
lated genes in the parental HCT116 cells were decreased
in DKO cells, as a consequence of the impaired DNA
methyltransferase machinery. Despite of that, some
regions maintained high methylation levels in DKO cells
(Figure 3). In particular, promoter regions of 16 genes
remained significantly hypermethylated in DKO com-
pared with HCT116 cells (Additional file 1: Table S5).
Previously, it was reported that DKO cells are under
constant selective pressure to retain DNA methylation at
some key regions to survive [38]. These hypermethylated
genes in DKO cells detected by the dRRBS method might
be crucial for cancer cells’ survival.
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Figure 3 DNA methylation levels of different genomic elements in co
the distribution of DNA methylation levels measured by double-enzyme RR
test (***, P<0.001).
Validation of promoter methylation by bisulfite-PCR
sequencing
Previously, we identified a series of functional tumor
suppressors that are frequently methylated in multiple
tumors. Using the improved RRBS method, we tested
certain known TSGs (Additional file 1: Table S7), includ-
ing WNT5A [32], PCDH10 [33], DLC1 [34], IRF8 [35]
and ZNF382 [36]. The results of the expanded RRBS
method confirmed that all these genes are relatively
hypermethylated in HCT116, but hypomethylated in the
DKO cell line (Additional file 1: Table S7). Hence the
dRRBS provides a robust platform for examining DNA
methylation changes and will be useful in future applica-
tions for identifying TSGs with aberrant methylation.
Using bisulfite genomic sequencing with multiple

clones, we selected two regions in promoters for further
validation. We confirmed that both selected regions
were hypermethylated in HCT116, but hypomethylated
in DKO, consistent with the dRRBS results (Figure 4a,
4b, Additional file 1: Table S8). Concomitantly, the rela-
tive expression levels of the differential methylation
regions (DMR)-associated genes were validated by RT-
qPCR and normalized by β-actin expression. Both RT-
qPCR and DGE results suggested that the transcription
of these genes was activated when promoter demethyla-
tion was achieved through knockout of both DNMT1
and DNMT3b in DKO cells (Figure 4c). DDIT4L was
previously studied in melanoma patients as a risk factor,
with a hypermethylated promoter [39]. In the present
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Figure 4 Validation of methylation status of selected regions in promoters and the expression of their associated genes. (a-b)
Methylation statuses of specific regions of two cell lines identified by Bisulfite genomic sequencing. Each circle represents one CpG site within
the tested sequence: filled circles represent methylated CpGs while open circles represent unmethylated CpG sites. (a) Region located in the
promoter region of DDIT4L gene. (b) Region located in the promoter region of SMG1 gene. (c) Gene expression levels in DKO relative to HCT116
cell line. The results are presented as real time PCR data, normalized by β-actin expression levels and digital gene expression sequencing (DGE)
methods. Error bars denote S.D.
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study, we found that the expression of DDIT4L was low
and it had a hypermethylated promoter in HCT116, but
was reactivated in DKO cells, where it showed a decreased
methylation level, suggesting an aberrant methylation sta-
tus of DDIT4L in colorectal cancer.

Discussion
RRBS is a method that combines genomic DNA diges-
tion with size selection of target DNA fragments to
examine genome-wide DNA methylation status, based
on restriction enzyme enrichment of CpG-rich regions
[10]. Previous studies assumed that DNA methylation of
promoters [39,40] and CGIs [5,19] have the greatest
functional significance in regulating gene expression;
therefore, the current RRBS strategy retains MspI single
enzyme digestion to reproducibly detect the methylation
status of CGIs [16,41], although its coverage on other
genomic elements is limited. However, DNA methylation
in other genomic elements besides CGIs might also play
important roles in gene regulation, as exemplified by
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recent studies on DNA methylation of CGI shores and
introns. In one study, Irizarry et al. reported that 76% of
tissue differential methylation regions (T-DMRs) among
liver, spleen and brain, and most methylation alterations
in colon cancer, occurred in CGI shores. Based on their
results, the authors suggested DNA methylation of CGI
shores might play a functional role in regulating alterna-
tive transcription during normal differentiation and can-
cer pathogenesis [22]. Furthermore, DMRs of introns
also correlated with tumor aggressive behaviors by regu-
lating alternative splicing [42] or the transcription of
non-coding RNAs [25,43].
In the present study, the double-enzyme (MspI plus

ApeKI) RRBS strategy reached almost full coverage of
genomic elements of CGIs (~90%) and promoters
(~80%), with more than 25 individual CpGs measure-
ment, even if we only size-selected 40-220 bp fragments
for sequencing. In particular, 13.0% of CGI shores and
10.6% of introns were additionally interrogated, reaching
coverage of more than 70.1% of CGI shores and 40.1%
of introns in comparison with the sRRBS (Figure 1a, 1b).
Importantly, our results also indicated that the methyla-
tion levels of CGI shores, promoters or intron regions
significantly varied with the coverage of individual CpG
dinucleotides detected by the two RRBS strategies (Figure 2).
In other words, the improved dRRBS identifies regional
methylation levels more accurately because of its extensively
increased coverage of genomic elements, and thus could be
widely used as a new RRBS strategy in genome-wide identi-
fication of DNA methylation.
Despite the strategy of size-selection, the read length

of high-throughput sequencing is an important factor in-
fluencing genomic coverage and data requirement for
different RRBS strategies. Previously, we obtained about
3.4 M individual CpG dinucleotides using sRRBS with a
PE50 sequencing strategy [21]. In the present study, we
demonstrate that the dRRBS (MspI plus ApeKI) method
is able to interrogate about 13.3% and 16.3% of the
genome-wide CpGs using PE50 sequencing strategy with
40-220 bp and 40-300 bp inserts, respectively. As a
comparison, it interrogates 16.6% and 21.4% of the
genome-wide CpGs using a PE90 sequencing strategy
with 40-220 bp and 40-300 bp inserts, respectively.
Although longer read length could increase CpGs cover-
age, the majority of bases from the PE90 reads must be
discarded as the reads were beyond the length ranges for
many fragments. As a result, the required data for PE50
sequencing was about half that for PE90 sequencing to
achieve the same depth. Thus, PE50 sequencing is a
relatively efficient and cost-effective strategy for dRRBS.
WGBS consumes micrograms of genomic DNA at a
high cost; therefore, RRBS is more feasible for complex
clinical samples. WGBS is a costly process, yet the costs
of high-throughput sequencing are falling; therefore, nor
only can we choose other enzyme combinations and size
selection for dRRBS to obtain a much more comprehen-
sive representation of the genome, but this method
could also be applied to large scale studies, such as
epigenome-wide association studies [44].
By applying this dRRBS method, we characterized the

genome-scale DNA methylation at single-base resolution
in colorectal carcinoma cell lines HCT116 and DKO.
These cell lines have been employed as models by nu-
merous researchers to validate the ability of their
designed methods to detecting changes in DNA methy-
lation [6,12], to study the expression of TSGs [32-36] or
microRNA regulated by DNA methylation [24,37,45].
Interestingly, a recent study applied this cell model to
identify genes that are prone to methylation in cancer
cells. Taking advantages of genome-scale coverage and
single-base resolution of our dRRBS technology, we ex-
tensively screened the DNA methylation status of these
two cell lines. As expected, many CpG methylation
changes were revealed from the comparison between
HCT116 and DKO cell lines, which closely agreed with
previous findings of HPLC-based global methylation
analysis [27]. However, only a small amount of genes
with significantly decreased methylation levels were sig-
nificantly upregulated in DKO cells, which suggested
that these genes might be repressed only by DNA
methylation. These identified genes would be of interest
for researchers in the study of DNMT-targeting mechan-
ism and in the identification of TSGs. On the other
hand, 16 genes were significantly hypermethylated in
DKO cells, indicating that these loci might retain methy-
lation due to a functional selection pressure, which is
consistent with a recent study [28]. Taken together, pro-
filing cytosine methylation in these two cell lines will
provide basic data for researchers to study the DNA
methylation status of thousands of genomic regions and
to target those conserved methylation regions required
for cancer cell survival using this cellular model.

Conclusion
We have designed and validated systematically a double-
enzyme RRBS strategy, which shows a considerable im-
provement over the previous single-enzyme RRBS method.
This strategy can be applied to profile DNA methylation
with a considerably increased whole-genome coverage and
more accurate identification of methylation levels in various
genomic regions. This method will significantly increase the
ability of biomedical researchers to study genome-wide
DNA methylation in multiple and complex clinical samples.

Methods
Sample preparation
A lymphoblastoid (YH) cell line was obtained from blood
cells of the same individual whose genome and methylome
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(both by WGBS and RRBS) had been previously sequenced
(YH) [21,31,46]. The genomic DNA of YH, a mature
human dendritic cell (mDC) line, and the colorectal cancer
cell lines HCT116 and DKO (DNMT1 −/−, DNMT3B−/−)
generated from HCT116 cells with defective DNA methyl-
transferases DNMT1 and DNMT3b, were isolated by TriR-
eagent (Molecular Research Center, Cincinnati, OH),
proteinase K digestion and phenol/chloroform extraction.
Total RNA of HCT116 and DKO cell lines were extracted
using TriReagent and treated with RNase-free DNase I
(Promega) for 30 min, according to the manufacturer’s
protocols. The integrity of total RNA was checked using an
Agilent 2100 Bioanalyzer (Agilent Technologies).

The single-enzyme RRBS library preparation
RRBS libraries with single MspI digestion were con-
structed for mDC cell line, as previously described
[10,21]. Briefly, 100 ng of genomic DNA was digested
with 300U of MspI enzymes (NEB) in 100 μl reactions at
37°C for 16–19 h. After purification, the digested
products were blunt-ended, and then dA was added,
followed by methylated-adapter ligation. To obtain DNA
fractions of 40-120 bp and 120-220 bp ranges of MspI-
digested products, two ranges of 160-240 bp and
240-340 bp adapter-ligated fractions were excised from a
2% agarose gel, respectively. Bisulfite conversion was con-
ducted using a ZYMO EZ DNA Methylation-Gold Kit™

(ZYMO), following the manufacturer’s instructions. The
final libraries were generated by PCR amplification using
JumpStart™ Taq DNA Polymerase (Sigma). RRBS libraries
were analyzed by an Agilent 2100 Bioanalyzer (Agilent
Technologies) and quantified by real time PCR.

The double-enzyme RRBS library preparation
To construct the MspI and ApeKI digested RRBS library,
100 ng of input genomic DNA was assembled into
100 μl of reactions with 300 units of MspI (NEB) in 1×
NEBuffer 2, incubated at 37°C for 7 h, and then 80°C for
20 min. Twenty units of ApeKI (NEB) were then added
and incubated at 75°C for 16–20 h. After purification of
the digested products with a MiniElute PCR Purification
Kit (Qiagen), the following procedures were similar to
that of MspI digested RRBS library construction. Briefly,
to prepare samples for the ligation of 5-methylcytosine
modified adapters, the overhangs generated by digestion
were repaired in 100 μl reactions containing 15 units of
T4 DNA polymerase, 2 units of Klenow fragment, 60
units of T4 polynucleotide Kinase, 0.6 mM of dNTP and
1× polynucleotide kinase buffer. Reactions were incu-
bated at 20°C for 30 min, followed by purification. The
blunt ended DNA fragments were then 3’ adenylated
using 15 units of (30→ 50 exo-) (Enzymatics) and
0.2 mM of dATP in 50 μl reactions with 1× blue buffer
at 37°C for 30 min. Purification with a MiniElute PCR
Purification Kit (Qiagen) was performed and the
products were resolved in 50 μl with a reaction mixture
containing 360 units of T4 DNA ligase, 0.12 μM of 5-
methylcytosine modified adapter oligo mix (5’ GATCGG
AAGAGCACACGTCTGAACTCCAGTCAC and 50 TAC
ACTCTTTCCCTACACGACGCTCTTCCGATCT) and 1×
Rapid ligation buffer. This was incubated at 20°C for
15 min, then 65°C for 15 min. After that, a 2% of agarose
gel was used to separate the fractions of adapter-ligated
products, and three ranges of 160-240 bp, 240-340 bp and
340-420 bp were excised and purified using a QIAquick gel
extraction kit (Qiagen). Bisulfite conversion was conducted
as described above and 200 ng of sheared unmethylated
lambda DNA were used as carriers for each selected frac-
tion in this treatment. Finally, the libraries were generated
by PCR amplification in a reaction volume of 50 μl consist-
ing of 10 μl of bisulfite converted products, 4 μl of 2.5 mM
dNTP, 5 μl of 10× PCR buffer, 0.5 μl of JumpStart™ Taq
DNA Polymerase, 2 μl of PCR primers and 28.5 μl of water.
The following thermal cycling program was used: 94°C/
1 min; 11 to 15 cycles of 94°C/10 s, 58°C/30 s and 72°C/
30 s; and then extended for 5 min at 72°C and held at 12°C.
PCR products were size-selected and purified using a
QIAquick gel extraction kit (Qiagen). To assess the C-T
conversion of bisulfite treatment, 50 pg of ummethylated
lambda DNA was added into the genomic DNA samples
together as input DNA. The libraries were analyzed by an
Agilent 2100 Bioanalyzer (Agilent Technologies) and
quantified by real time PCR.

RRBS sequencing and data analysis
The libraries were sequenced using Illumina Hiseq2000
analyzer according to the manufacturer’s instructions.
Raw sequencing data was processed by the Illumina
base-calling pipeline. Low-quality reads that contained
more than 30% ‘N’s or over 10% of the sequence with
low quality value (quality value <20) per read were omit-
ted from the data analysis. The clean reads were aligned
to the UCSC human reference genome (hg18, ftp://
hgdownload.cse.ucsc.edu/goldenPath/hg18/) in an un-
biased way for bisulfite sequencing data: (1) all the
observed cytosines were replaced by thymines and the
guanines were replaced by adenosines in silico, forming
two “alignment form” references; (2) observed cytosines
on the forward read of each read pair were replaced by
thymines, and observed guanines on the reverse read of
each read pair were replaced by adenosines, in silico; (3)
we then mapped the “alignment form” reads to the
“alignment form” reference using SOAPaligner (http://
soap.genomics.org.cn/). The uniquely aligned reads that
contained at least one enzyme (MspI or ApeKI) digestion
site at the ends were used and the first two bases (MspI)
or first three bases (ApekI) on the 50 end of the reverse
reads that were filled in during the end-repair were

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/
http://soap.genomics.org.cn/
http://soap.genomics.org.cn/
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masked for further analysis. Methylation levels of cyto-
sines were analyzed as previously described [31]. DNA
methylation alterations of promoters were analyzed sta-
tistically, as previously described [16]. Briefly, for each
region, the number of methylated and unmethylated
CpG reads was counted, a chi-square test was applied to
identify differentially methylated genomic elements with
a threshold of p-value < 0.01. Meanwhile, the difference
in methylation levels between two samples should be
more than 20%. CGIs were defined as regions greater
than 200 bp with a GC fraction greater than 0.5 and an
observed-to-expected ratio of CpG greater than 0.6. Pro-
moters were defined as the regions spanning 2200 bp
upstream and 500 bp downstream of the transcriptional
start site. CGI shores were defined as regions of 2 kb in
length adjacent to CGIs, and the enhancers were down-
loaded from VISTA Enhancer Browser (hg19, http://en-
hancer.lbl.gov/; the coordinates were transformed into
hg18 version).

DGE library construction and statistical analysis
For gene expression profiling of HCT116 and DKO cell
lines, 4 μg of total RNA isolated from each sample was
used DGE sequencing. The library was constructed as
previously described [47], and subsequent statistical
analyses were performed by the method of Audic and
Claverie [48]. We collected a set of 11391 RefSeq genes for
gene expression analysis (http://genome.ucsc.edu/, hg18),
which can be detected by both the DGE and double-
enzyme RRBS technologies. The significantly differentially
expressed genes were determined at a threshold false
discovery rate (FDR) <0.01 and two-fold reads per million
(TPM) difference.

Bisulfite genomic sequencing
PCR primers were designed by the online MethPrimer
software (www.urogene.org/methprimer/index.html). The
detailed information for their associated genes is listed in
Additional file 1: Table S8. 400 ng of genomic DNA were
converted using ZYMO EZ DNA Methylation-Gold Kit™

(ZYMO) and one-third of the elution products were used
as templates. PCR amplification was carried out with a
thermal cycling program of 94°C for 1 min; 30 cycles of
94°C for 10s, 58°C for 30s, and 72°C for 30s; and a final
5 min incubation at 72°C. PCR products were purified
using the QIAquick Gel Extraction Kit (Qiagen) and
subcloned. Twenty-four colonies for each PCR product
were sequenced using the 3730 Genetic Analyzer (Applied
Biosystems).

Quantitative real time PCR
500 ng of total RNA was reverse transcribed using an oligo
(dT)12 to 18 primer with Superscript II reverse transcriptase
(Invitrogen), according to the manufacturer’s instructions.
Reverse transcription PCR primers were designed between
different exons to avoid any amplification of contaminating
DNA (Additional file 1: Table S8) and the cDNA levels of
target genes were analyzed using comparative Ct methods,
and normalized to the level of β-actin. Real-time quantitative
PCR reactions were performed on an ABI StepOne Plus
Real Time PCR System (Applied Biosystems Inc.) using Eva
Green (Biotium). The experiments were performed three
times, independently, and the reactions were analyzed in
triplicate.

Additional files

Additional file 1: Contains all supplemental tables (Tables S1-8)
and corresponding captions.

Additional file 2: Contains all supplemental figures (Figures S1-7)
and corresponding legends.
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