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Abstract

Background: Chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) is increasingly
being applied to study genome-wide binding sites of transcription factors. There is an increasing interest in
understanding the mechanism of action of co-regulator proteins, which do not bind DNA directly, but exert their
effects by binding to transcription factors such as the estrogen receptor (ER). However, due to the nature of
detecting indirect protein-DNA interaction, ChIP-seq signals from co-regulators can be relatively weak and thus
biologically meaningful interactions remain difficult to identify.

Results: In this study, we investigated and compared different statistical and machine learning approaches
including unsupervised, supervised, and semi-supervised classification (self-training) approaches to integrate
multiple types of genomic and transcriptomic information derived from our experiments and public database to
overcome difficulty of identifying functional DNA binding sites of the co-regulator SRC-1 in the context of estrogen
response. Our results indicate that supervised learning with naïve Bayes algorithm significantly enhances peak
calling of weak ChIP-seq signals and outperforms other machine learning algorithms. Our integrative approach
revealed many potential ERa/SRC-1 DNA binding sites that would otherwise be missed by conventional peak
calling algorithms with default settings.

Conclusions: Our results indicate that a supervised classification approach enables one to utilize limited amounts
of prior knowledge together with multiple types of biological data to enhance the sensitivity and specificity of the
identification of DNA binding sites from co-regulator proteins.

Background
Transcription factors (TFs) serve as the final molecules
in signal transduction pathways that coordinate expres-
sion of target genes. When activated in response to
upstream signals, often encoded as chemical ligands and
protein modification, TFs bind to their cis-regulatory
sites to exert their regulatory effects on their target
genes. During the process, TFs often interact with other
proteins, which further modulate the function and effi-
cacy of TFs to achieve fine-tuned regulation of gene

expression; studying such interactions and regulations is
an increasingly important component of studying gene
expression systems. Nuclear receptors (NRs), such as
estrogen receptor a (ERa), are transcription factors that
migrate to the nucleus (often as a result of binding
ligand) to regulate downstream target genes. NRs play
important biological roles in normal physiology and dis-
ease. In particular ERa plays an important role in both
breast cancer and osteoporosis. Upon ligand binding,
ERa and other NRs are bound by proteins called co-reg-
ulators that recruit transcriptional machinery and chro-
matin modifying enzymes. Co-regulators are therefore
critical in NR activity. Understanding the composition
of functional NR/co-regulator complexes in specific
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signaling contexts could provide a basis for the develop-
ment of novel NR- and co-regulator-targeted therapeu-
tics. The problem addressed in this paper arose from a
study of the interaction between the major ERa co-acti-
vator SRC-1 (a member of the p160 SRC family), also
known as NCOA1, with ERa and the impact of such
interactions gene expression [1-4].
Recently, chromatin immunoprecipitation coupled with

high-throughput next-generation sequencing (ChIP-seq)
has become the main technology for global characteriza-
tion of the transcriptional impact of NRs and their co-
regulators [5-7]. ChIP-seq involves the short-read (~30
bp) sequencing of the ChIP-enriched DNA fragments.
These short sequence reads (tags) are then aligned to a
reference genome. Then the actual binding loci from the
positional tag distributions (i.e. sequenced DNA frag-
ments mapped onto a reference genome sequence) are
determined using ‘peak calling’ algorithms. Numerous
peak calling algorithms have recently been developed for
identifying ChIP-enriched genomic regions from ChIP-
seq experiments [8-10] but there is a wide range of dis-
cordance among the peak calls from different algorithms
[11]. Therefore, there is a need for the methods that can
integrate additional information besides ChIP-seq tags to
identify functional TF binding sites. Furthermore, study-
ing the interactions between TFs and their co-regulators
through ChIP-seq technology poses an additional chal-
lenge since co-regulators do not directly bind DNA. Co-
regulator ChIP-seq measures the secondary protein-DNA
binding through primary TFs and leads to relatively weak
sequencing signals–i.e. relatively small number of
sequence tags above noise. As such, it remains a chal-
lenge for contemporary peak calling methods to detect
weak secondary protein-DNA-binding signals and simul-
taneously maintain a high specificity.
Often, a well-designed experiment studying interaction

between a TF and its co-regulator generates critical infor-
mation in addition to the ChIP-seq data for the co-regula-
tor binding. For example, ChIP-seq data reflecting the
binding of the primary TF of interest to its cis-regulatory
sites are often collected; the genomic sequence surround-
ing Chip-seq peaks are usually available, which can be
used to reflect the intrinsic sequence characteristics of reg-
ulatory sites; transcriptomic data that reflect functional
outcomes of the interaction of the TF and its co-regulators
can also be monitored. In this study, we investigated and
compared different statistical and machine learning
approaches to integrate multiple types of information to
overcome the difficulty of identifying functional ERa/SRC-
1 interaction in presence of weak ChIP-seq signal.

Results and discussion
The biological study underlying this paper aims to
investigate the impact of ERa/SRC-1 interaction on

estrogen induced gene expression in a bone cell line
transfected with ERa (U2OS-ERa), which may shed
light on the effect of estrogen-related bone development,
bone loss, and potentially bone metastasis. We have
generated ChIP-seq data using anti-ERa and anti-SRC-1
antibodies in presence and absence of estradiol (E2). To
further investigate the impact of interactions between
this NR//co-regulator pair, we collected expression array
data from the same cell lines with a combination of E2
treatment and SRC-1 knock down. In general, the
results of an SRC-1 ChIP-seq experiment would reflect
secondary, indirect binding of SRC-1 to DNA through
multiple NRs. However, in this study our experimental
design aims to investigate specifically estrogen-induced
interactions between ERa, SRC-1, and DNA. The
detailed results of the experiments are being prepared
for a separate publication (Hartmaier et al., manuscript
in preparation). In the current paper, we address the
fundamental issue of identifying reliable and functional
ERa/SRC-1 DNA binding sites.

Identifying SRC-1 binding sites based on anti-SRC-1 ChIP-
seq
We first set out to investigate the efficacy of studying
ERa/SRC-1 DNA binding sites only based on the results
of ChIP-seq experiments performed using an anti-SRC-1
antibody. Potential SRC-1 binding peaks were identified
using three different algorithms: MACS 1.4.1 [9], Baye-
sPeak[10], and T-PIC [8]. Table 1 shows the number of
peaks identified by the above algorithms with different
cut-off thresholds and the corresponding number of
genes to which the peaks are mapped.
The results of the table raise the following issues dur-

ing interpretation: First, as expected, applying different

Table 1 The number of peaks called by different
algorithms and at thresholds, and corresponding number
of mapped genes

Method Total number of
peaks

Number of genes
mapped

MACS, p = 1E-8 1,966 996

MACS, p = 1E-5 4,678 2,054

MACS, p = 1E-3 23,306 6,341

T-PIC, p = 1E-3 4,453 1,676

T-PIC, p = 1E-2 6,598 2,318

BayesPeak (PP =
0.90)

15,622 4,495

BayesPeak (PP =
0.70)

21,373 5,507

BayesPeak (PP =
0.5)

27,990 6,533

Union* 38,324 8,057

Intersection* 4,811 2,029

* Union and intersection of the peaks by the three methods, as shown in
Figure 1.
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cut-off thresholds to the results by a given algorithm
leads to a different number of peaks being identified:
there is inevitably a trade-off between the number of
peaks recovered and the quality of the peaks. Second,
different algorithms assess the quality of the peaks based
on different assumptions and methodologies: there is no
consensus on the “goodness” of quality scores of these
algorithms. We further noted that different versions of a
same algorithm return different quality scores. Finally,
different algorithms return disjointed sets of peaks, as
shown in Figure 1, indicating that distinct assumptions
and approaches enable an algorithm to discover some
potential peaks that evade detection by other algorithms.
These issues force decisions that potentially impact the
conclusions of the study such as: which algorithm per-
forms better, what cut-off threshold for a given algo-
rithm to pick, and how to consolidate the results from
different algorithms so that one can maximize the num-
ber of high quality peaks. Making these choices remains
challenging due to the lack of consensus in the field
[11,12].
In order to compare our results with a recently pub-

lished study by Lanz et al. [13], which analyzed DNA
recruitment of the co-regulators SRC-3, we studied the
estrogen-induced SRC-1 peaks identified from our data
using MACS algorithm with a cut-off threshold of P
value at 10-10, a threshold based on their study. Our
analysis yielded a total of 1,286 peaks, which were
further mapped to 684 genes. The number of peaks
identified by us with the above condition is far fewer
compared to their study. The discrepancy is likely to be,
at least in part, due to amplification of SRC-3 in MCF-7

cells used in their study and possible differences in anti-
body affinities. However, these results also raised the
hypothesis that ChIP-seq signals of secondary binding at
physiologic levels are usually weaker. This suggests that
conventional cutoff thresholds for peak calling algo-
rithms may be too stringent, neglecting weak peaks
(peaks with relatively small number of tags) potentially
resulting from real ERa/SRC-1/DNA interactions.
Therefore, additional information besides SRC-1 ChIP-
seq tags should be capitalized to enhance identification
of functional binding sites.

Integrating multiple sources of biological information for
identifying SRC-1 binding sites
To corroborate the results of SRC-1 ChIP-seq, we also
studied the ERa ChIP-seq data (reflecting the expected
dominant SRC-1-interacting TF) and investigated peaks
overlapping between the ERa and the SRC-1 ChIP-seq
results. By varying the cut-off threshold of MACS, we
identified different numbers of overlapping peaks
between ERa and SRC-1, with the number of overlap-
ping peaks increasing as the cut-off threshold relaxes
(data not shown). The results again indicated that the
conventional cut-off thresholds are failing to identify
putative ERa/SRC-1 DNA binding sites (false negatives).
On the other hand, simply relaxing the cut-off threshold
is likely leading to increased false positive peak calls.
Thus a principled method is needed to further identify
functional ERa/SRC-1 DNA binding sites.
To elucidate functional ERa/SRC-1 DNA binding

events, i.e., the binding events that influence gene
expression, we generated and analyzed expression array

Figure 1 Peak calling by different algorithms. A Venn diagram shows the overlaps among the peaks called by MACS (P value cutoff of 10-3),
T-PIC (P value cutoff of 10-2) and BayesPeak (PP cutoff of 0.5). The number of peaks are shown. The numbers of the union and intersection of
the peaks and the mapped genes by the algorithms are shown in Table 1.
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data from cells that were treated with vehicle and E2 in
the presence and absence of SRC-1 siRNA (Hartmaier
et al., manuscript in preparation). The microarray data
enabled us to identify 634 genes whose expression
response to estrogen treatment required SRC-1, which
are hereto referred to as SRC-1-sensitive genes. When
we compared the list of SRC-1-sensitive genes and the
list of genes with SRC-1 binding sites derived by MACS
at P value = 10-10, we noted that only 44 genes over-
lapped among the lists. While the discrepancy between
the number of SRC-1-sensitive genes and genes with
SRC-1 peaks could be explained by other biological fac-
tors, such as that many SRC-1 peaks were not functional
or secondary expression effects, it also supported our
general hypothesis that ERa/SRC-1 interaction ChIP-seq
signal is relatively weak and potentially true functional
ERa/SRC-1 DNA binding sites were missed by the strin-
gent setting of the peak calling algorithm.
While it may be tempting to directly combine the

information from SRC-1 ChIP-seq, ERa ChIP-seq and
microarray data by identifying the intersections of over-
lapping genes and peaks, such an approach is overly sim-
plistic and ignores other potentially informative data, e.g.,
the genome-sequence characteristics of ERa/SRC-1
interaction sites and the prior information of known
ERa/SRC-1 interactions. These considerations motivated
us to investigate and compare different principled
machine learning approaches in order to improve the
sensitivity and specificity of detecting ERa/SRC-1 DNA
binding sites by integrating multiple types of information.

An integrative approach to detect ERa/SRC-1 DNA
binding sites
The overall framework and rationale of our information
integration approaches are as follows. We formulated the
task of identifying functional ERa/SRC-1 DNA binding
sites as a classification task, in which we performed a bin-
ary classification to label a potential SRC-1 binding site
derived from ChIP-seq analysis as either functional or
nonfunctional. We investigated both supervised learning,
which allows us to take advantage of existing knowledge
of ERa/SRC-1 interactions, and unsupervised learning,
which allowed us to take an unbiased approach.
The classification formulation allowed us to pool more

candidate peaks identified by different peak calling algo-
rithms at relaxed cutoff thresholds so that we did not
have to rely on a single “best” algorithms and “optimal”
parameterization but resorted to our classification to
identify functional ERa/SRC-1 DNA binding. In this
study, we collected the union of the peaks returned by
all three algorithms at the cutoff threshold as follows,
MACS: P value cutoff 10-3, BayesPeak: Posterior Prob-
ability (PP) ≥ 0.5 and T-PIC: P value cutoff 10-2. This
led to a pool of 38,324 candidate peaks.

Another important advantage of the classification
approach is that it allows us to integrate multiple types
of biological information collected from our experiments
and public databases by representing them as features
for a classifier. In this way, multiple types of information
contribute to the classification of potential peaks and
their impact can be determined by learning algorithms.
For each candidate SRC-1 peak, we constructed the fol-
lowing features: a vector of binary features representing
presence/absence of nucleotide trigrams (triplet of
nucleotides), which reflects the intrinsic characteristics
of genome sequence surrounding the summit of a peak
region; an average of predicted nucleosome-occupancy
scores, which represents the chromatin structure charac-
teristics around the peak summit; a binary feature
reflecting if a primary binding peak, i.e., the ERa ChIP-
seq peak, overlaps with the SRC-1 peak; and a binary
feature representing the functional outcome of ERa/
SRC-1 interaction, i.e., whether the peak is mapped to
an SRC-1 sensitive gene. Detailed descriptions of fea-
tures are presented in Methods section.
We evaluated the results of predictions from classifica-

tion algorithms by determining if conserved ERa bind-
ing motif can be found in the classified peaks, as an
indication that a peak is the result of ERa/SRC-1 DNA
binding. Searching for instances of conserved TF bind-
ing motifs at the predicted binding loci is considered
the most prominent verification method for validating
peaks [14].

Unsupervised classification
First, we explored if the candidate peaks could be
divided into two distinct groups by unsupervised learn-
ing in an unbiased manner. We applied a K-means clus-
tering procedure to the data and the results are listed in
Table 2. We inspected the genome sequences of the
peaks to assess if a conserved motif for estrogen
response element (ERE) was detected by a motif classifi-
cation algorithm referred to as CLOVER[15]. In cluster
46% of 26,211 peaks contained the ERE motif, and, in
cluster 27% of 12,113 peaks contained the ERE motif.
We believe this is not a good separation of the peaks in
that, even though cluster 1 has more ERE-containing
peaks, it is a bigger cluster and only 46% of peaks con-
tain EREs. Thus the results would likely lead to a high
false positive rate with respect to SRC-1 binding.

Supervised classification
Supervised learning requires labeled data as training
cases. Obtaining a training set through large-scale
experimental validation of ERa/SRC-1 DNA binding is
costly and difficult to perform. Therefore, we investi-
gated whether a relatively small amount of labeled data
in the supervised learning task would result in better
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separation compared to unsupervised clustering with
our feature set. We experimentally validated 18 SRC-1
peaks as functional peaks by quantitative PCR (qPCR)
experiment (data not shown). We used these peaks as
positive training cases, together with a set of randomly
drawn control (anti-IgG) ChIP-seq peaks as negative
training cases, to train supervised classifiers. We investi-
gated the performance of three state-of-the-art classi-
fiers: Naive Bayes (NB), Support Vector Machines
(SVM) and Random Forest (RF). For NB and Random
Forest classifiers, we set the classification thresholds at
0.8 and 0.7 respectively. Since the ratio of the positive
and negative training cases may have impact on classifi-
cation algorithms, e.g. NB and SVM, we explored using
different ratios for training, between 1:1, 1:2, and 1:3,
and classifiers were built from these training sets. Our
test set consisted of all 38,324 candidate peaks. Table 2
lists the total number of peaks in each class, the number
ERE-containing peaks in each class and the ratio reflect-
ing ERE enrichment. Results for classifiers with 1:1, 1:2,
and 1:3 training ratio (positive over negative) were very
similar to each other (data not shown). Therefore, just
results for the 1:2 ratio were shown.
We noted that the supervised classification approaches

have significantly increased the number of positive
peaks when compared to those derived by peak calling
algorithms based on recommended cutoff thresholds.
For example, NB returned 11,835 positive peaks in com-
parison to 1,966 and 4,678 peaks returned by MACS
with cutoff P value set at 1E-8 and 1E-5, which reflected
a 6-fold and 2.5-fold increase, respectively. Through

further evaluation enrichment of ERE in the genome
sequences surrounding the peaks, we found that a simi-
lar percentage of peaks contained ERE element: 69% for
NB, and 72% and 66% MACS at 1E-8 and 1E-5 respec-
tively. Thus, the results indicate that the qualities of the
positive peaks returned by NB were as good as those
returned by the stringent peak calling in terms of ERE
enrichment.
We further inspected if the classification approaches

retrieved additional functional peaks, i.e., the peaks that
were mapped to SRC-1-sensitive genes derived from
microarray experiment. Table 3 shows the results of the
SRC-1 peaks returned by different peak calling
approaches that were mapped to SRC-1-sensitive genes.
We noted that, by setting MACS cutoff P values at 1E-
10, 1E-8, and 1E-5, a total of 44, 57, and 123 peaks were
mapped to SRC-1-sensitive genes. On the other hand,
NB has identified 238 peaks that overlap with SRC-1-
sensitive genes. We also note that BayesPeak exclusively
identified some of the newly “discovered” functional
peaks. Similarly MACS also exclusively discovered some
new peaks. These results indicate that, based on differ-
ent assumptions and criteria, different peak calling algo-
rithms are capable of identifying potential peaks to
complement other peak calling algorithms. Thus it is
more sensible to consider candidate peaks from more
than one peak-calling algorithm as long as an objective
approach can be further applied to consolidate the
results.
We also performed a 9-fold cross-validation experi-

ment to assess if the algorithm can correctly identify the

Table 2 Comparison of the performances by different machine learning algorithms

Number of peaks Number of peaks with ERE motif Ratio of peaks with ERE motif match

MACS p = 1E-10 1,286 941 0.73

MACS p = 1E-8 1,966 1,416 0.72

MACS p = 1E-5 4,678 3,077 0.66

k-means (city block)

Cluster 1 26,211 11,943 0.46

Cluster 2 12,113 3,245 0.27

supervised-NB(th = 0.8,1:2)

Positively labeled 11,835 8,196 0.69

Negatively labeled 26,489 6,992 0.26

supervised-SVM(kernel = polynomal,1:2)

Positively labeled 14,915 8,425 0.56

Negatively labeled 23,409 6,763 0.29

supervised-RF(th = 0.7,1:2)

Positively labeled 10,428 6,514 0.62

Negatively labeled 27,896 8,674 0.31

semi-supervised-NB(th = 0.8,1:2, I = 75)

Positively labeled 12,597 8,458 0.67

Negatively labeled 25,727 6,730 0.26
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experimentally validated ERa/SRC-1 training cases from
the candidate peak pool. Results were listed in Table 4.
NB classifier showed 89% precision, 100% recall and
96% accuracy, see Methods section for the descriptions
of the metrics. This result increased our confidence that
positive calls from our algorithm are likely to reflect real
ERa/SRC-1 DNA binding.The results in the table indi-
cate that the NB classifier performed better than the
SVM and RF classifiers, judging from relative enrich-
ment of ERE containing binding sites in the predicted
positive peaks. Among the three classifiers tested in this
study, the RF classifier performed worst. We noted that
the number of features that were used by RF during the
learning was much smaller than the number of features
utilized by other classifiers, which may partially explain
the inferior performance of this algorithm in this experi-
ment. The SVM method also performed worse on this
task than probabilistic NB. We conjecture that the rea-
son might be that SVM is complex algorithm with many
parameters to adjust and therefore finding optimal para-
meters for decision boundary might be challenging for
this task. We therefore concentrated on the NB classifier
because it could be readily used in both supervised and
semi-supervised learning environment.

Semi-supervised classification
Our number of training cases is relatively sparse com-
pared to a conventional machine learning setting. Semi-
supervised approaches have been applied to conquer
limitations of supervised and unsupervised methods
when labeled data is scarce and obtaining large amounts
of labeled data is expensive and time consuming [16,17].
This is done by incrementally assigning instances, which
are called with high confidence by a classifier, from
unlabelled data into training cases in order to increase
the number of training cases and thus enhance the gen-
eralizability of classification. Therefore, we investigated
semi-supervised classification to see whether we could

further increase the performance in identifying ERa/
SRC-1 DNA binding.
In this study, we applied a self-training algorithm [17]

using NB as the base classifier because of its probabilis-
tic outputs. We iteratively assigned the most confident
positive instances called by our classifier into training
cases and found that performance of the self-training
became stable after 75 iterations and stopped further
training. Figure 2 shows the trends of percentage of
ERE-containing peaks in the positive calls in semi-super-
vised learning. It is interesting to note that initially as a
few pseudo-positive cases were imputed into the train-
ing cases the precision of the called positive peaks
decreased but later became stable after 75 iterations. A
similar total number of peaks and the percentage of
ERE-containing peaks were identified by our semi-
supervised learning algorithm when compared to other
supervised learning experiments, see Table 2. Thus the
results do not show obvious advantage of semi-super-
vised learning over supervised learning algorithms in
our experiment.

Identification of informative features
Biologically, it is of interest to identify the features that
significantly contribute to the classification in that it will
reveal the relationships between input features and out-
come. We rank key features by ROC class reparability
criteria using MATLAB (Bioinformatics Toolbox) [18],
using a training dataset containing the 18 true positive
peaks and 36 random non-binding sites from IgG peak
calls. Following were the 15 top ranked features: “AAC”,
peaks-mapped-to-SRC-1-dependent-genes, “GCG”,
“CGT”, overlapping-with-ERa-peak, “AAG”, “ACA”,
“ACC”, “CGC”, “AGA”, “AGC”, “AGG”, “CGA”, “ACT”,
“ATC”, see Methods section for detailed descriptions of
the features. Among the top-ranking features, we noted
that the features reflecting the function outcome (peaks-
mapped-to-SRC-1-dependent-genes) and the interaction
between ER and SRC-1 (overlapping-with-ERa-peak)
were ranked high, indicating the learning algorithm cor-
rectly recognized their importance in classification. It is
interesting to note that many nucleotide trigrams, which
reflect the characteristics of sequences of peaks, were
among the high-ranking features. We aligned the top-
ranking trigrams to the ERE motif, as shown in Figure
3. Indeed, the trigrams correspond well with the

Table 3 Comparison of different methods for identifying functional peaks

Method Total number of peaks Number of genes mapped Intersection with SRC1-dependent genes

MACS p = 1E-10 1,286 684 44

MACS p = 1E-8 1,966 996 57

MACS p = 1E-5 4,678 2,054 123

supervised-NB(th = 0.8,1:2) 11,835 3,875 238

Table 4 Performance of different classifiers under 9-fold
cross-validation setting

Classifier Precision Recall Accuracy

NB(th = 0.8,1:2) 0.89 1 0.96

SVM(kernel = polynomial,1:2) 0.89 0.96 0.94

RF(th = 0.7,1:2) 0.72 1 0.91
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important components of the ERE motif. These results
indicate that the classification learning algorithm, like
the motif searching algorithms (i.e. [19-22]), is able to
identify highly conserved “words” that constitute one of
the important motifs of the training sequences. We
noted that the feature reflecting nucleosome occupancy
at peak regions was ranked as 48th. This may indicate
either that nucleosome occupancy is a dynamic process
and our static feature does not reflect the true occu-
pancy status during the experiments or that the ERa/
SRC-1 DNA binding is not heavily dependent on
nucleosome occupancy.

Biological insights from improved peak calling
We further examined the impact of the improved SRC-
1 peak calling on biological insights drawn from the
dataset. We conducted Gene Ontology Analysis using
the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) [23] on genes with an SRC-
1 peak within 50 kb of the TSS as determined by
MACS (P < 10-5) or by our method. We observed a
dramatic difference in the identification of genes
enriched in specific biological processes. Specifically,
our method yielded in the calling of peaks in gene sets
which were highly enriched for genes involved in

Figure 2 Self-training. Percentage of predicted positive peaks with ERE motifs (over iterations for different TP:TN ratios for training set as
indicated in the legends).

Figure 3 Overlapping top trigrams with ERE motif. This figure shows potential matching locations of the top-ranking nucleotide trigrams
identified by feature selection algorithms.
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blood vessel development (enrichment: 4.61, Benja-
mani: 7.9 × 10-4) and actin filament-based processes
(enrichment: 3.18, Benjamani: 1.3 × 10-3). Indeed
blood vessel development has previous been implicated
in bone generation [24,25]. Further, within the genes
enriched in these biological processes, we identified a
number of genes with known functions in bone devel-
opment. Since SRC-1 has already been implicated in
E2 mediate bone maintenance, this observation pro-
vides evidence for the mechanism underlying this phe-
notype. In contrast, genes with SRC-1 peaks
determined by MACS were not significantly associated
with any biological processes.

Conclusions
We believe that the ability to improve ChIP-seq peak
calling by utilizing available sources of biological infor-
mation for indirect co-regulator binding in the pre-
sence of weak ChIP-seq signal is an important research
area. Due to the intrinsic variability in the affinity of
interactions between a TF and its co-regulators, it is
inevitable that the ChIP-seq signal of these types of
studies would span a broad spectrum and that the
weak signal scenario, as in this study, would be likely
to occur often. The need for methods to address this
problem is acute considering the increasing number of
studies using ChIP-seq to study NR and their co-regu-
lators due to their importance in normal development
and in many diseases such as breast cancers. Our work
strives to explore whether the peak calling can be
improved through the integration of available diverse
biological sources via machine learning approaches.
Our results demonstrate that it is informative to gener-
ate, collect, and integrate the following information:
ChIP-seq data reflecting location of the primary inter-
action of the TF of interest to its cis-regulatory sites,
gene expression data reflecting functional outcomes of
interaction of the TF and its co-regulators, and finally
genomic sequence data of the identified regions. Other
types of data which is highly likely to be useful include
histone modification marks, recruitment of RNA poly-
merase II, and relative location of the insulator protein
CTCF [26].
In summary, our results indicate that a supervised

classification approach enables one to utilize even lim-
ited amounts of existing knowledge together with multi-
ple types of biological data to enhance the sensitivity
and specificity of identifying DNA binding sites for co-
regulators proteins. Our feature selection experiments
indicate that experimental inputs complementary to
ChIP-seq are critical in identifying biological significant
signals from ChIP studies with weak signals due to
indirect DNA binding.

Methods
ChIP-seq data
U2OS cells stably expressing Flag-tagged ERa (obtained
from Dale Leitman) were used for ChIP as previously
published [27]. SRC-1 and ERa ChIP DNA from ethanol
(vehicle) and estradiol (E2)-treated U2OS cells were
amplified for Illumina sequencing. IgG ChIP DNA was
also amplified for Illumina sequencing. The ChIP-seq
datasets used in this study had the following number of
uniquely mapped sequence tags, ChIP_ER_E2:
10,380,852, ChIP_SRC-1_E2:6,995,566 tags, ChIP_IgG:
8,641,543 tags. SRC-1 peaks were called using MACS
1.4.1 [9], BayesPeak[10], and T-PIC [8] with IgG as
negative control.

Evaluation procedure
The selected peaks were evaluated in terms of their
overlap with high-scoring sequence motifs. The motif
analysis was performed using the program CLOVER
[15], with P value cutoff 0.005 which compares sets of
DNA sequences to a library of transcription factor-bind-
ing motifs and identifies whether any of the motifs are
statistically overrepresented or underrepresented in the
sets. We measured enrichment of selected motifs in sets
of ± 300 bp from SRC-1 ChIP-seq peak summit.

Computational framework
We investigated the following computational approaches
to identify potential binding sites, including unsuper-
vised classification, supervised classification and semi-
supervised classification. The task was formulated as a
binary classification problem for supervised and semi-
supervised framework, where each ChIP-seq peak was
either ‘functional’ or ‘non-functional’. Each ChIP-seq
peak was represented with a vector of binary features,
where each feature was derived from one biological
information source.

Features
We devised a total of 67 features, which can be grouped
as follows. 1) Genomic information: trigrams (triplet of
nucleotides) to represent intrinsic characteristics of gen-
ome sequence surround the peak summit to create a
feature vector; averaged nucleosome occupancy predic-
tion results as another feature. 2) Primary TF binding
events: the called ER ChIP-seq data peak that overlap
with SRC-1/ERaChIP-seq. 3) Functional outcome of TF
activation: whether the peak is mapped to SRC-1 sensi-
tive gene.

N-gram presence (64 features)
Previously, n-gram distribution of sequences have been
utilized for TF binding site prediction [28]. An N-grams
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consists of a sequence of n letters, where letters are pos-
sible nucleotide (A,T,G,C) bases of DNA sequences in
ChIP-seq peaks. As such, a trigram has 64 possible com-
binations of three nucleotides, and we constructed a
vector of length of 64 elements used the Galaxy Toolkit
[29], each representing the presence or absence of a give
trigram in the 600 bp surrounding the summit of the
peak of interest.

Nucleosome occupancy (1 feature)
Nucleosomes are fundamental repeating unit of eukar-
yotic chromatin. Nucleosomes consist of 147 bp of
DNA sequence wrapped around a histone core com-
plex,and they are separated from each other by linker
DNA of up to 50 bp. Recently, Tillo et al. [30] proposed
that nucleosome occupancy of DNA sequence around
functional human transcription factor binding sites
(TFBSs) is remarkably higher. To represent the nucleo-
some occupancy status of the Chip-seq peaks, we use
the scores from Kaplan et al.’s [31] genome wide
nucleosome predictions. For each base location of
human genome, Kaplan et al. provided the “average
occupancy” score, which is the predicted probability for
each position in the genome to be covered by any
nucleosome. For each peak, we took the mean value of
average occupancy score around ±50 bp (an approxi-
mate length of a nucleosome) region of the peak sum-
mit. For each candidate peak, its nucleosome occupancy
feature is represented as a binary variable, with value
set equal 1 if the mean value greater than 0.75 and 0,
otherwise.

Primary TF binding events (1 feature)
For each candidate SRC-1 peak, we associate a binary
variable to indicate if the peak overlaps with any ERa
ChIP-seq peak. We defined that an ERa and an SRC-1
peak overlap if they share at least one base pair.

Functional outcome of TF activation (1 feature)
We collected the gene expression data from cells that
were treated with vehicle and E2 in presence and
absence of anti-SRC-1 siRNA have been employed for
our analysis. Differentially expressed genes between
these samples were found using limma (Linear Models
for Microarray Analysis) package - an implementation
of the empirical Bayes linear modelling approach [32].
We identified a list of genes that were differentially
expressed between the control vs anti-SRC-1 siRNA
groups and labelled them as SRC-1 sensitive genes.
ChIPpeakAnno[33] was used to map each ChIP-seq
peak to a gene if possible using default setting of the
program. For each candidate SRC-1 peak, we associate a
binary variable to indicate if the peak is mapped to one
of SRC-1-sensitive genes.

Machine learning approaches
For unsupervised learning, k-means clustering, training
and classification procedures for supervised and semi-
supervised framework are implemented using the
MATLAB® (Natick, MA). We rank key features by ROC
class reparability criteria using also MATLAB®. The
microarray data analysis was done with the use of the R
packages from the Bioconductor project http://www.bio-
conductor.org. We used DAVID [23] for GO analysis.

Unsupervised clustering
We used k-means clustering (k = 2) with city block dis-
tance metric to see cluster candidate peaks into two
groups.

Supervised classification
To build this type of classifiers, labelled data of both
true-positive peaks and false-positive peaks were
required. We experimentally validated 18 SRC-1 peak by
quantitative PCR (qPCR) experiments (data not shown),
which were used as positive training cases, together with
a set of randomly drawn control (anti-IgG) ChIP-seq
peaks as negative training cases, to train supervised clas-
sifiers. We investigated the performance of three state-
of-the-art classifiers: Naive Bayes (NB) [34] implemented
by the MATLAB, Support Vector Machines (SVM)[35]
and Random Forest (RF)[36]. Different ratios of positive
to negative cases, (1:1, 1:2 and 1:3), were considered in
this study for testing, and training.
NB classifier with Bernoulli distribution was used

where each peak represented as binary-valued feature
vectors. For SVM, we studied different types of kernels
and chose the polynomial kernel in this study. For train-
ing RF classifiers, we grew 50 trees. For the number of
variables randomly selected at each node, we used the
default value that was equal to the square root of the
feature dimension.
We measured performance of classifiers with 9-fold

cross-validation process and report precision, recall and
accuracy values. Precision and recall were used in order
to evaluate model performance of classifier. Precision
was measured as the fraction of correctly predicted TP
binding sites (experimentally verified) among all binding
sites predicted by the classifier to be TP binding site.
Recall is the fraction of the TP binding sites that are
also predicted to TP. Accuracy is calculated as the frac-
tion of correct calls (TP + TN) overall total number of
predictions.

Semi-supervised classification
Self-training is one of the common algorithms used for
semi-supervised learning [16]. In self-training [17], a
classifier is built from labeled instances (L) and used to
predict the labels for instances in unlabeled set (U).
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Then m instances in U that the current classifier has
high classification confidence are labeled and moved to
enlarge L. The whole process iterates until stopped. The
stopping criterion in self-training is that, either there is
no unlabeled instance left or the maximum number of
iterations has been reached. Different ratios of positive
to negative cases, (1:1, 1:2), were considered in this
study for testing, and training. The detailed algorithm is
shown below.

Algorithm
Input: positively labeled data (P) {(xi, yi

)}lpi=1 , negatively
labeled data (N) {(xj, yj

)}lnj=1, and unlabeled data (U)
{xk}lp+ln+uk=lp+ln+1

1. Initially, let L0 = {(xi, yi
)}lpi=1 ∪{(xj, yj

)}lnj=1 and
U = {xk}lp+ln+uk=lp+ln+1 where ln = lp.
2. Set t, the iteration counter, to 0.
3. Repeat until the stopping criteria are not satisfied,

a. Build a classifier Ct on Lt.
b. Apply Ct to the unlabeled instances in Ut to
predict a label for each instance in Ut.
c. Generate Lst by selecting unlabeled instances
that Ct has the highest classification confidence
as positive label and select randomly equal num-
ber of negatively labeled instances from Nt.
d. Delete the selected instances positively and
negatively labeled from Ut and Nt respectively.
e. Lt+1 = Lt + Lst .
f. Increase t by 1.

Return the final classifier and apply it to the U.
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