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Abstract

Background: Teladorsagia circumcincta (order Strongylida) is an economically important parasitic nematode of
small ruminants (including sheep and goats) in temperate climatic regions of the world. Improved insights into the
molecular biology of this parasite could underpin alternative methods required to control this and related parasites,
in order to circumvent major problems associated with anthelmintic resistance. The aims of the present study were
to define the transcriptome of the adult stage of T. circumcincta and to infer the main pathways linked to
molecules known to be expressed in this nematode. Since sheep develop acquired immunity against

T. circumcincta, there is some potential for the development of a vaccine against this parasite. Hence, we infer
excretory/secretory molecules for T. circumcincta as possible immunogens and vaccine candidates.

Results: A total of 407,357 ESTs were assembled yielding 39,852 putative gene sequences. Conceptual translation
predicted 24,013 proteins, which were then subjected to detailed annotation which included pathway mapping of
predicted proteins (including 112 excreted/secreted [ES] and 226 transmembrane peptides), domain analysis and
GO annotation was carried out using InterProScan along with BLAST2GO. Further analysis was carried out for
secretory signal peptides using SignalP and non-classical sec pathway using SecretomeP tools.

For ES proteins, key pathways, including Fc epsilon RI, T cell receptor, and chemokine signalling as well as
leukocyte transendothelial migration were inferred to be linked to immune responses, along with other pathways
related to neurodegenerative diseases and infectious diseases, which warrant detailed future studies. KAAS could
identify new and updated pathways like phagosome and protein processing in endoplasmic reticulum. Domain
analysis for the assembled dataset revealed families of serine, cysteine and proteinase inhibitors which might
represent targets for parasite intervention. InterProScan could identify GO terms pertaining to the extracellular
region. Some of the important domain families identified included the SCP-like extracellular proteins which belong
to the pathogenesis-related proteins (PRPs) superfamily along with C-type lectin, saposin-like proteins. The
‘extracellular region’ that corresponds to allergen V5/Tpx-1 related, considered important in parasite-host
interactions, was also identified.

Six cysteine motif (SXC1) proteins, transthyretin proteins, C-type lectins, activation-associated secreted proteins
(ASPs), which could represent potential candidates for developing novel anthelmintics or vaccines were few other
important findings. Of these, SXC1, protein kinase domain-containing protein, trypsin family protein, trypsin-like
protease family member (TRY-1), putative major allergen and putative lipid binding protein were identified which
have not been reported in the published T. circumcincta proteomics analysis.
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Detailed analysis of 6,058 raw EST sequences from dbEST revealed 315 putatively secreted proteins. Amongst them,
C-type single domain activation associated secreted protein ASP3 precursor, activation-associated secreted proteins
(ASP-like protein), cathepsin B-like cysteine protease, cathepsin L cysteine protease, cysteine protease,
TransThyretin-Related and Venom-Allergen-like proteins were the key findings.

Conclusions: We have annotated a large dataset ESTs of T. circumcincta and undertaken detailed comparative
bioinformatics analyses. The results provide a comprehensive insight into the molecular biology of this parasite and
disease manifestation which provides potential focal point for future research. We identified a number of pathways
responsible for immune response. This type of large-scale computational scanning could be coupled with
proteomic and metabolomic studies of this parasite leading to novel therapeutic intervention and disease control
strategies. We have also successfully affirmed the use of bioinformatics tools, for the study of ESTs, which could
now serve as a benchmark for the development of new computational EST analysis pipelines.

~

Introduction
Parasitic nematodes have a free-living state with their
growth and survival controlled by the surrounding
environment, especially by factors such as temperature
and moisture.

Teladorsagia circumcincta is a key parasite that affect
small ruminants in many countries around the world.
Its lifecycle is direct and is similar to a number of gas-
trointestinal strongylid nematodes [1]. In brief, eggs
released in faeces develop, and first-stage larvae (L1s)
hatch usually within a day. L1s develop through to
infective third-stage larvae (L3s) within about a week.
L3s on pasture are ingested by the ruminant host,
within which they exsheath in the rumenoreticulum and
then pass to the abomasum to enter gastric glands and
moult to fourth-stage larvae (L4). After this histotrophic
phase, these larvae develop to adult female and male
worms which reproduce.

T. circumcincta can be a major cause of economic loss
due to poor productivity of ruminants, such as sheep and
goats, failure to thrive and deaths, mainly in lambs [2,3].
Together with other trichostrongylid nematodes, this
parasite is usually controlled using a combination of
anthelmintic treatment and management strategies. The
emergence of resistance in trichostrongylids to the three
main classes of anthelmintic drugs, including benzimida-
zoles (white drenches), imidazothiazoles/tetrahydropyri-
midines (yellow/pink drenches) and macrocyclic lactones
(clear drenches) compromises effective control. Improved
insights into the molecular biology of these parasites have
the potential to support the development of alternative
methods of parasite control, in order to circumvent these
resistance problems. Vaccination is considered by some
researchers [4] to be a possible alternative approach to
anthelmintic treatment, but attempts to develop a practi-
cal, commercial vaccine have been unsuccessful to date,
likely because of a lack of detailed understanding of the
immuno-molecular biology of the parasites, host-parasite
interactions and disease. In spite of the economic

significance of T. circumcincta, particularly in lambs, our
understanding of the spectrum of antigens and immuno-
gens involved in immune responses is still limited [5-7].
Nonetheless, there is evidence that excretory/secretory
(ES) molecules are intimately involved in inducing and/
or modulating the host’s immune response [8], and it has
been proposed that some of them are immunogens
which could serve as potential vaccine targets [9,10].
Antigenic or immunogenic molecules can be studied
using a range of immunochemical or proteomic approaches
[11], and transcriptomic studies can strengthen such inves-
tigations by providing annotated datasets to allow the iden-
tification and classification of such key molecules. For
instance, transcriptomic study of T. circumcincta has iden-
tified a number of components, including N-type and
C-type single domain, activation-associated secreted pro-
teins (ASPs) [5]. Preliminary evidence showed that the pro-
teins inferred to represent the secretome in T. circumcincta
larvae were associated with specific antibody responses in
sheep against this parasite. These proteins might be incor-
porated into a vaccine for immunizing sheep to combat the
Teladorsagiosis disease [12]. Importantly, N-type and
C-type single domain activation-associated secreted pro-
teins (ASPs) and T. circumcincta apyrase-1 (Tci-APY-1) in
excretory/secretory products of L4s of T. circumcincta,
identified also in transcriptomic studies [5,13], have been
demonstrated to be targets for early, specific IgA responses
in infected sheep [5]. In addition, it has been reported that
Tci-MIF-1, a macrophage migration inhibitory factor
(MIF)-like molecule with tautomerase activity, might
influence both host immune responses and nematode
physiology [14]. Therefore, a detailed exploration of the
transcriptome of T. circumcincta will provide a vital insight
into the molecular biology of this parasite and should also
provide a basis for studying parasite-host interactions and
disease as well as parasite development and reproduction,
with a view towards establishing new methods of preven-
tion, treatment or control. Extending previous studies of
strongylid nematodes [15-18], we report the first
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comprehensive analysis of the transcriptome from the adult
stage of T. circumcincta, with an emphasis on characteriza-
tion of molecules inferred to be ES proteins.

Materials and methods

The ESTs (NCBI EST database accession numbers
SRR328404 and SRR328405) was generated by LS454
RNAseq sequencing of T. circumcincta 2284716780 frag-
ment cDNA library using 454 GS FLX Titanium instru-
ment. The dataset was initially assembled and annotated
using different tools. Initially, all ESTs were pre-processed
(using SeqClean [19] and RepeatMasker (Smit AFA &
Green P)), for the removal of low-quality regions and con-
sensus sequence generation using the Contig Assembly
Program CAP3 which was followed by assembly [20]. This
step was followed by ESTScan [21] translation of the con-
tiguous sequences (contigs) into peptides, which were
then characterized via InterProScan [22] domain/motifs.
Gene ontologies were inferred using BLAST2GO (V 2.3.5)
[23], from Gene Ontology (MySQL-DB-data release
go_200903) and InterProScan. Peptides predicted were
also compared, using BLASTP, with data in the non-
redundant protein sequence database from National Cen-
tre for Biotechnology Information (NCBI). The peptides
were mapped to respective pathways in C. elegans using
KOBAS [24] (KEGG [25] Orthology-Based Annotation
System, KOBAS-1.1.0). The results were compared with
pathway mapping using KAAS [26]. Similarity searches
were done for protein databases for ‘parasitic nematodes’
and ‘non-nematodes’ generated in-house. Homologues/
orthologues were identified via comparisons against
WormBase using BLASTX. In addition, data for C. ele-
gans, including RNA interference (RNAI), gene ontology,
pathway and domain analyses were used for functional
annotation.

The program SimiTri [27] was used for the comparison
of inferred amino acid sequence data for T. circumcincta
with those available for C. elegans, parasitic nematode and
other organisms in public databases. SimiTri provides a
two-dimensional display of relative similarity relationships
among three different datasets. ES proteins were predicted
using SignalP [28] to infer the presence of secretory signal
peptides and signal anchors in predicted proteins. Secreto-
meP [29] was also used to predict proteins involved in a
non-classical secretory pathway. Transmembrane proteins
were predicted using TMHMM [30], a hidden Markov
model-based program. Predicted proteins lacking trans-
membrane domains were subjected to further annotation
using data available in Wormpep [31].

Results

cDNA analysis

From a total of 407,357 raw EST's representing 7. circum-
cincta, we obtained 366,897 high quality ESTs (Table 1),
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Table 1 Preliminary analysis of the 407357 T. circumcincta
ESTs.

T. circumcincta ESTs

Numbers (percentage)

Raw sequences obtained 407357

Cleaned sequences 366897 (90.06)
Clusters of multiple sequences (contigs) 22382 (54)

Clusters of singletons 17470 (4.2)

Total rESTs 39852 (9.7)

Putative peptides 24013 (60.25 9% rESTs)
E/S proteins (cut-off: 0.5) 112

The contigs and singletons generated by preprocessing, overall representative
ESTs (rESTs), peptides from conceptual translation and putative excretory-
secretory (E/S) proteins identified are shown.

which ranged from 100-415 bp in length (mean: 206 bp;
standard deviation: 43 bp). After clustering and assembly,
the mean length of contigs increased to 360 bp (standard
deviation: 173 bp). The G+C content of the coding
sequence was 42%, consistent with other strongylid nema-
todes [15,32]. The assembly of the 366,897 ESTs yielded
39,852 representative sequences (22,382 contigs and 17,470
singletons; Table 1), of which 24,013 (60.3%) had open
reading frames (ORFs). Similarity searches of these repre-
sentative sequences identified 19,540 (49%) homologues in
C. elegans, 32,476 (81.5%) in other parasitic nematodes and
13,064 (32.78%) in organisms other than nematodes.

Of the 6,628 (16.63 %) well-characterized molecules
known to be associated with various biological processes
(Additional File 1). Similarly, a comparative analysis of all
39,852 rESTs was also carried out using data from var-
ious nematodes (such as Haemonchus contortus, Necator
americanus, Nippostrongylus brasiliensis, Ostertagia
ostertagi, Oesophagostomum dentatum, Ancylostoma
caninum, Dictyocaulus viviparus) [32]; Mitreva et al.,
2006) to explore gene conservation within clade V (Addi-
tional File 2). The analysis showed that 13,531 ESTs
(33.95%) had significant sequence similarity to molecules
from the members of clade V at an e-values cut-off of
le-05.

6156 of them were mapped to 234 KEGG pathways of
the homologues identified in C. elegans. Oxidative phos-
phorylation (n = 357) and Peptidases (n = 277 peptidases)
were the highest represented according to the number of
peptides mapped. Other groups of molecules were mapped
to metabolic pathways such as glycine, serine and threonine
metabolism (n = 93), insulin signaling pathway (n = 68),
signal transduction mechanisms (n = 54), N-glycan bio-
synthesis (n = 33), galactose metabolism (n = 31), GuRH
signaling pathway (n = 13), aminosugars metabolism (n =
11), linoleic acid metabolism (n = 5), immune and comple-
ment and coagulation cascades (n = 4). A list of the KEGG
pathways and the corresponding rESTs is provided as sup-
plementary information (Additional File 3).
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Peptides/Proteins

Of the 39,852 rESTs, 24,013 were inferred to have open
reading frame (ORFs). 6,470 sequences mapped to 309
KEGG pathways, with the top 30 ‘highly represented’ path-
ways categorized by the number of peptides mapped, pre-
sented in Table 2. The main KEGG pathways represented
were the peptidases (n = 254) and ribosomal protein
assembly pathway (n = 220). Other highly represented
pathways by the peptides include oxidative phosphoryla-
tion (n = 187) and chaperones and folding catalysts (n =
144). Peptides were mapped to several pathways, including
purine metabolism and glycolysis/gluconeogenesis. We have
also compared our results by mapping the sequences
using KAAS where 2,897 sequences were characterized as
belonging to 257 pathways, with 30 ‘highly represented’
pathways, categorized according by the number of pep-
tides mapped, are presented in Table 3. The main KAAS
pathways represented were Huntington’s disease (n = 91)

Table 2 Top 30 metabolic pathways mapped by Kyoto
Encyclopedia of Genes and Genomes in T. circumcincta
protein sequences

KEGG PATHWAY

SEQUENCE COUNT

Peptidases 254
Ribosome 220
Oxidative phosphorylation 187
Other enzymes 168
Chaperones and folding catalysts 144
Cytoskeleton proteins 109
Protein kinases 108
Purine metabolism 102
Translation factors 96
Ubiquitin enzymes 90
Proteasome 89
Starch and sucrose metabolism 86
Pyruvate metabolism 86
Glycolysis/Gluconeogenesis 83
Fatty acid metabolism 83
Lysine degradation 78
Valine, leucine and isoleucine degradation 76
Tryptophan metabolism 72
Aminoacyl-tRNA biosynthesis 69
Insulin signaling pathway 68
GTP-binding proteins 68
Citrate cycle (TCA cycle) 68
Regulation of actin cytoskeleton 65
Propanoate metabolism 64
Cell cycle 64
Carbon fixation 64
Focal adhesion 62
Ubiquitin mediated proteolysis 60
Fructose and mannose metabolism 60
Butanoate metabolism 59
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Table 3 Top 30 metabolic pathways mapped by KAAS in
T. circumcincta protein sequences

KEGG PATHWAY PROTEINS
Huntington'’s disease 91
Oxidative phosphorylation 84
Ribosome 80
Spliceosome 79
Alzheimer’s disease 72
Parkinson’s disease 70
Purine metabolism 56
Pyrimidine metabolism 51
Cell cycle 34
Ubiquitin mediated proteolysis 33
Proteasome 33
Lysosome 33
Endocytosis 32
Cell cycle - yeast 31
Peroxisome 30
Glycolysis/Gluconeogenesis 29
Pathways in cancer 28
Aminoacyl-tRNA biosynthesis 28
DNA replication 26
Valine, leucine and isoleucine degradation 25
Regulation of actin cytoskeleton 25
Citrate cycle (TCA cycle) 25
Vibrio cholerae infection 23
Fatty acid metabolism 23
Amino sugar and nucleotide sugar metabolism 23
RNA degradation 22
Nucleotide excision repair 21
Lysine degradation 21
RNA polymerase 20
Meiosis - yeast 20

and oxidative phosphorylation (n = 84). Other highly
represented pathways include the ribosomal protein
assembly pathway (n = 80), ubiquitin mediated proteolysis
(n = 33) and glycolysis/gluconeogenesis (n = 29).

Peptides were also mapped to several other pathways,
including purine metabolism and pyrimidine metabolism,
pathways in cancer, cysteine and methionine metabolism,
glycolipid metabolism and glutathione metabolism. Among
the highly represented pathways, both KEGG and KAAS
identified oxidative phosphorylation, purine metabolism,
glycolysis/gluconeogenesis and ribosomal protein assembly
pathways. We could identify GO terms using InterProScan
for 24,013 proteins with 3,801 being assigned as involved
in biological process (BP), 5,220 as associated with mole-
cular function (MF) and 1,862 as part of the cellular com-
ponent (CC) (Additional File 4). The analysis revealed that
oxidation reduction (GO:0055114) and metabolic process
(GO:0008152) were the most common GO categories
representing biological processes. The highest represented
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GO terms in molecular function were binding (GO:
0005488) and oxidoreductase activity (GO:0016491).
Whereas in cellular component, the highly represented
GO terms were ribosome (GO:0005840) and membrane
(GO:0016020). With 138 protein entries, the protein
kinase-like domain family of proteins was the most repre-
sented, followed by SCP-like extracellular domain family,
with 126 protein entries. Other highly represented group
of domains are the NAD(P)-binding domain, allergen V5/
Tpx-1 related domain and transthyretin-like domain
(Table 4).

Secretome

We inferred 112 excreted/secreted proteins from the pre-
sent data set of 39,852 rESTs (Additional File 5). Six
Transthyretin proteins followed by three saposin-like pro-
teinl from A. caninum, three SXC1 (Six Cysteine Motif)
proteins of O. ostertagi, two C-type single domain activa-
tion associated secreted protein ASP3 precursor from
O. ostertagi were identified. Two C-type lectin-1 proteins
represented in Heligmosomoides polygyrus and FMRFa-
mide-like prepropeptide from Oesophagostomum denta-
tum one each of globin-like protein and putative L3 ES
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proteins of O. ostertagi, the bovine parasite which is clo-
sely related to T. circumcincta [33] were also identified.
Neuropeptides or neuropeptide precursor molecules were
represented among the annotated ES dataset.

Upon detailed annotations of the 112 adult secreted pro-
teins, few novel proteins such as SXC1, protein kinase
domain containing protein, trypsin family protein, TRYp-
sin-like protease family member (try-1), putative lipid
binding protein were also identified. These novel proteins
were not reported in the T. circumcincta proteomics ana-
lysis [12,34] (Additional File 6). Subsequent detailed anno-
tation of 226 transmembrane proteins helped in the
identification of SXC1 (Six Cysteine Motif) proteins of
O. ostertagi, putative L3 ES protein (O. ostertagi), putative
major allergen (Brugia malayi). The details of these pro-
teins are listed in Additional File 7.

We were able to functionally assign GO terms to 112
putative ES proteins with 50 being assigned as involved
in biological process (BP), 81 as associated with molecu-
lar function (MF). The GO annotation summary with
biological process, cellular component and molecular
function details is provided in Figure 1. Oxidation reduc-
tion (GO:0055114) and transmembrane transport

Table 4 Top 30 domain description for the protein sequences

Description

InterProscan ID Protein sequences

Protein kinase-like domain

SCP-like extracellular

NAD(P)-binding domain

Allergen V5/Tpx-1 related

Transthyretin-like

C-type lectin fold

C-type lectin

C-type lectin-like

Nucleotide-binding, alpha-beta plait
Serine/threonine-protein kinase-like domain
Metridin-like ShK toxin

RNA recognition motif, RNP-1

Peptidase C1A, papain

Thioredoxin-like fold

WD40 repeat, subgroup

WD40 repeat-like-containing domain
WDA40/YVTN repeat-like-containing domain
Thioredoxin fold

Pyridoxal phosphate-dependent transferase, major domain
Heat shock protein Hsp20

Protein-tyrosine phosphatase, receptor/non-receptor type
EF-hand-like domain

Peptidase Al

Tyrosine-protein kinase

Peptidase C1A, papain C-terminal
Peptidase aspartic

Short-chain dehydrogenase/reductase SDR

IPRO11009 138
IPRO14044 126
IPRO16040 96
IPRO01283 95
IPRO01534 88
IPRO16187 85
IPRO01304 78
IPRO16186 71
IPRO12677 71
IPRO17442 69
IPR0O03582 67
IPRO00504 64
IPRO13128 59
IPRO12336 57
IPRO19781 56
IPRO11046 56
IPRO15943 54
IPRO12335 53
IPRO15424 52
IPR002068 51
IPRO00242 50
IPRO11992 49
IPRO01461 48
IPR0O20685 47
IPRO00668 47
IPRO21109 45
IPR0O02198 45
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(GO:0055085) were the most common GO categories
representing biological processes. The highest repre-
sented GO terms in molecular function were binding
(GO: 0005488) and catalytic activity (GO: 0003824),

known for their role in the identification of vaccine can-
didates or drug discovery. Additional File 8 gives a list of
GO mappings consigned to ES protein data is provided
in. 63 KEGG pathways showed mapping to 90 sequences
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with the top 30 ‘highly represented’ pathways, categorized
according to the number of putative ES proteins mapped,
are presented in Table 5. Protein kinases (n = 3) and oxi-
dative phosphorylation (n = 3) were the main KEGG
pathways that mapped to the ES protein sequences.
Few other highly represented pathways by the ES pro-
teins include the glycerophospholipid metabolism (n =
3), long-term depression (n = 3), glycolysis/gluconeogen-
esis (n = 2). Several pathways including purine metabo-
lism, protein folding and associated processing, MAPK
signaling pathway, linoleic acid metabolism, GnRH sig-
naling pathway and glutathione metabolism were
mapped by ES protein sequences. The list of KEGG
pathways for ES proteins is available from Additional
File 9.

55 KEGG pathways contained 85 sequences using KAAS
with the top 30 ‘highly represented’ pathways, categorized

Table 5 Top 30 selected metabolic pathways in
excretory-secretory proteins mapped using KEGG
database

KEGG PATHWAY

Protein kinases

ES Proteins

Oxidative phosphorylation
Long-term depression
Glycerophospholipid metabolism
Arachidonic acid metabolism
VEGF signaling pathway

Purine metabolism

Protein folding and associated processing
Peptidases

MAPK signaling pathway
Linoleic acid metabolism

GnRH signaling pathway
Glycolysis/Gluconeogenesis
Glutathione metabolism

Fc epsilon Rl signaling pathway
Ether lipid metabolism
Cytoskeleton proteins

CAM ligands

alpha-Linolenic acid metabolism
Wnt signalling pathway

Urea cycle and metabolism of amino groups
Ubiquitin mediated proteolysis
Ubiquitin enzymes

Tyrosine metabolism

Type Il diabetes mellitus
Translation factors

Transcription factors

Tight junction

TGF-beta signaling pathway
Signal transduction mechanisms

A - = = a s s e s s s = NN NN NN NN NN N NN WW W w W

Other enzymes
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by the number of peptides mapped, are presented in Table
6. Glycerophospholipid metabolism (n = 3) and oxidative
phosphorylation (n = 3) were the main KEGG pathways
that mapped to the sequences. Few other highly repre-
sented pathways by ES proteins included long-term depres-
sion (n = 3) and Wut signaling pathway (n = 2). ES
proteins were mapped to several pathways such as MAPK
signaling pathway, linoleic acid metabolism, GnRH signal-
ing pathway, glutathione metabolism and TGF-f3 signaling
pathway. The KEGG pathways with the corresponding ES
proteins are provided in Additional File 10.

Table 7 gives the top 20 representative protein families
with metridin-like ShK toxin as the highly represented
family of proteins, comprising of 14 ES protein entries.
Followed by transthyretin-like family of proteins, compris-
ing 11 ES protein entries. C-type lectin, saposin-like
domain and SCP-like extracellular domain superfamily of
the pathogenesis-related proteins (PRPs) [35,36] were the
few other well-represented domain families in the present

Table 6 Pathway Analysis of secreted proteins using
KAAS

KEGG PATHWAY
Glycerophospholipid metabolism

ES Proteins

Oxidative phosphorylation
Vascular smooth muscle contraction
Long-term depression
Arachidonic acid metabolism
Alzheimer's disease

Wnt signaling pathway

VEGF signaling pathway

Tight junction

TGF-beta signaling pathway
Parkinson’s disease

Oocyte meiosis

Meiosis - yeast

MAPK signaling pathway
Lysosome

Linoleic acid metabolism
Huntington's disease

GnRH signaling pathway
Glutathione metabolism

Fc epsilon RI signaling pathway
Ether lipid metabolism

Cell cycle - yeast

Axon guidance

alpha-Linolenic acid metabolism
Pyruvate metabolism
Glycolysis/Gluconeogenesis
Carbon fixation in photosynthetic organisms
Citrate cycle

Vibrio cholerae infection

_ = = = = = NNNNNNNNNDNNDNDND NN NDNDDNDWWwWWwWw W W w

Ubiquitin mediated proteolysis
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Table 7 Top 20 protein families of known function found in excretory-secretory proteins

Description ES sequences Type Interproscan ID
Metridin-like ShK toxin 14 Domain IPR003582
Transthyretin-like 11 Family IPRO01534
SCP-like extracellular 7 Domain IPRO14044
Saposin-like 7 Domain IPROT1001
C-type lectin 7 Domain IPRO01304
C-type lectin fold 6 Domain IPR0O16187
C-type lectin-like 6 Domain IPRO16186
Proteinase inhibitor 12, Kunitz metazoa 5 Domain IPR002223
Protein kinase-like domain 4 Domain IPRO11009
Major facilitator superfamily, general substrate transporter 4 Domain IPRO16196
Destabilase 3 Family IPRO08597
Allergen V5/Tpx-1 related 3 Family IPR0O01283
Tyrosine-protein kinase 3 Region IPR0O20685
Phospholipase A2 2 Family IPRO16090
Thioredoxin-like fold 2 Domain IPRO12336
Thioredoxin fold 2 Domain IPRO12335
Globin 2 Domain IPRO12292
Serine/cysteine peptidase, trypsin-like 2 Domain IPRO09003
Saposin B 2 Domain IPRO08139
Protein of unknown function DUF148 2 Domain IPRO03677

datasets. SecretomeP identified 615 sequences as non-
classical secreted proteins at a cut-off value of 0.9. The
detailed annotation of 615 secreted proteins revealed 62
KEGG pathways mapped by 105 sequences (Additional
File 11) with the top highly represented pathways pre-
sented in Table 8.

Translation factors and oxidative phosphorylation were the
main KEGG pathways that mapped to the sequences. Pro-
tein kinases, peptidases, chaperones and folding catalysts
are among other well represented pathways by ES proteins.
The analysis of 6,058 raw EST sequences from dbEST with
an overlap of 20.3% with the cDNA resulted in 745 contigs
and 1,696 singletons, where 2,242 had ORFs.

We could identify 315 putatively secreted proteins and
183 transmembrane proteins. An in-depth analysis of
secreted proteins, identified 11 C-type single domain acti-
vation associated secreted protein (ASP3) precursors
(O. ostertagi), ten ancyclostoma-secreted protein-like pro-
teins (O. ostertagi), five cathepsin B-like cysteine proteases
(O. ostertagi), one cathepsin L cysteine protease (H. contor-
tus), three cysteine proteases, four precursor transthyretin
like protein 1 (O. ostertagi), six putative L3 ES proteins
(O. ostertagi), five saposin-like protein 1 (A. caninum),
three secreted cathepsin F (T. circumcincta), two SXC1 pro-
teins (O. ostertagi), three TransThyretin-related proteins,
two venom-allergen-like proteins.

Discussion
In the absence of a genomic sequence for 7. circum-
cincta, 407,357 raw EST sequences were analysed to

obtain quality ESTs with a sequencing success of 90.06%
which is consistent with previous studies [15,34,37]. To
infer the proteome for T. circumcincta, all rESTs were
then subjected to analyses against three databases con-
taining protein sequences. Data were compared with
protein sequences available for (i) C. elegans (from
WORMPEP v.182 Wombase([http://wormbase.org/])),
(ii) parasitic nematodes (available protein sequences and
peptides from conceptually translated ESTs) and (iii)
organisms other than nematodes (from NCBI non-
redundant protein database) [38]. Three-way compari-
son of T. circumcincta rESTs with homologues from
C. elegans, WORMPEP and parasitic nematodes have
been figuratively presented (Figure 2) using SimiTri.

Some of the proteins predicted to be parasite- or nema-
tode-specific were identified by similarity searches of
rESTs and these proteins in parasitic nematodes were
either absent from or very different from the correspond-
ing molecules in their host(s).

Comparative analysis was carried out to identify homo-
logues in C. elegans, the best characterized nematode in
relation to its genome, genetics, biology, physiology, bio-
chemistry as well as the localization and functions of
molecules Wormbase [39]. This study showed that 7,537
of them were mapped to key biological pathways including
oxidative phosphorylation, peptidases and the ribosomal
protein assembly pathway. Oxidative phosphorylation
relates to genes that encode NADH dehydrogenases, suc-
cinate dehydrogenases, cytochrome c oxidases, cyto-
chrome c¢ reductases, ATPases and ATP synthases
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Table 8 Top 30 Pathway analysis of secreted proteins
obtained from SecretomeP

KEGG PATHWAY

Translation factors

ES Proteins

Oxidative phosphorylation

Cell cycle

Regulation of actin cytoskeleton
Protein kinases
Progesterone-mediated oocyte maturation
Peptidases

DNA polymerase

Chaperones and folding catalysts
Ubiquitin mediated proteolysis
Ubiquitin enzymes

Transcription factors

Tight junction

RNA polymerase

Ribosome

Reductive carboxylate cycle (CO2 fixation)
Pyruvate metabolism

Pores ion channels

mTOR signaling pathway

MAPK signaling pathway
Glutathione metabolism

General function prediction only
Gap junction

Fatty acid metabolism

Fatty acid biosynthesis
Cytoskeleton proteins

Citrate cycle (TCA cycle)

Cell cycle - yeast

Arginine and proline metabolism

NN NN NN NN NN NN NDNDNDNDNDNDNDNDND W W W W ww b Do

Other enzymes

(complexes I-V) [40]. Several peptidases are known to play
a vital role in the moulting process [41], these include
metallo-peptidases that might be candidates for che-
motherapeutic interventions [42-45]. The ribosomal pro-
tein assembly pathway is composed of genes that encode
various proteins of the ribosomal subunits. These proteins
are closely related functionally and need to interact with
each other physically to form a large protein complex
known as the ribosome [40]. Other pathways represented
include the carbon fixation pathways. Several enzymes in
nematodes map to KEGG carbon fixation pathways
[http://www.genome.jp/kegg-bin/show_pathway?categor-
y=Nematodes&mapno = 00720], which refer to normal
energy pathways such as glycolysis, gluconeogenesis (which
is actually carbon fixing) and tricarboxylic acid cycle.

The pathways identified using KOBAS such as TGF-f8
signaling pathway and insulin signaling pathway trigger
an “alternative” developmental pathway and regulate the
transition of environmental stress on C. elegans in the
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first larval stage of its life cycle [46,47]. The disruption of
both insulin-like and DAF-7 transforming growth factor
(TGEF)-B signalling pathways causes developmental arrest
[48,49]. Abundant levels of transcription of GTP-CH
transcripts in some parasitic species could be associated
with production of serotonin to regulate these processes,
in a way that is similar to that of C. elegans, if a TGF-§
pathway does indeed regulate developmental events in
parasitic nematodes [34]. These areas are of great interest
and deserve detailed investigation, particularly given that
molecules representing the TGF-f pathway have been
described for a number of parasitic nematodes such as B.
pahangi, B. malayi and P. trichosuri [50-52].

Proteins expected to play critical roles in host-parasite
interactions including immune responses are predicted
to be involved in antigen processing and presentation or
complement and coagulation cascades.

Nematode enzymes mapped to known human disease
pathways such as Huntington’s disease, Alzheimers disease,
Parkinson’s disease and Vibrio cholerae infection. The neu-
rological disorder pathways are known to describe the
morbidity and depression associated with helminthic
infections. The Vibrio cholera infection pathway supports
this parasite being similar to gastrointestinal strongylid
nematodes.

Clearly, much more work is required to establish the
functional roles of such proteins in the parasite and/or the
host and also to identify essential proteins required in
each pathway, even though they are not well represented.
Some of the proteins are inferred to be excreted/secreted
from the nematode. These include serine proteinase inhibi-
tors and cathepsin B-like cysteine proteases which are pro-
posed to interfere with the immune system at the antigen
processing and presentation stages, thereby, to interrupt
the cytokine network and to down-regulate inflammation
[53]. Families of proteins considered as important targets
for parasite invention and control were also identified
represented by serine, cysteine as well as proteinase inhibi-
tors which are also supported by domain analysis [54-56].
The proteinase inhibitors might protect the parasite
against digestion by endogenous or host-derived protei-
nases [53].

Of the 39,852 rESTSs, 24,013 were inferred to have open
reading frame (ORFs). The most represented domain
family of proteins were the protein kinase-like and the
SCP-like extracellular domains, followed by NAD(P)-
binding domain, allergen V5/Tpx-1 related domain and
transthyretin-like domain. Analysis of several protein and
protein domains present in C. elegans [57] revealed that
protein kinases comprise the second largest family of
protein domains in worms. Protein kinases are required
for the existence of multicellular organisms and are likely
to be involved in the complex signal transduction path-
ways including cell-substratum and cell-cell adhesion,
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Figure 2 Comparison of T. circumcincta rESTs with C. elegans, other parasitic nematodes and organisms other than nematodes, from
SimiTri analysis. The numbers at each vertex indicate rESTs matching that specific database.

Color scale of maximal
BLAST scores for tiles

150 200 300

fa
all

Non —nematodes
13064

transmembrane signaling in response to humoral factors
and cell survival or programmed cell death. Other pro-
tein kinases provide signals that regulate metazoan-speci-
fic transcription factors, particularly those containing Zn-
finger domains [58].

SCP/TAPS family members belong to the cysteine-rich
secretory protein (CRISP) and have been identified in
various eukaryotes. They also seem to have some biolo-
gical roles linked with the member proteins within this
superfamily [59].

The sperm-coating protein (SCP)-like extracellular pro-
teins, also called SCP/Tpx-1/Ag5/PR-1/Sc7, play major
biological roles in the host-pathogen interplay [60] along
with other groups of proteins [61] . NADP" plays a vital
role in developmental process and also acts as a reducing
agent in anabolism along with NAD", a coenzyme
involved in key pathways like glucose metabolism and
fatty acid synthesis [62]. In Strongyloidae, the allergen
V5/Tpx-1 related domain is considered as one of the
most abundant InterPro domain that may be important
in parasitism [32]. It symbolizes various members such as

the ancylostoma-secreted or activation-associated proteins
(ASPs) that belong to the pathogenesis-related protein
(PRP) superfamily [35]. The transthyretin-like domain, an
abundant nematode-specific motif [63] was recently iden-
tified as being abundantly transcribed in the transcrip-
tome of B. malayi [64]. Lectins are carbohydrate binding
proteins and the CLec fold constitutes a general ligand
(including protein)-binding motif [65].

The vertebrate immune cell signalling and trafficking,
activation of innate immunity in both vertebrates and
invertebrates and venom-induced haemostasis, have the
involvement of C-type lectins [66]. Metridin-like ShK toxin
domains are highly represented in the Strongylida [32].
Though the specific function of these proteins are not
known, they are assumed to be involved in defense or
digestion [67]. WD40 repeats (also known as WD or beta-
transducin repeats) are involved in signal transduction and
transcription regulation along with cell-cycle control and
apoptosis [68,69].

Heat shock proteins, such as HSP-20 are reported to
be present in the parasitic nematode, H. contortus
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(barber’s pole worm) which afflicts small ruminant spe-
cies and in the adult stage of A. caninum and other
nematodes including the bovine lungworm Dictyocaulus
viviparus and the common roundworm of canids Toxo-
cara canis. The expression of this molecule was shown
not to be controlled by heat shock treatment [70].

‘EF-hand’ domains are involved in protein-protein
interactions regulated by various specialized systems
(e.g., Golgi system, voltage dependent calcium channels
and calcium transporters) [71]. The maturation of the
nervous system and the formation of ciliated sensory
neurons require both EF-hand and WD40 proteins in
C. elegans [72,73). Major sperm proteins (MSPs), a large
protein family, are known to be largely involved in
nematode sperm motility [74,75]. MSPs (expressed in
recombinant form) have been proposed as vaccine can-
didates [76]. The entire list of domains and their details
are given in Additional File 12. The protein sequences
were assigned functionality based on BLASTP against
the NR database (Additional File 13). Different classes of
proteases are assigned based on the catalytic mechan-
isms and are named based on their active catalytic
centre residues (aspartic, serine and cysteine proteases)
or after their dependence on co-factors for activity
(metalloproteases). Of the four classes of proteases
aspartic proteases are considered to be the most con-
served group.

Cysteine proteases are most likely involved in tissue pene-
tration and feeding [77]. Cysteine, aspartic and metallo-pro-
teases represented in N. americanus, are known to function
in a multi-enzyme cascade to digest haemoglobin and other
serum proteins [78,79]. SCP (sperm coating protein)-1
superfamily members include insect venom allergens, plant
pathogenesis family-1 (PR-1) proteins and VAL proteins
beside mammalian cysteine-rich sperm proteins (CRISPs).
No rational function for this protein family has been
demonstrated despite the sequence similarity [8]. Astacin-
like metalloproteases are vital for establishment of the para-
site in the host. MTP-1 and the astacin-like MTP secreted
by infective larvae of hookworms, are primarily reported in
A. caninum [80-82]. The enzyme guanosine-50-tripho-
sphate (GTP)-cyclohydrolase may be involved in larval
development [35]. In parasitic nematodes, astacin-like
molecules are considered to be involved with moulting, tis-
sue penetration and immunomodulation besides feeding
[34,80]. They are also anticipated to be vaccine candidates
against parasitic nematodes [82,83].

Pathway analysis using KOBAS [24] mapped a total of
6,470 sequences to 309 KEGG pathways. The results were
compared by mapping the sequences using KAAS [26],
where a total of 2,897 sequences were mapped to 257
KEGG pathways. The perceptive of such mapping in bio-
logical pathways will help in identifying vital proteins
required in each pathway.
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Functionally varied classes of molecules such as digestive
enzymes, extracellular proteinases, chemokines, morpho-
gens, cytokines, toxins, hormones, antibodies, antimicro-
bial peptides included in secretome constitute the entire
set of secreted proteins, representing up to 30% of the pro-
teome of an organism [84]. SXC1 (Six Cysteine Motif) pro-
teins of O. ostertagi, transthyretin proteins, saposin-like
protein 1, C-type lectin-1, globin-like protein, Na-ASP-2, a
PR-1 protein from N. americanus, ASP-3 from O. ostertagi,
neuropeptides and cytochrome P450s were also identified
from the 112 excreted/secreted proteins inferred from the
data set of 39,852 rESTs.

The SXC domain, also termed nematode-six cysteine,
NC6 [85], was identified in surface coat proteins of the
parasitic ascarid 7. canis [86,87] along with zinc metallo-
proteases and tyrosinases of C. elegans. SXC domains
have also been identified in other helminths such as
Ascaris, Brugia, Trichuris muris and Necator [88]. The
function of the motif is not known but it is suggested
that it is involved in protein-protein interactions, particu-
larly those associated with nematode surfaces [89] or that
it acts as a signalling ligand [90]. In general, SXC motif
containing proteins have a putative secretory signal pep-
tide and are therefore extracellular. The transthyretin-like
(TTL) gene family, also known as “family 2” [91], has
been classified as nematode-specific based on the gen-
ome-wide study of C. elegans. These are the largest con-
served nematode-specific gene families, coding for a
group of proteins with significant sequence similarity to
transthyretins (TTR) and transthyretin-related proteins
(TRP) [92]. Transthyretin-like protein families are poten-
tial vaccine candidates against human filariasis [93].

As part of transcriptomic analysis of some members of
the phylum Nematoda more than 4,000 nematode-specific
protein families encoded by nematode-restricted genes
were defined with TTL family representing one of the lar-
gest [32]. TTL protein domain was represented 185 times
in all nematodes studied. This included 18 ttl genes in
O. ostertagi as a result of protein domain search using the
NEMBASE database [92]. The TTL family shows charac-
teristics comparable with those of neuropeptides, i.e., a
large protein family with secretion signals and different
expression patterns between the members of the family
and are likely to play a role in the nervous system of the
nematodes [94]. SAPLIPs (saposin-like proteins) are a
diverse family of lipid interacting proteins [95] that have
six conserved cysteine residues forming three disulfide
bridges [95-98]. The majority of Ac-slp-1 is expressed in
the L3 and adult worm, although it is detected in RNA
from all developmental stages of A. caninum.

While the Ac-slp-1 and slp-2 mRNAs are expressed in
the intestines of multiple developmental stages of
A. caninum, suggesting multiple functions in parasite
biology, both Ac-SLP-1 and SLP-2 are localized to the
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intestines and could play a role in parasite feeding. The
SLP-1 protein could also interact with host cells [99].
Worm carbohydrates may be masked from host immune
cells by parasite C-TLs. Nematode C-TLs may also have
roles unconnected with immune evasion [8]. Antigen
uptake and presentation, cell adhesion, apoptosis and
T cell polarization are the few immune processes in
which C-type lectins and galectins are involved [66].
CTLs are perhaps the most prominent in the mamma-
lian immune system. Heligmosomoides polygyrus, the
natural parasites of mice, are the most widely-studied
amongst the parasitic nematodes. Immunological inter-
actions with the host are presumed to be mediated by
the new C-type lectins from these rodent parasites
which are preferentially expressed by the mature adult
stages [100].

Craig et al. [101] were able to identify a homologue of a
globin-like ES protein from O. ostertagi in L4 and adult
T. circumcincta protein. Adult ES proteins in O. ostertagi
identified a homologue of an ASP and a vitellogenin [92],
which were not identified in T. circumcincta ES proteins
[101]. However, we have successfully identified a globin-
like protein and Na-ASP-2 - a PR-1 protein from Necator
americanus) [102] and ASP-3 from O. ostertagi [103].
ASPs are the members of a group of nematode-specific
molecules [5]. Proteins in this family have been identified
in a wide range of organisms [35], including human hook-
worm [104], filarial nematodes [105,106], trichostrongylids
such as H. contortus [107,108], schistosomes [59,109,110]
as well as free-living C. elegans [111]. It has been suggested
that ASPs are key to the transition of nematodes from
free-living to the parasitic state [112]. It has also been sug-
gested that they exhibit homology to a diverse, yet evolu-
tionarily-related, group of secreted proteins classified as
the SCP/Tpx-1/Ag5/PR-1/Sc7 family [5].

Na-ASP-2 has recently been shown to induce neutro-
phil chemotaxis in vitro and in vivo [113], but it remains
uncertain if this is a widespread property of VAL homo-
logues [8]. The role of nematode ASPs as valid vaccine
candidates has also been investigated [114]. ASPs have
been suggested to have the role of allergens [34]. They
also have a role in modulation of the host immune
response [115], in maintenance of the parasites at their
host niche [116,117]and in maintenance and/or exit from
arrested development [118]. ASPs are highly represented
in EST datasets derived from parasitic stages of T. cir-
cumcincta and are abundant in the L4 ES proteins of this
nematode [34]. Neuropeptide-like proteins have shown
to be present in O. ostertagi [119]. These intercellular sig-
naling molecules and particularly the FMRFamide-related
peptides (FaRPs), have been most widely studied in
Ascaris suum where they are present throughout the ner-
vous system [34]. Cysteine-rich proteins were highly
represented in 7. circumcincta L4-specific dataset and
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were suggested to have a role in establishment and
immune evasion [113].

Members of the astacin family have a wide range of
functions [120] including immunomodulation [121],
growth-factor processing, pattern formation in embryos
[122], digestion, tissue penetration [80,123] and hatching
[124]. Nematode AST-like metalloproteinases play role in
stimulating innate and adaptive immune responses early
in infection [83]. Cytochrome P450s, the candidate drug-
resistance genes, were also identified. These could affect
the expression of the functional group ‘xenobiotic degra-
dation and metabolism’ [6]. We have attempted to inte-
grate the transcriptomics data with the proteomics
analysis from previous reports to understand the role of
ES proteins in host-parasite interaction (Additional File 6).
Kyoto Encyclopedia of Genes and Genomes database
(KEGG) was searched with KOBAS and KAAS to categor-
ize functionality by assigning secreted protein sequences
to biological pathways. Fc epsilon RI signaling pathway,
T cell receptor signaling pathway, leukocyte transendothe-
lial migration and chemokine signaling pathway represent
the immune system related pathways which could play a
critical role in understanding the immune responses.

We were also able to identify pathways related to neuro-
degenerative diseases and infectious diseases. Figure 3
shows the pathways represented using the ipath tool [125].
Identification of the role of such proteins as potential
players in pathway analysis will help in our understanding
of nematode biology in the context of parasite-host inter-
play. However, they are thought to be involved in immune
responses in either the host or the parasite, which can be
the focus of future studies. Of the pathways identified
using KAAS, the protein family comprising serine, cysteine
and metallo-proteinases and proteinase inhibitors in the
EST datasets could form the basis of in vitro and in vivo
studies. The parasite might be protected against digestive
degradation by blocking endogenous proteinases within
the host, with proteinase inhibitors. Tissue migration and
other interactions with host cells may be facilitated by the
function of these enzymes, by mediating or changing pro-
teolytic functions [53]. Several studies have considered
these enzymes as important therapeutic targets for parasite
control [54-56,93]. Results from the pathway analysis car-
ried out using KOBAS were compared with the results
obtained using KAAS. The identification of domain/motif
or region in a protein sequence characteristic for a particu-
lar protein family helps in the annotation by the assign-
ment of protein function. We also searched the InterPro
member databases [126] using Interproscan. Amongst the
InterPro domains identified, the Metridin-like ShK and
transthyretin-like domains were amongst the most repre-
sented, followed by C-type lectin, saposin-like and SCP-like
extracellular domains. The Metridin-like ShK domain has
already been shown to be highly represented in Strongylida
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Figure 3 Biological pathways mapped using iPath tool for putative excretory-secretory proteins. The highlighted areas represent the
pathways identified in the whole pathway.

and is often present in metallopeptidases [127,128]. The = domain details of ES proteins. Overall, KOBAS and KAAS
results showed that the most common molecules asso-  provided similar results.

ciated with the extracellular region correspond to allergen Homologues RNAi phenotypes were identified by the
V5/Tpx-1 related protein. Additional File 14 contains the = comparison of 112 predicted ES proteins with the free-
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living nematode C. elegans and the associated RNAi
phenotypes were studied to understand the function(s)
and importance of homologous genes in other nema-
todes (of animals).

From these, 133 C. elegans homologues were retrieved
with RNAi phenotypes (Additional File 15): Emb
(embryonic lethal, including pleiotropic defects severe
early emb), Lva (larval arrest), Gro (slow growth). Stp
(sterile progeny), Lvl (larval lethal) and Ste (maternal
sterile). In the current dataset, we have selected RNAI
phenotypes essential for nematode survival or growth as
well as those representing potential drug and/or vaccine
targets [129,130]. Lethality can be considered as the
most attractive RNAi phenotype applicable to all devel-
opmental stages that are less susceptible to available
drugs as a result of interference with a vital process.
Other attractive phenotypes include sterility that would
lead to death. RNAi phenotypes help in understanding
the concerns regarding genetic redundancy [131].
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