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Abstract

Background: Cancer and other gene related diseases are usually caused by a failure in the signaling pathway
between genes and cells. These failures can occur in different areas of the gene regulatory network, but can be
abstracted as faults in the regulatory function. For effective cancer treatment, it is imperative to identify faults and
select appropriate drugs to treat the faults. In this paper, we present an extensible Max-SAT based automatic test
pattern generation (ATPG) algorithm for cancer therapy. This ATPG algorithm is based on Boolean Satisfiability
(SAT) and utilizes the stuck-at fault model for representing signaling faults. A weighted partial Max-SAT formulation
is used to enable efficient selection of the most effective drug.

Results: Several usage cases are presented for fault identification and drug selection. These cases include the
identification of testable faults, optimal drug selection for single/multiple known faults, and optimal drug selection
for overall fault coverage. Experimental results on growth factor (GF) signaling pathways demonstrate that our
algorithm is flexible, and can yield an exact solution for each feature in much less than 1 second.

Background
In all organisms, cell function is supported by the inter-
action of genes and protein products, forming an inter-
connected network called the gene regulatory network
(GRN) [1]. The interaction or communication between
genes and cells is highly complex and multivariate.
Cancer and gene-related diseases are often the result of a
failure in the signaling, leading to incorrect gene regula-
tion and its associated functions.
The modeling of the gene interactions is thus highly

important for understanding the mechanism and therapy
of cancer. Because genes are observed to have a switch-
like expression (active or inactive), the Boolean network
model [2] has become popular for representing the GRN.
In the Boolean network, the genes and biochemical path-
ways are represented as logic functions, much like logic
gates in an integrated circuit (IC). This network can be
extended to include signaling failures and defects in the
GRN, which are represented as faulty lines in the circuit
[3]. The issue of faults in circuits is well understood in

electronic testing. For example, in chip manufacturing, cir-
cuits are typically tested to check that the IC is defect free
before vendoring. Manufacturing defects manifest them-
selves as logical faults modeled as lines (wires) stuck-at ‘1’
or ‘0’. Using this stuck-at fault model, automatic test pat-
tern generation (ATPG) algorithms determine a set of
tests (bit vectors on the inputs of the circuit) to test for
stuck-at faults in the circuit.
In this paper, we use the stuck-at fault model for the

GRN [3] and employ ATPG techniques to determine a
drug vector (set of drugs) to rectify the fault. The ATPG
algorithm is developed as a Boolean satisfiability (SAT)
based method, where the Boolean network is transformed
into a conjunctive normal form (CNF) expression and
solved for satisfiability to find the drug vector. In therapy,
the goal is to treat the cancer (represented by one or
more faults) using drugs with the least negative impact
on the patient, ideally by prescribing the fewest number
of drugs necessary to avoid unnecessary side-effects and
cost. The SAT method is further extended by assigning
weights to the circuit outputs and drug vectors, and
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solved with a weighted partial Max-SAT to find the opti-
mal set of drugs to fix or rectify the fault.
The key contributions of this paper are:

• In contrast to previous approaches [3] which per-
forms an explicit search, we develop an implicit
SAT-based ATPG approach to model and identify
detectable faults (single and multiple) in a Boolean
network.
• By assigning weights to model output and drug
vectors, we use a weighted partial Max-SAT formu-
lation to determine the optimum selection of drugs
to rectify a specific fault.
• Our approach can be trivially extended to handle
multiple faults.
• We utilize the above techniques for drug therapy
to select the minimum set of drugs to provide the
best coverage across all single/multiple faults.

The remainder of this paper is organized as follows.
The next section discusses previous work in this area. In
the following section, we introduce fault-modeling and
Boolean satisfiability and describe our approach for drug
therapy. We then present experimental results obtained
from applying our methods to a biological example and
discuss applications of our algorithm towards sequential
circuits. Lastly, we draw some concluding remarks about
our SAT-based ATPG method.

Previous work
In the actual GRN, the gene expression or protein concen-
tration is continuous. However, in this paper, the Boolean
network (BN) [2] is chosen as preferred network for mod-
eling the GRN. There are several reasons for this choice.
First, it has been observed that many genes exhibit a
switch-like ON/OFF activity in terms of their expression
[4]. Second, a discrete model like the BN is relatively sim-
ple and easy to analyze and simulate. And lastly, there are
many logic synthesis and test algorithms already developed
in circuit design and testing that can be applied to the
Boolean network.
In [3], the authors proposed modeling cancer as faults

in the signaling network and applied fault analysis for
drug intervention to control the GRN. Cancer is a disease
that arise from fault(s) in the network leading to loss of
cell cycle control and uncontrolled cell proliferation.
Therapy involves both identification of the fault and a
suitable drug combination to target the fault. This paper
focused on the growth factor (GF) signaling pathways,
which are often associated with proliferation of cancer.
The GRN is modeled using Boolean logic gates and all
possible single faults are enumerated. All drug combina-
tions were also simulated to determine the effectiveness
of drug combinations towards each fault.

The method proposed in [3] is an ATPG technique in
principle. Our approach is similar to [3] in that it uses
the BN and models cancer as faults in the network. How-
ever, the differences are several. Instead of explicit
enumeration of the BN, we use an extensible, implicit
SAT-based ATPG approach to efficiently model and
identify faults, and perform drug selection. Further, unlike
[3], we include weighted clauses for outputs and drugs in
the SAT formulation. Using this, the algorithm can impli-
citly and efficiently determine the drug combination which
is maximally effective. Finally, our approach can handle
multiple faults easily. The runtimes of our approach are
typically much less than a second per set of faults.
In the past, ATPG has been extensively studied in

research and industry. One such ATPG technique is the
SAT-based ATPG [5-7] which translates the testing condi-
tion into a SAT instance that retains the circuit structure.
A test for the fault can then be found by invoking a SAT
solver. In the context of cancer therapy, we extend the
SAT based approach to handle drugs and multiple faults.
SAT-based approaches have been applied to the analysis

of GRNs and Boolean networks. Assuming an asynchro-
nous logical description of the GRN, [8] presents an
approach for expressing GRN constraints into a Boolean
formula, from which they infer parameters of the GRN.
While in [9], an algorithm is presented to find all attrac-
tors in a Boolean network based on a SAT-based bounded
model checking. This algorithm uses a SAT-solver to
identify paths of a particular length in the state-transition
graph of a Boolean network. In these previous works, SAT
has been used to infer the GRN. This fundamentally dif-
fers from our work which uses SAT to simulate the faulty
GRN and control the GRN using drugs.
Control of Boolean networks has been studied from a

theoretical standpoint in [10] and using a model checking
algorithm in [11]. In these papers, a BN with control
nodes is given, and the control strategy denotes a
sequence of control signals that deterministically drive the
BN from a given initial state, to a desired final state, in t
time steps. Conceptually, our SAT-based ATPG approach
is similar to these methods of Boolean network control, in
that we construct a SAT formula to check whether a selec-
tion of drugs can drive the system to a desired state. How-
ever we differ in a few key areas. First, our approach
considers the BN under a stuck-at fault model, in that one
or more of the genes can be faulty. This model allows us
to apply ATPG techniques to identify faulty genes in the
BN which can lead to undesired GRN behavior. And sec-
ondly, our approach weighs the drugs and outputs in the
ATPG formulation, allowing for different control strate-
gies depending on desired specifications (i.e. selection with
fewest drugs or fewest side effects). Unlike [10,11], our
method can also determine the best drug selection on a
BN where the faulty gene location is unknown.

Lin and Khatri BMC Genomics 2012, 13(Suppl 6):S5
http://www.biomedcentral.com/1471-2164/13/S6/S5

Page 2 of 10



Method
In this section, we present our SAT-based ATPG
method. Before the method is described in detail, we
first provide definitions for fault modeling and Boolean
Satisfiability.

Fault terminology
A manifestation of a defect at the abstracted function
level is called a fault.
In an IC, the difference between a defect and a fault can

be explained as imperfections in the hardware and func-
tion, respectively. While in genomics, examples of biologi-
cal defects can include mutations in the gene activation
site, malformation of the protein folding, and problems in
the gene product transport. Likewise, an example of a bio-
logical fault is a modification of the logical function repre-
senting a gene, producing the incorrect output. A stuck-at
fault is modeled by assigning a fixed (0 or 1) value to a
signal line (input or output of a logic gate) in the circuit.
An untestable fault is a fault which no test can

detect. Untestable faults appear in two situations.

• Faults that are redundant, whose presence does
not change the output behavior of the circuit.
• Faults that change the output behavior of the cir-
cuit, but no test (drug vector in the context of can-
cer therapy) can be generated to propagate or rectify
the fault.

Stuck-at fault modeling
In the Boolean network model for a GRN, the activity of
genes is modeled as a Boolean circuit. We assume the
circuit is modeled as an interconnection of Boolean
gates. A stuck-at fault is assumed to only affect intercon-
nections (wires or nets) between gates. Each net can have
one of two types of faults: stuck-at-1 or stuck-at-0 (s-a-1
and s-a-0, respectively). Thus, a net with a stuck-at-0
fault will always have a logic value 0, irrespective of the
correct logic output of the gate (gene) driving the net.
As an example, consider the circuit of Figure 1 compris-

ing of an OR gate driving an AND gate. Also consider a
stuck-at-1 fault at the output of the OR gate, which means
that the faulty line remains 1 irrespective of the input state
of the OR gate. If the normal (good) output of the OR gate
is 1 (in the case where its inputs were < bc > = 01,10,11),
then this fault will not affect any signal in the circuit. How-
ever, the input <bc > = 00 to the OR gate should produce a
0 output in the good circuit. The good (faulty) value 0 (1)
is applied to the AND gate. If the input vector <abc > =
100, the good circuit output (true response) and faulty out-
put would differ. Hence <abc > = 100 is called a test for
the s-a-1 fault on the output of the OR gate.

A stuck-at-0 fault is modeled by inserting a two-input
AND gate at the fault site as shown in Figure 2. The side
input of the gate is driven by a signal which is set to 1 to
simulate a fault-free site, or set to 0 to inject the s-a-0
fault. Similarly, the circuit with a s-a-1 fault is modeled by
inserting an OR gate at the site. The side input of this OR
gate is set to 0 to simulate a fault-free site, or set to 1 to
inject the s-a-1 fault. These gates are inserted at every net
(wire), allowing the simulator to inject faults at any site.
Note that drugs are modeled the same as stuck-at

faults, wherein a drug that inhibits a gene is modeled as
a s-a-0 “fault”, while a drug that activates a gene is mod-
eled as s-a-1 “fault”. The gates for drug injection are
inserted at the nets of the genes that they target.

Boolean satisfiability
Several ATPG algorithms [5-7], including the method
proposed in this paper are based on Boolean Satisfiabil-
ity (SAT) and utilize the stuck-at fault model. We begin
with an overview of SAT, followed by a SAT-based for-
mulation of the ATPG problem.
A literal or a literal function is a binary variable x or

its negation x̄.
A clause is a disjunction (logical OR) containing lit-

erals (example: (x + ȳ + z̄)).
A Conjunctive Normal Form (CNF) expression S

consists of a conjunction (AND) of m clauses c1 ... cm.
Each clause ci consists of disjunction (OR) of ki literals.
A CNF S is satisfied if it evaluates to 1. Satisfying S is
equivalent to satisfying all ci Î S
Given a Boolean formula S (on a set of binary vari-

ables X) expressed in CNF, the objective of SAT is to
identify an assignment of the binary variables in X that
satisfies S, if such an assignment exists.
For example, consider the formula

S(a, b, c) = (a + b̄) · (a + b + c). This formula consists of
3 variables, 2 clauses, and 4 literals. This particular
formula is satisfiable, and a satisfying assignment is (a,
b,c) = (0,0,1) or āb̄c. There are several extensions to the
SAT problem. One such extension of interest is All-SAT.
For a SAT formula, there may exist many satisfying assign-
ments. The objective of All-SAT is to find all satisfying
assignments. Another useful extension is Weighted par-
tial Max-SAT (WPMS) which aims to satisfy a partial set
of clauses. In WPMS, each clause in the CNF is identified
as a hard clause or soft clause. Each soft clause is asso-
ciated with a weight. The problem then is to identify an
assignment that satisfies all hard clauses while maximizing
the total weight of the satisfied soft clauses.

SAT-based formulation for stuck-at fault model
In the SAT based ATPG method, we first generate a
formula in CNF to represent tests for the fault. To do
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so, the circuit from the stuck-at fault model must be
converted to a CNF. Every gate (gi) of the circuit has
CNF formula (Gi) associated with it, which represent
the function performed by the gate. The formula is true
iff the variables representing the gate’s inputs and out-
puts take on values consistent with its truth table.
For example, consider a 2-input AND gate (gj) with

the lines x and y as inputs and z as output. The CNF
formula (Gj) for the AND gate is written as:

Gj = (z̄ + x) · (z̄ + y) · (z + x̄ + ȳ)

A CNF formula for the entire circuit S is obtained by
forming the conjunction of the CNF formulas for all the
gates of the circuit. If there are n gates in the circuit,
then the CNF formula S for the entire circuit is written
as:

S =
n∏
i=1

Gi

When all the s-a-0 and s-a-1 variables are set to false
(0), the CNF formula S describes the good (fault-free) cir-
cuit behavior. The faulty circuit is a copy of the fault-free

circuit, with faults (s-a-0 or s-a-1 variables) injected at
the gates to be affected by faults.
We explain our approach using a simple example.

Assume we are given the BN network from Figure 1,
which has two gates g1 and g2, primary inputs a, b, c, and
primary output z. Also assume and we want to model a
stuck-at 1 fault on the output of gate g1 as shown in the
figure. From our stuck at model, we insert an OR gate g3
at that location. We label the output of g3 as e, which is
now an input to gate g2. The gate g3 has two inputs, d
(the output of gate g1) and a side input f. With all inputs
and outputs labeled, we obtain the CNF formula for each
gates and the entire circuit.

G1 = (d̄ + b + c) · (d + b̄) · (d + c̄)

G2 = (z̄ + a) · (z̄ + e) · (z + ā + ē)

G3 = (ē + d + f ) · (e + d̄) · (e + f̄ )

S = G1 · G2 · G3

The value of f, the side input to gate g3, determines
whether the stuck-at 1 fault is activated or now. To acti-
vate the fault, f is set true by adding a clause (f) to the
CNF, thus S = G1 · G2 · G3 · (f). Likewise, to deactivate

Figure 1 Circuit with stuck-at fault.

Figure 2 Fault modeling and injection.
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the fault, f is set false by adding the clause (f̄ ) to the
CNF, thus S = G1 · G2 · G3 · (f̄ ). With our CNF formula
for the circuit, we now describe several usage cases
employing this CNF in SAT.

Implementation of fault and drug simulation
Case 1: Single stuck-at fault identification
In this method, we find all single stuck-at faults which
are non-redundant, as well as the faulty outputs that they
generate. To proceed with this method, we first simulate
the original circuit to determine the correct fault-free
output. The circuit is simulated using our SAT formula-
tion in the fault-free and drug-free model for a specified
primary input value, and the resulting primary output
value for the true response is saved as Z0.
The next step is to find all faults which are non-

redundant. To avoid having to do an exhaustive search
on all single stuck-at faults, we perform an All-SAT
on the circuit S where we constrain the output to be
not Z0. Assuming n output signals, this constraint is
formed as the clause C1,

C1 =
(
Z0
0 + Z0

1 + · · ·Z0
n

)

Here Z0
i is the variable corresponding to the ith output

bit.
Furthermore, we also add a constraint to S that the

circuit contains only one fault that is injected at a time.
This second constraint C2 is formed by writing clauses
of all pairwire combinations of faults, where k is the
number of stuck-at faults and fi is the ith fault.

C2 =
(
f1 + f2

)
·
(
f1 + f3

)
· · ·

(
fk−1 + fk

)

We now form a new CNF S1 = S · C1 · C2. The result-
ing All-SAT on S1 is a list of all non-redundant single
stuck-at faults and their faulty output. These faults are
flagged for drug simulation using any of the next three
cases.
The results from this case can also be used immedi-

ately in several ways. For example, this method classifies
for each single stuck-at fault whether it is redundant or
non-redundant. That is, any fault which is redundant
does not produce an incorrect output, and can be
ignored from a therapy standpoint. In a second example,
the faulty output from the stuck-at model can be com-
pared to a previously measured output from expression
data, in order to identify which genes are potentially
faulty. This information can be used to target genes for
potential drug development, avoiding genes that are
untestable.
Case 2: Fault rectification with fewest drugs
In the presence of a particular fault, the problem is
determining whether a selection of drugs can rectify the

circuit, i.e. change the faulty output to the correct out-
put. If this is not possible, we want to obtain the “best”
or “closest” output to the correct output, by using
drugs. To do this, we guide the WPMS solver by assign-
ing weights to the output states. For example, in the GF
network used in our experiments, the fault-free output
Z0 is assigned the highest weight (80) and remaining
output states are assigned decreasing weights (70, 60,
50, etc.) based on increasing Hamming distance (1, 2, 3,
etc.) from the fault-free output. We assume that faulty
states that have a larger Hamming-distance have a more
pronounced cancer proliferative effect.
Additionally, the selection of drugs to achieve the best

output should use the least number of drugs to mini-
mize the side-effects on the patient. To incorporate this
in the WPMS solver, each drug that is not selected is
given a weight of 1. The GF network example has 6
drugs, thus if no drugs are selected, then the cumulative
drug weight is 6. Likewise, if all drugs are selected, the
drug weight is 0.
Note that the output and drug weights are assigned in

such a way as to avoid the situation where a less-desirable
output (with few drugs) is chosen over a higher weight
output with more drugs. We assume that from a clinical
standpoint, the priority is to first produce the best possible
output, and secondarily to use the fewest drugs required
for that output.
All faulty circuits with non-redundant faults from Case

1 are augmented with the output and drug weights and
simulated using WPMS. The WPMS solver will implicitly
and deterministically find the assignment of drugs that
achieves the best possible output and with the fewest
drugs. The output values, selected drugs, and highest
weight of the fault+drug circuits are recorded and com-
pared with the drug-free circuits. An immediate result
from this method is that a fault where the fault+drug cir-
cuit which obtains its best output with zero drugs is in
fact an untestable fault, wherein no drug combination
can improve the output.
In general, several stuck-at faults can be simulta-

neously present in the circuit. A circuit with n lines can
have 3n - 1 possible stuck line combinations. This is
because each line can be in one of the three states: s-a-1,
s-a-0, or fault-free. All combinations (except one which
has all lines in their fault-free state) are counted as faulty.
In our implementation, multiple stuck-at faults can easily
be modeled for rectification, by setting one or more lines
to their faulty state.
Case 3: Fault rectification with minimal drug cost
In the previous case, all drugs are equal in terms of their
weight. However, there may be a situation where we
would want to differentiate the drugs based on some cost
function based on characteristics such as price, number
of side-effects, or ease of availability. For example, two
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drugs with few side-effects may be more desirable than
one drug with many side-effects, if both drug selections
produce the same output. As such, in the presence of a
particular faulty circuit and desired output, the problem
is determining a selection of drugs with lowest total cost.
Each drug that is not selected is given a weight propor-

tional to its cost. In our example, we use the number of
side-effects as the drug’s cost. All faulty circuits with
detectable faults from Case 2 are modified with the new
drug weights. In addition, the output of the circuit is fixed
to the best output as determined in Case 2. These circuits
are then solved using WPMS to obtain the selected drugs
with lowest cost.
Case 4: Determining therapy with fewest drugs and best
coverage
From Case 2, we identify the drug selection that best rec-
tifies a certain fault. However, in drug therapy, the fault
location may be unknown. In this situation, a drug selec-
tion that rectifies all faults (or as many faults as possible)
with the fewest drugs, is desirable.
For each faulty circuit (with a single fault), we find all

combinations of 1, 2, and 3 drugs that yield the best out-
put from Case 2. This is done by performing a WPMS
All-SAT to find all satisfying drug selections with drug
weight greater than or equal to d - 3, where d is the total
number of drugs. Each drug selection (or vector) is ana-
lyzed to see how many testable faults are rectified or cov-
ered by it. The drug vector with the highest coverage and
fewest drugs is recorded as a best candidate for therapy.

Results
Model implementation
We evaluate the WPMS-based ATPG methods on the
GRN that models growth factor (GF) pathways [3]. In
multicellular organisms, cell growth and replication is
tightly controlled by the cell cycle control. This system
receives signals from other cells which are used to decide

whether the cell should grow. A failure in these signals
can lead to unwanted or unregulated cell growth, leading
to cancer. These signaling pathways are well studied, and
several drugs have been developed to target different
pathways for cancer therapy.
We begin with a BN model of the GF pathways as

derived in [3]. In this model, pathways are converted to
an equivalent BN logic gate. Each interconnection (net)
between logic gates is then assigned a numerical label. As
stated in our approach section, defects in the GRN are
represented as stuck-at faults that permanently set a sig-
nal net to 1 or 0. At each net, the logic gates for injecting
a s-a-0 or s-a-1 are inserted. If there is a drug that targets
the net, the appropriate logic gates are also inserted. The
conversion of the faults and drug locations to a logic net-
list is shown in Figure 3. The final circuit is then con-
verted to CNF for further analysis.
In the results, stuck-at faults are referred by the net

numbers that are affected (i.e. net 7 s-a-0, means that the
signal corresponding to net 7 is stuck-at 0). The network
has 5 primary input (PI) signals and 7 primary output
(PO) signals. The PIs will be defined as a 5-bit binary
vector X = [EGF,HBEGF,IGF,NRG1,PTEN], while the
POs will be defined as a 7-bit binary vector Z = [FOS -
JUN,SP1,SRF - ELK1,SRF - ELK4,BCL2,BCL2L1,CCND1].
In all tests, the PIs are fixed to X = 00001 as this input
leads to the non-proliferative output in the fault-free
case.
For this network, six drugs are available, defined as a 6-

bit vector. Each bit corresponds to a drug, such that a
value of 1 on the ith bit indicates that drug i is selected,
and a value of 0 indicates that drug i is not selected. The
drug vector is D = [lapatinib,AG825,AG1024,U0126,
LY249002,Temsirolimus].
All the methods (Case 1 through 4) were implemented

using an open-source weighted partial Max-SAT solver
called Maxsatz [12,13]. Our procedure consists of scripts

Figure 3 Logic circuit stuck-at fault model for GF signaling pathways.
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which take the initial CNF, selects desired fault variables,
sets output and drug weights, and solves the CNF using
Maxsatz. The satisfying assignments are then parsed for
the output and drug vectors, and reported in the results.
In all examples listed in this section, the WPMS runtime
was significantly less than 1 second per CNF.

Simulation results
Case 1: Single stuck-at fault identification
In the single stuck-at fault model, each net was simulated
for s-a-0 and s-a-1 with no drugs, and results compared
with the fault-free circuit. For fault-free circuit with X =
00001, the output vector is Z0 = 0000000. All single non-
redundant stuck-at faults, which have an output different
from the fault-free circuit, are recorded and shown in
Table 1. In this table, the first three columns show the
affected net, the stuck-at value, and the faulty output,
respectively.
From this table, we observe that nets 13, 14, and 15 are

not listed. The presence of a fault (s-a-0 or s-a-1) on
these nets does not generate an incorrect PO, and as
such, these are redundant faults. From a therapy stand-
point, the genes corresponding to these faults can be
ignored.

Case 2: Fault rectification with fewest drugs
From the results in Case 1, all non-redundant faults are
simulated with drugs. The outputs are first weighted
where the fault-free output Z0 = 0000000 has a maxi-
mum weight of 80 as it represents a non-proliferative
output. All remaining output vectors are given weights of
80 - 10h, where h is their Hamming distance from the
fault-free output. The drugs are also given weights where
the non-selection of a drug has a weight of 1. With six
drugs, the maximum score is therefore 80 + 6 = 86.
Table 1 shows for each non-redundant stuck-at fault, the

best output (Column 4), the drug vector to achieve such
output (Column 5), and the weight score (Column 6). We
observe that for many faults, there exists a drug vector that
can completely rectify the fault, and produce a fault-free
circuit. Additionally, the corresponding reported drug
vector is minimal in the number of drugs used, which is
desirable in therapy usage. We also determine that faults
on nets 7, 10-15, 18, 19, 23, and 24 are untestable, as no
combination of drugs can produce a change in the output.
This can be explained as there are no drugs on the fan-out
of these genes to rectify the fault.
To demonstrate the adaptability of our algorithm, we

test it on a few examples of multiple stuck-at faults.
Table 2 shows for a circuit with multiple stuck-at faults,
the best drug selection for fault rectification (when pos-
sible). The columns of Table 2 have the same meaning
as in Table 1.
Case 3: Fault rectification with minimal drug cost
When selecting drugs, there may be multiple drug com-
binations that may rectify a fault, but where each drug
has a different associated cost. We first assign weights to
drugs, according to their cost. For this paper, we use the

Table 1 Drug selection for single stuck-at faults

Net s-a Faulty PO Best PO Drug Vector Score

1 1 1111111 0000000 010000 85

2 1 1111111 0000000 100000 85

3 1 1111111 0000000 001000 85

4 1 1111111 0000000 010000 85

5 1 1111111 0000000 000110 84

6 1 0000111 0000000 000110 84

7 1 0000111 0000111 000000 56

8 1 1111111 0000000 000010 85

9 1 0000111 0000000 000010 85

10 1 0000111 0000111 000000 56

11 1 0000111 0000111 000000 56

12 1 0000111 0000111 000000 56

16 1 0111110 0000000 000100 85

17 1 0111110 0000000 000100 85

18 1 0111110 0111110 000000 36

19 0 0000001 0000001 000000 76

20 0 0000110 0000000 000001 85

21 1 0000110 0000000 000001 85

22 1 0000110 0000000 000001 85

23 1 0000110 0000110 000000 66

24 0 0000110 0000110 000000 66

Each row in the table corresponds to a single fault, located by the net
number and the type of fault (stuck-at-1 or stuck-at-0). The primary output
[FOS - JUN,SP1,SRF - ELK1,SRF - ELK4,BCL2,BCL2L1,CCND1] shown is the
expression value where 1 means the gene is expressed, while 0 means the
gene is not expressed. The drug vector [lapatinib,AG825,AG1024,U0126,
LY249002,Temsirolimus] indicates the drug selection where 1 means the drug
is selected, while 0 means the drug is not used.

Table 2 Drug selection for multiple stuck-at faults

Net s-a Faulty PO Best PO Drug Vector Score

1,21 1,1 1111111 0000000 010001 84

4,9 1,1 1111111 0000000 000001 85

5,19 1,0 1111111 0000001 000110 74

6,8 1,1 1111111 0000000 000110 84

7,20 1,1 0000111 0000111 000000 56

8,21 1,0 0000111 0000000 000010 85

13,16 1,1 1111110 0000000 000100 85

1,3,6 1,0,1 1111111 0000000 000110 84

2,14,20 1,1,0 1111111 0000000 100001 84

4,7,17 1,1,1 1111111 0000111 010100 54

4,12,23 1,1,1 1111111 0000111 010000 55

8,9,11 1,1,1 0000111 0000111 000000 56

8,9,21 1,1,0 0000111 0000000 000010 85

12,18,20 0,0,0 0000110 0000000 000001 85

15,17,21 0,0,1 0000110 0000000 000001 85

Each row in the table corresponds to multiple stuck at faults, either 2 or 3
faults noted by the net number. The type of stuck-at fault is listed
respectively.
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number of side-effects as the drug’s cost. Drugs AG825,
lapatinib, Temsirolimus are assigned weights of 10, 15,
and 35, respectively, which correspond to their approxi-
mate number of side-effects [14,15]. However, drugs
AG1024, U0126, and LY294002 have yet to under go
clinical trial and the number of side-effects is unknown.
As such, these drugs are assigned a weight 20, which is
an average of the 3 previous weights.
In this GF example, Case 3 simulation provides the

same results as in Case 2. This is due to a lack of drugs
that share paths in the circuit. In fact, for almost every
non-redundant fault, the best output state can only be
achieved through one drug vector.
Case 4: Determining therapy with fewest drugs and best
coverage
Using the results from Case 2, we observe that the GF
network has 13 testable faults. For these 13 faults, we
perform an All-SAT to find the top three scoring drug
combinations yielding the best output. All drug combina-
tions are analyzed across all single faults and presented
in Table 3 showing drug vector, count of faults rectified,
and fault coverage. Drug vectors are ordered in increas-
ing number of drugs selected.
From these results, we observe that with only 1 drug

selected, the best coverage is only 23% of faults using

lapatinib (d1) or Temsirolimus (d6). When allowing for 2
drugs, coverage increases to 77% using the drug combina-
tion of U0126 (d4) and LY294002 (d5). Finally, we achieve
100% coverage of all testable faults when using the 3 drug
combination of U0126 (d4), LY294002 (d5), and Temsiroli-
mus (d6). When the single stuck-at fault location is
unknown, these selected drug combinations will be the
most effective for therapy and for preventing the prolifera-
tion of cancer.

Discussion
In this section, we discuss the generalization of our
approach to sequential circuits. Thus far, the SAT-based
ATPG algorithm has been described for and performed
on purely combinational circuits, wherein the primary
output of the circuit is dependent only on the primary
inputs. We observe that the output of the GF signaling
pathway from the experiment is fixed based on the pri-
mary inputs, where the drug vector is technically also an
input. In general though, the circuit representation of the
BN can be sequential, where the primary output is deter-
mined by current state in addition to the input. The local
GRN for mammalian cell-cycle [16] is one such example
of a sequential circuit where gene expression updates
based on the current gene state. If we consider a directed
graph where the genes are nodes and edges are regula-
tions upon other genes, then a combinational circuit
(such as the GF signaling pathway) is acyclic. However,
for a directed graph of a sequential circuit, a subset of
genes will be inter-regulated forming directed cycles. As
such, in the BN, a gene takes its current input (state of its
regulatory genes and/or external inputs) and outputs a
new state or value for the next time point. We assume in
the BN that all genes update synchronously. In other
words, for each primary input and current state, the
resulting primary output and next state are determined
for all genes, and that the next state becomes the new
current state. While a synchronous update is biologically
unrealistic, it allows us to have deterministic state transi-
tions and simplifies the analysis for our ATPG algorithm.
There are several methods for performing sequential
ATPG, the most common of which is Time-Frame
expansion [17]. As shown in Figure 4, the sequential cir-
cuit is replicated m times into a combinational circuit,
which models m time steps of the sequential circuit beha-
vior. The ith copy is connected to the (i + 1)th copy such
that the regulating genes from the ith copy are connected
to their target genes in the (i + 1)th copy. Each copy is
called a frame, and additional frames can be added to the
circuit for any length m. In this way, the sequential cir-
cuit is converted to a combinational circuit. After the
conversion of the sequential circuit to a combinational m
step expansion, we can apply our SAT-based ATPG algo-
rithm. When we consider the fault-model of the circuit,

Table 3 Drug selection count and fault coverage

Drug Vector Count Coverage Drug Vector Count Coverage

000001 3 23% 000111 13 100%

000010 2 15% 001011 6 46%

000100 2 15% 001101 6 46%

001000 1 8% 001110 10 77%

010000 2 15% 010011 7 54%

100000 3 23% 010101 7 54%

000011 5 38% 010110 10 77%

000101 3 23% 011001 6 46%

000110 10 77% 011010 5 38%

001001 4 31% 011100 5 38%

001010 3 23% 100011 8 62%

001100 3 23% 100101 8 62%

010001 5 38% 100110 10 77%

010010 4 31% 101001 7 54%

010100 4 31% 101010 6 46%

011000 3 23% 101100 6 46%

100001 6 46% 110001 6 46%

100010 5 38% 110010 5 38%

100100 5 38% 110100 5 38%

101000 4 31% 111000 4 31%

110000 3 23%

The drug vectors are grouped according to the number of drugs selected (1,
2, or 3 drugs). The count column notes the number of testable faults rectified
by the drug selection, and the coverage shows the count as a percentage of
total testable fault rectified. Bold rows indicate drug vectors with highest
coverage for the number of drugs used.
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we must assume the fault is persistent (i.e. the fault exists
in all frames). The corresponding ATPG method must
target multiple faults, or in other words, the same fault,
but in different time frames.
One consideration for the sequential ATPG is the

initialization of state in the first time frame. Ideally a
known state should be used, such as one obtained from
a previous microarray expression measurement. An
alternative is to use an attractor state. In the long-term
behavior, the dynamics of the BN transition to the
attractors (attractor cycles), thus using an attractor state
is a reasonable starting state for therapy.
The complexity of applying SAT-based ATPG to

sequential circuits depends on the length of time-frame
expansion. For a circuit with k variables in its SAT formu-
lation, each frame increases the number of variables by k.
The SAT search space is then 2km for an expanded circuit
with m frames. The number of frames for expansion can
be bounded. If a subsequence of states has the same first
and last state, then the sequence can be stopped. For a
BN, the number of frames m can be bounded by the sum
of the number of stesps it takes to reach an attractor cycle
and the maximum length of the attractor cycles for all
combinations of drugs under consideration. In the worst
case, the number of frames required would equal to the
number of possible states, which is 2n+d for a BN with n
target genes and d drugs.

Conclusions
In this paper, we have presented an efficient and extensible
SAT-based ATPG methodology for cancer therapy. We
approach this problem by representing the BN and cancer
as a logic circuit stuck-at fault model. This circuit, along
with the testing conditions, is converted into a CNF. The
CNF is then augmented with output and drug vectors
weights and solved using a weighted partial Max-SAT sol-
ver for four different usage cases: (1) single stuck-at fault
identification, (2) fault rectification with fewest drugs, (3)
fault rectification with minimum drug cost, and (4) deter-
mining therapy with fewest drugs and best coverage. We
demonstrate these methods on the growth factor signaling
pathway, and have presented results that are applicable to
cancer therapy. While the GF network example in this
paper is a combinational network, our algorithm can easily
be extended to address sequential networks, like those
found in transcriptional GRNs, by simply unrolling the
sequential circuit in time and applying the same methods.
Furthermore, all nets, inputs, outputs, and drugs can be
assigned weights, which can be made variable, allowing
the user to fine-tune the network or design therapies for
any number of test situations.
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