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Abstract

Background: Paralog reduction, the loss of duplicate genes after whole genome duplication (WGD) is a pervasive
process. Whether this loss proceeds gene by gene or through deletion of multi-gene DNA segments is
controversial, as is the question of fractionation bias, namely whether one homeologous chromosome is more
vulnerable to gene deletion than the other.

Results: As a null hypothesis, we first assume deletion events, on either homeolog, excise a geometrically
distributed number of genes with unknown mean μ, and a number r of these events overlap to produce deleted
runs of length l. There is a fractionation bias 0 ≤ j ≤ 1 for deletions to fall on one homeolog rather than the
other. The parameter r is a random variable with distribution π(·). We simulate the distribution of run lengths l, as
well as the underlying π(·), as a function of μ, j and θ, the proportion of remaining genes in duplicate form. We
show how sampling l allows us to estimate μ and j. The main part of this work is the derivation of a deterministic
recurrence to calculate each π(r) as a function of μ, j and θ.

Conclusions: The recurrence for π provides a deeper mathematical understanding of fractionation process than
simulations. The parameters μ and j can be estimated based on run lengths of single-copy regions.

Background
Whole genome doubling (WGD) creates two identical
copies (homeologs) of each chromosome in a genome,
with identical gene content and gene order. From this
ensues the wholesale shedding of duplicate genes over
evolutionary time through random excision - elimination
of excess DNA - namely the deletion of chromosomal
segments containing one or more genes, or through
gene-by gene events such as epigenetic silencing and
pseudogenization [1-6].
When a duplicate gene is lost, it may be lost from one

copy (homeolog) of a chromosome or the other, but gen-
erally not both, because of the necessity of conserving
function. This fractionation creates an interleaving pat-
tern; the full original gene complement becomes appar-
ent only by consolidating [5] the two homeologous
single-copy regions. In most cases, there is a degree of

bias, more genes being lost from one of the homeolo-
gous regions than the other [4-7]. Fractionation is an
important process in many evolutionary domains, in
particular the flowering plants, since it results in a gen-
ome that is highly scrambled with respect to its pre-
WGD ancestor. For this reason as well, fractionation
raises a number of interesting and difficult problems for
comparative genomics.
The study of fractionation is basically a study of runs,

that is runs of duplicate genes on two homeologous
chromosomes alternating with runs of single-copy genes
on one or both of these chromsomes. Because of the
way these runs are generated biologically, and because
they involve two chromosomes evolving in a non-inde-
pendent way, standard statistical or combinatorial run
analyses are not directly applicable.
In this paper, we present a detailed version of the exci-

sion model of fractionation with geometrically distributed
deletion lengths, for which we previously analyzed a tract-
able, but biologically unrealistic, special case [8]. The key
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problem in this field is to determine μ, the mean of the
hypothesized geometric distribution ρ( 1

μ
, .), since this

bears directly on the main biological question of the rela-
tive importance of random excision versus gene-by-gene
inactivation. The relevant data consist of runs of single-
copy genes (whose duplicates have been lost from the
homeologous region) as well as runs of remaining dupli-
cate pairs in two homeologous regions. The inference of μ
is complicated since each run of l single copies may have
been produced by an unknown number r of deletion
events, either r = l events (the gene-by-gene model) or 1 ≤
r <l - 1 (the random excision model), and these r samples
of the distribution r turn out not to be independent. Thus
a fundamental aspect of finding μ, and hence ρ( 1

μ
, .), is to

derive π(r), the proportion of runs of single-copy genes
with r terms, for r = 1, 2, ....
A further complication arises from the way deletion

events accumulate into longer runs of single-copy genes.
The deletion of a certain number of duplicate genes
may overlap the site of a previous deletion event on the
same chromosome, but it is blocked by the functional
constraint (mentioned above) as soon as it starts to
overlap the site of a previous deletion event on the
homeologous chromosome.
Another biologically important question is to deter-

mine j, the proportion of deletion events that operate
on one of the homeologous chromosomes, while a pro-
portion 1 - j operates on the other. We explored this
question at some length in [4], but a detailed mathema-
tical treatment of the effects of this “fractionation bias”
remains to be done.
It is not difficult to simulate the fractionation process, but

this gives little insight into its mathematical structure.
Given that it is unlikely for any closed form of π to exist,
nor for any simple computing formula, our goal here is to
develop a recurrence for the distribution of π(r) for r = 1,
2, ... as a function of μ, j and θ (the proportion of duplicate
pairs remaining in the genome versus single-copy genes).
This work is an attempt at creating a rigorous “null”

model of duplicate loss, based on parameters μ, j and θ.
This should provide a principled basis for developing
statistical tests on real WGD descendants, to see if the
geometric excision hypothesis is acceptable and to see if
fractionation is unbiased or not. We will not explicitly
investigate the alternative hypothesis of gene-by-gene
deletion, nor do we take chromosomal rearrangement
events into account; our task here is simply to set up
the null statistical model with a view to enabling useful
statistical tests of hypothesis for this problem.

The models
The structure of the data
The data on paralog reduction are of the form (G, H),
where G and H are binary sequences indexed by ℤ,

satisfying the condition that g(i) + h(i) > 0. This condi-
tion models the prohibition against deleting both copies
of a duplicated gene. We may also assume that whatever
process generated the 0s and 1s is homogeneous on ℤ.
The sequence G + H consists of alternating runs of 1s

and 2s. We denote by p(l), l ≥ 1 the probability distribu-
tion of length of runs of 1s. For any finite interval of ℤ
we denote by f(l), l ≥ 1 the empirical frequency distribu-
tion of length of runs of 1s.
The use of ℤ instead of a finite interval is consistent with

our goal of getting to the mathematical essence of the pro-
cess, without any complicating parameters such as interval
length. In practice, we use long intervals of at least
100,000 so that any edge effects will be negligible. See [4,8]
for ad hoc ways of handling biological scale intervals.
The deletion events
Let j, where 0 ≤ j ≤ 1, be the fractionation bias. We
assume a continuous time process, parameter l(t) > 0,
only to ensure no two events occur at the same time.

• We start (t = 0) with h(i) = g(i) = 1 for all i.
• At any t > 0, consider any i where h(i) = g(i) = 1.
With probability l(t)dt, a deletion event occurs
anchored at position i: we choose a positive number
a according to a geometric variable y with parameter

1/μ, i.e., P[y = a] = γ (a) =
1
μ

(
1 − 1

μ

)a−1

, a ≥ 1.

• Then with probability j we choose to carry out the
deletion on G; with probability 1 - j, on H.
• If the deletion is on G we convert g(i) = 0, g(i + 1)
= 0, ..., g(i + a - 1) = 0 unless a “collision” occurs.
• One type of collision, skippable collision, arises
when one or more of g(i + 1), ..., g(i + a - 1) is
already 0. In this case we skip over the existing 0
values and continue to convert the next available 1s
into 0s, until a total of a 1s have been converted, or
a collision of the second type is encountered.
• The second type of collision, blocking collision,
arises when one or more of h(i + 1), ..., h(i + a - 1)
(or a further term if skipping has already occurred
during this event) is already 0. In this case, further
conversions of 1s to 0s are blocked, starting with the
first g(x) for which h(x) = 0.

Skippable collisions are a natural way to model the
excision process, since deletion of duplicates and the
subsequent rejoining of the DNA directly before and
directly after the excised fragment means that this frag-
ment is no longer “visible” to the deletion process.
Observationally, however, we know deletion has
occurred because we have access to the sequence H,
which retains copies of the deleted terms. Blocking colli-
sions are a natural way of modeling the constraint
against deleting single-copy genes.
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When the deletion event has to skip over previous 0s,
this hides the anchor i and length a of previous deletion
events. Denote by r the random variable indicating the
total number of deletion events responsible for a run.
Then, given r = r, the run length z is distributed as the
sum of r geometric variables, which would result in a
negative binomial distribution were these geometric
variables independent. They are not, however, since
events with large a tend to group together in runs with
large r, while an event with small a is more likely to
constitute by itself a run with r = 1 [8].
If we observe G at some point in time, as in the last

pair of rows of Table 1, all we can observe are the run
lengths of 0s and 1s. We cannot observe the a, i or r,
while t and l(t) are unknown and, as we shall see, only
mathematical conveniences that are supplanted by θ in
our calculations. The parameters about which we wish
to make statistical inferences are the deletion length dis-
tribution parameter μ, and the fractionation bias j since
it is these quantities that are at the heart of the biologi-
cal controversies about paralog reduction. This inference
can only be based on the two observable quantities: the
run lengths l and the proportion θ of remaining (unde-
leted) 1s.

Results
Simulations to determine π

We carried out simulations on an interval of ℤ of
length 100,000. This enabled us to use a discrete time
process instead of the continuous time process on ℤ.
The “anchors” for the deletion events were chosen at
random among the currently undeleted genes. The

remaining steps were carried out as described in the
previous section and Table 1. Because each simulation
run samples thousands of deletions, it sufficed to do
100 runs for each value of the parameters μ and j
studied.
The top row of Figure 1 compares π(r) when θ = 0.5

and θ = 1, for μ = 2, 3, 6, and 11, when j = 0.5. We
can see that the number of deletion events contributing
to a run is somewhat dependent on μ when half of the
the sequence has been deleted, but is strongly depen-
dent when 90% has been deleted. In the bottom row,
the graph on the left shows that run length l is distribu-
ted very differently for μ = 2, 3, 6 and μ = 11, when the
proportion of the sequence deleted is exactly the same.
This strongly suggests that observing the run length dis-
tribution and the overall proportion of deletions should
allow us to infer μ. Moreover the shape of these distri-
butions is sensitive to j.
We mention that any edge effects in our simulation

are negligible. Whether we work with G and H on an
interval of ℤ of length 100,000 or, as previously [8],
length 300,000, gives virtually the same results.
Figure 2 shows the relationship, for three values of the

fractionation bias j and for a range of values of μ,
between the proportion of genes deleted, on one chro-
mosome or the other, and the average run length. This
confirms that average run length and overall proportion
of deletion θ, both observable, can be used to infer μ
rather accurately, and to infer j, perhaps with somewhat
less precision. The latter parameter can, however, be
inferred from the shape of the run length distribution in
Figure 1 (bottom) or estimated directly from the propor-
tion of single-copy genes on each homolog.

A recurrence for π(r)
We are interested in inferring μ from the observed dis-
tribution of run lengths and the proportion θ of unde-
leted terms, i.e., undeleted genes. At the outset θ = 1.
As t ® ∞, θ ® 0. We are not, however, interested in t,
since it is not observable and any time-based inference
we can make about μ will depend only on run lengths
and θ in any case. On the other hand, r, the number of
deletion events per run is an interesting variable since
we can assume run length is close to rμ on average, at
least for small values of θ, and we can model the evolu-
tion of r directly We consider the distribution π as a
function of μ, j and θ.
As π changes, probability weight is redistributed

among several types of run:

1. new runs (r = 1) falling completely within an
existing run of undeleted terms, not touching the
preceding or following run of deleted terms, type A
in Figure 3,

Table 1 Deletions with skipping and blocking

Event i a -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 r

Start 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 -1 3 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

-4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

3 5 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1,1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

4 4 3 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1,2

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 2

-5 4 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 3

Five deletion events affecting two homeologous chromosomes, leading to
two runs of single-copy genes. The fourth step illustrates the “skip” process, at
i = 5 where the pre-existing deletion is incorporated into a longer run with r
= 2. The fifth step shows how further deletion (at i = -1) and the “skip”
process (to i = 2) are blocked when a single-copy gene is encountered (i = -1)
on the homeologous chromosome. This creates a single-copy run with length
l = 7 and r = 3, part on one chromosome, part on the other. Note that r is not
observable from the genome data.
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2. runs that touch, overlap or entirely engulf exactly
one previous run of deleted terms with r ≥ 1, thus
lengthening that run to r + 1 events, types B and C
in Figure 3,
3. runs that touch, overlap or engulf, by the skipping
process, two previous runs of r1 and r2 events
respectively, creating a new run of r1 + r2 + 1 events,
and diminishing the total number of runs by 1,
including types D and E in Figure 3,
4. runs that touch, overlap or engulf, by the skipping
process, k > 2 previous runs of of r1, ..., rk events respec-
tively, creating a new run of r1 + ... + rk + 1 events, and
diminishing the total number of runs by k - 1, not illu-
strated in Figure 3. Case 3 above may be considered a
special case of this for k = 2 and Case 2 for k = 1.

The first process, involving a deletion event of length
a requires a run of undeleted terms of at least a + 2.

What can we say about runs of undeleted terms? We
know that runs of deleted terms alternate with runs of
undeleted terms, so that there is one run of the former
for each of the latter. The mean lengths ū and v̄ of the
deleted runs and the undeleted runs, respectively, should
satisfy:

v̄ =
θ

1 − θ
ū. (1)

The distribution r(l) of lengths of the undeleted runs
is assumed to be geometric. Similarly the lengths of suc-
cessive undeleted runs (indeed all undeleted runs) are
assumed to be independent. While we do not have a rig-
orous proof of these assumptions, they have been con-
firmed by extensive simulations.
Let j1 and j2 be the proportion of deletion events

affecting homeologous chromosomes 1 and 2, respec-
tively, so that j1 + j2 = 1. Let τ(r) be the proportion of

Figure 1 Simulations of events per run and run length. Distribution of number of deletion events r composing each run when 1 - θ, the
proportion of sequence deleted, is 0.5 (top left) and 0.9 (top right). j = 0.5 in both cases. Distribution of run length for for j = 0.5 (bottom left)
and j = 1 (bottom right). For visibility, all diagrams show highest frequency parts of the distribution only.
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runs of single-copy genes with terms in both chromo-
somes. (τ(1) ≡ 0 and, initially, τ(r) = 0 for r = 2, 3, ....)
Note that in such a run, the term(s) at the extreme left
were (was) deleted from chromosome i with probability
ji and the same for the terms at the extreme right.
The proportion of undeleted terms in runs of length l

is lr(l)/Er, where Er = ∑l>0 lr(l). As depicted in Figure
3, the probabilities pA1 and pA2 that a deletion event
affects chromosomes 1 or 2, respectively, and falls
within a run of undeleted terms of length l without
deleting the terms at either end is, for i Î {1, 2}

pAi = φi

∑
l>2

lρ(l)
Eρ

l−1∑
j−2

1
l

l−j∑
a=1

γ (a)

=
φi

Eρ

∑
l>2

ρ(l)
l−1∑
j=2

l−j∑
a=1

γ (a)

=
φi

Eρ

∑
l>2

ρ(l)
l−2∑
a=1

(l − a − 1)γ (a)

(2)

where j indexes the starting position of the deletion
within the run, and a is the number of terms deleted in
the event. We define the contribution to mean run
length of A events to be

μA =
2∑
i=1

φi

Eρ

∑
l>2

ρ(l)
l−2∑
a=1

(l − a − 1)γ (a)a. (3)

Events of type Ai create runs of deleted terms with r =
1 from one chromosome only. Note that the last line of

equation (2), and equation (3), involve the collection of
terms, reducing the number of nested summations in
order to speed up calculation. While these are not
lengthy calculations to start with, we display the speed-
up as a simple illustration of the important efficiencies
implemented for more difficult cases to be treated
below.
The probability pBif that a deletion event on chromo-

some i touches only the run of deletions on chromo-
some f on the left of the run of undeleted terms is, for i
Î {1, 2} and f Î {1, 2},

pBif =
φiφf

Eρ

∑
l>1

ρ(l)
l−1∑
a=1

γ (a). (4)

We define the contribution to mean run length of B
events to be

μB =
2∑
i=1

2∑
f=1

φiφf

Eρ

∑
l>1

ρ(l)
l−1∑
a=1

γ (a)a. (5)

Events of type Bii turn a deleted run with r events
from one chromosome, into a run with r + 1 events.
Events of type Bif, with i ≠ f, turn a deleted run with r
events, into a run with r + 1 events.
The probability pCii that a deletion event, on either

chromosome, does not touch the run of deletions on
the left, does touch or overlap the run of deletions on
the right entirely on the same chromosome (homeolog),
but does not extend over the entire run of undeleted
terms beyond that is, for i Î {1, 2}:

Figure 2 Dependance of run length on deletion parameters. Average length of run of single copy genes in for j = 0.5, 0.75, 1.0, for μ = 2,
3, 6, 11.
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pCii =
φ2
i (1 − τ )

Eρ

∑
l>1

∑
k≥1

ρ(l)ρ(k)
l∑

j=2

l−j+k∑
a=l−j+1

γ (a)

=
φ2
i (1 − τ )

Eρ

∑
l>1

∑
k≥1

ρ(l)ρ(k)

×
⎛
⎝min[l−2,k−1]∑

a=1

aγ (a)+
max[l−1,k]∑
a=min[l−1,k]

min[l − 1, k]γ (a)+
l+k−2∑

a=max[l,k+1]

(l + k − a − 1)γ (a)

⎞
⎠ .

(6)

We define the contribution to mean run length of Cii

events to be

μCii =
2∑
i=1

φ2
i (1 − τ )

Eρ

∑
l>1

∑
k>1

ρ(l)ρ(k)
l∑

j=2

l−j+k∑
a=1−j+1

γ (a)a, (7)

which can be calculated using an expansion such as
that in (6). Events of type Cii turn a deleted run with r
events from one chromosome, into a run with r + 1
events.
The probability pCif that a deletion event, on either

chromosome, does not touch the run of deletions on
the left but does touch the run of deletions on the right,
partly or entirely on the other chromosome, is, for i ≠ f

Î {1, 2}:

pCif =
φiτ + φiφf (1 − τ )

Eρ

∑
l>1

ρ(l)
l∑

j=2

∞∑
a=l−j+1

γ (a). (8)

We define the contribution to mean run length of Cif

events to be

μCif =
2∑

i�=f=1

φiτ + φiφf (1 − τ )

Eρ

∑
l>1

ρ(l)
l∑

j=2

(l − j + 1)
∞∑

a=l−j+1

γ (a). (9)

Events of type Cif, with i ≠ f, turn a deleted run with r
events, into a run with r + 1 events. Note that (9) does
not contains terms of form ag(a) as do (3,5,7), since in
this event deletion is blocked beyond the existing run of
deletions; the probability weight is thus concentrated on
deletions of lesser length.
The probability pDiii that a deletion event completely

overlaps the run of deletions on the right and touches
or overlaps the run of deletions beyond that, all on the

Figure 3 Types of event. Types of deletion event affecting less than three pre-existing runs. Red and blue shading distinguishes between
deletions from the two homeologous chromosomes. Grey areas represent previous deletions from either chromosome. White area indicates run
of undeleted terms. Lightly shaded area indicates run of previously deleted terms. Darker area represents current deletion event. Hatched striped
area above lightly shaded area indicates either previous deletions from both homeologous chromosomes, or only from the homeolog not
affected by the current deletion. A: creates one new run with r = 1. B: lengthens left hand run to r + 1 events. C: lengthens right hand run to r
+ 1 events. D and E: merge two runs to create a single run with r + s + 1 deletion events.
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same chromosome, but does not extend over a further
run of undeleted terms:

pDiii =
φ3
i (1 − τ )2

Eρ

∑
l>1

∑
k≥1

∑
h≥1

ρ(l)ρ(k)ρ(h)
l∑

j=2

l−j+k+h∑
a=l−j+k+1

γ (a)

=
φ3
i (1 − τ )2

Eρ

∑
l>1

∑
k≥1

∑
h≥1

ρ(l)ρ(k)ρ(h)

×
⎛
⎝min[l+k−2,h+k−1]∑

a=k+1

(a − k)γ (a)+
max[l+k−1,k+h]∑
a=min[l+k−1,k+h]

min[l − 1, h]γ (a)+
l+k+h−2∑

a=max[l+k,k+h+1]

(l + k + h − a − 1)γ (a)

⎞
⎠

(10)

in which the reduction of the number of nested sum-
mations is key to the computability of the entire
calculation.
We define the contribution to mean run length of Diii

events to be

μDiii =
φ3
i (1 − τ )2

Eρ

∑
l>1

∑
k≥1

∑
h≥1

ρ(l)ρ(k)ρ(h)
l∑

j=2

l−j+k+h∑
a=1−j+k+1

γ (a)a, (11)

which can be calculated using an expansion such as
that in (10). Events of type Diii turn two deleted runs
with r and s events, respectively, both from the same
chromosome, into a run with r + s + 1 events.
The probability pDiif that a deletion event completely

overlaps the run of deletions on the right, on the same
chromosome, and touches the run of deletions beyond
that, partly or entirely on the other chromosome, is:

pDiif =
φ2
i (1 − τ )τ + φ2

i φf (1 − τ )2

Eρ

∑
l>1

∑
k≥1

ρ(l)ρ(k)
l∑

j=2

∞∑
a=l−j+k+1

γ (a). (12)

and the contribution to mean run length is

μDiif =
φ2
i (1 − τ )τ + φ2

i φf (1 − τ )2

Eρ

∑
l>1

∑
k≥1

ρ(l)ρ(k)
l∑

j=2

(l − j + k + 1)
∞∑

a=l−j+k+1

γ (a). (13)

Events of type Diif, with i ≠ f, turn two deleted runs
with r and s events, respectively, with the latter contain-
ing terms from both chromosomes, into a single run
with r + s + 1 events.
The probability pEiii that a deletion event touches the

run of deletions on the left of the run of undeleted
terms and touches or overlaps the run of deletions on
the right, all on the same chromosome, but does not
extend over the entire run of undeleted terms beyond
that is:

pEiii =
φ3
i (1 − τ )

Eρ

∑
l≥1

∑
k≥1

ρ(l)ρ(k)
l+k−1∑
a=1

γ (a), (14)

where

μEiii =
φ3
i (1 − τ )

Eρ

∑
l≥1

∑
k≥1

ρ(l)ρ(k)
l+k−1∑
a=l

γ (a)a. (15)

The probability pEiif that a deletion event touches the
run of deletions on the left of the run of undeleted
terms, both from the same chromosome, and touches
the run of deletions on the right, partly or entirely on

the other chromosome, is:

pEiif =
φ2
i τ + φ2

i φf (1 − τ )

Eρ

∑
l≥1

ρ(l)
∞∑
a=l

γ (a) (16)

and

μEiif =
φ2
i τ + φ2

i φf (1 − τ )

Eρ

∑
l≥1

ρ(l)l
∞∑
a=l

γ (a). (17)

The probability pEiii that a deletion event touches the
run of deletions on the left of the run of undeleted
terms and touches or overlaps the run of deletions on
the right, all on the same chromosome, but does not
extend over the entire run of undeleted terms beyond
that is:

pEifi =
φ2
i φf (1 − τ )

Eρ

∑
l≥1

∑
k≥1

ρ(l)ρ(k)
l+k−1∑
a=l

γ (a) (18)

and

μEifi =
φ2
i φf (1 − τ )

Eρ

∑
l≥1

∑
k≥1

ρ(l)ρ(k)
l+k=1∑
a=l

γ (a)a (19)

The probability pEiff that a deletion event touches the
run of deletions on the left of the run of undeleted
terms and touches or overlaps the run of deletions on
the right, all on the same chromosome, but does not
extend over the entire run of undeleted terms beyond
that is:

pEiff =
φiφf τ + φiφ

2
f (1 − τ )

Eρ

∑
l≥1

ρ(l)
∞∑
a=l

γ (a) (20)

and

μEiff =
φiφf τ + φiφ

2
f (1 − τ )

Eρ

∑
l≥1

ρ(l)l
∞∑
a=l

γ (a) (21)

Events of type Eiii turn two deleted runs with r and s
events, respectively, all from one chromosome, into a
single run with r + s + 1 events. Events of type Eiif, Eifi
and Eiff,, with i ≠ f, turn two deleted runs with r and s
events, respectively, into a single run with r + s + 1
events.
We reiterate here that the last lines of each of (2),(6)

and (10) include the collection of terms, significantly
cutting down on computing time when these formulae
are implemented, especially in the case of (10).
In this initial model, we neglect the merger of three or

more runs of deletions. There is no conceptual difficulty
in including three or more mergers, but the proliferation
of embedded summations would require excessive
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computation. Thus we should expect the model to be
adequate until θ gets very small, when mergers of sev-
eral runs at a time become common.
Let pA = pA1 + pA2, and similarly let each of pB, ..., pE be

the sums of their respective subscripted terms (with all
combinations of i and f). We define the change δπ(r) in
the number of runs of deleted terms with r = 1, 2, ....

δπ (1) = pA − (pB + pC + 2pD + 2pE)π(1). (22)

δπ(2) = (pB + pC)π(1) − (pB + pC + 2pD + 2pE)π(2). (23)

For r > 2,

δπ(r) = (pB+pC)π(r−1)+(2pD+2pE)
r−2∑
s=1

π(s)π(r − s − 1) − (pB + pC + 2pD + 2pE)π(r). (24)

In an implementation on a finite interval of ℤ, the
number of runs of deleted terms will change from some
value R to R’, where

R′ = R +
∞∑
r=1

δπ(r). (25)

The distribution of number of events per run will also
change from π to π’, where

π ′(r) =
Rπ(r) + δπ (r)

R′ , (26)

and where the mean of the number of deleted genes
per run increases from ū to ū′, so that

ū′ =
Rū +

∑
X=A,B,C.,D.,E. μX

R′ . (27)

The mean v̄′ of the new distribution r’ of run lengths
of undeleted terms satisfies

v̄′ =
R

R′ (ū + v̄) − ū′. (28)

The new proportion θ’ of undeleted terms is
v̄′/(ū′ + v̄′).
In the same interval of ℤ, we define the change δτ(r) in

the number of runs containing single copy genes in both
chromosomes with r = 1, 2, ....

δτ (1) = 0. (29)

δτ (2) = (pB12 + pB12 + pC12 + pC21 )π(1) − (pB + pC + 2pD + 2pE)π(2)τ (2). (30)

For r > 2,

δτ (r) = (pB + pC)π(r − 1)τ (r − 1) + (pB12 + pB12 + pC12 + pC21 )π(r − 1)(1 − r(r − 1))

+ (2pD + 2pE)
r−2∑
s=1

π(s)π(r − s − 1)(1 − (φ3
1 + φ3

2)[1 − τ (r − s − 1)][1 − τ (s)])

− (pB + pC + 2pD + 2pE)τ (r)π(r).

(31)

In the implementation, the number of runs of deleted
terms with genes on both chromosomes will change

from T(r) to T’(r), where

T′(r) = T(r) + δτ (r). (32)

The proportions of runs with deletion events from
both chromosomes will also change from τ to τ’, where

τ ′(r) =
T′(r)
R′π ′(r)

. (33)

We implement equations (1) to (33) as a recurrence
with a step size parameter Λ to control the number of
events using the same pA, pB, pC, pD, pE, δπ(·) and δτ(·)
between successive normalizations, and using Λδπ(·) and
Λδτ(·) instead of δπ(·) and δτ(·) in (25)-(33). The choice
of Λ determines the trade-off between computing speed
and accuracy.
Figure 4 shows the results of our current implementa-

tion of our deterministic recurrence for the cases μ = 2
and μ = 11, for unbiased fractionation (j = 0.5) and for
extremely biased fractionation (j = 1). The results fit
simulations of the stochastic model quite well and reveal
a number of tendencies. One is that unbiased fractiona-
tion with small deletions leads to the fastest drop in
events of type A as θ decreases.
Biased fractionation with large deletion sizes leads to

slow initial growth in the proportions of events of types
D and E and “other”.
There are at least two reasons for the discrepancies

between the simulations and the recurrences observed
in Figure 4. At the outset, since we used a large step
size Λ for the computationally costly recurrence, its tra-
jectory lags behind the simulation, especially with
respect to the slower decrease in pA and slower increase
in pB + pC. Later discrepancies are partially due to not
accounting for the merger of three or more runs. These
can be estimated and are summarized as “other “ in the
diagram, but the quantities involved are not fed back to
the recurrence through (26).
Other possible sources of error might be due to the

cutoffs in x used for calculations involving g(x) and r(x).
However, extensive testing of various cutoff values has
indicated such errors to be negligible in our
implementation.

Conclusions
We have developed a model for the fractionation pro-
cess based on deletion events excising a geometrically-
distributed number of contiguous paralogs from either
one of a pair of homeologous chromosomes. The exis-
tence of data prompting this model is due to a func-
tional biological constraint against deleting both copies
of a duplicate pair of genes.
The mathematical framework we propose should

eventually serve for testing the geometric excision
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hypothesis against alternatives such as single gene-by-
gene inactivations, although we have not developed this
in this paper. In addition, further developments could
treat the gene-by-gene inactivation model as the null
hypothesis, and the geometric excision model, with
mean greater than 1, as the alternative hypothesis.
Simulations of these models indicate the feasibility of

estimating the mean μ of the deletion event process and
the fractionation bias j from observations of the length
of runs of single-copy genes and the overall proportion
of single-copy genes.
The main question we have explored is the exact deri-

vation of π, the distribution of the number of deletion
events contributing to a run of single-copy genes. The
simulations are convenient in practice, since they
depend on only the parameters μ and j as they evolve
over time, but they give little mathematical insight. Our
most important advance is a deterministic recurrence
for the π(r) as the proportion θ of undeleted genes
decreases. This takes into account the appearance of
new runs over time, the lengthening of existing runs, as
well as the merger of two existing runs with the new

deletions to form a single, longer one. This calculation
fits the process as simulated rather well and seems pro-
mising for further development.
In order to validate our fractionation model empiri-

cally, we will have to expand it to incorporate the rear-
rangement events that are pervasive in genome
evolution. Our previous work on this problem shows
that the effect of rearrangement is to seriously bias the
observable, credible instances of fractionation towards
smaller runs of deleted genes [4,8]. Future work on this
difficult problem will have either to rely on careful mod-
eling of this ascertainment bias or else find a way to
incorporate into the model deleted runs that have been
interrupted by rearrangements.
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