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Abstract

effects were validated in backcross populations.

adapted squash varieties.

Background: Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family
in terms of economic importance after Solanaceae. The “summer squash” types, including Zucchini and Scallop, rank
among the highest-valued vegetables worldwide. There are few genomic tools available for this species.

The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was
recently generated using massive sequencing. A set of 384 SNP was selected to generate an lllumina GoldenGate
assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL).

Results: We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a
population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar
groups of the species’ two subspecies: Zucchini (subsp. pepo) x Scallop (subsp. ovifera). The mapping population
was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the
transcriptomes of both parents, using the lllumina GoldenGate platform. The global success rate of the assay was
higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of
5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to
successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL

Conclusion: Our results show that massive sequencing in different genotypes is an excellent tool for SNP
discovery, and that the lllumina GoldenGate platform can be successfully applied to constructing genetic maps and
performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an
invaluable new tool for biological research, especially considering that most of these markers are located in the
coding regions of genes involved in different physiological processes. The platform will also be useful for future
mapping and diversity studies, and will be essential in order to accelerate the process of breeding new and better-

Background

The Cucurbita genus, of American origin, is one of the
most variable genera within the Cucurbitaceae family
(reviewed by Esteras et al. [1]). C. pepo L. (2 n = 40),
the most economically important crop of this genus [2],
displays eight commercial morphotypes grouped into
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two subspecies (subsp. pepo L.: Pumpkin, Vegetable
Marrow, Cocozelle and Zucchini; subsp. ovifera (L.)
Decker (syn subsp. texana (Scheele) Filov): Scallop,
Acorn, Crookneck and Straightneck). The main eco-
nomic value of the species resides in the consumption
of its immature fruits as vegetables, commonly known
as summer squashes. Summer squashes of the Zucchini
type rank among the highest-valued vegetables world-
wide, whereas the “winter squash” types (fruits con-
sumed when mature) of C. pepo and related Cucurbita
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spp- are food staples and rich sources of fat and vita-
mins in developing countries [3].

Despite its economic importance, there are few geno-
mic tools available for Cucurbita, unlike other cucurbits,
such as watermelon (Citrullus lanatus (Thunb.) Matsum
& Nakai), cucumbers (Cucumis sativus L.) and melons
(Cucumis melo L.), for which new mapping populations,
dense genetic maps [4-7], microarrays [8,9], reverse
genetics platforms [10,11], transcriptomes [12,13] and
even whole genome sequences have already been gener-
ated [14-16]. Many of these resources are available at
the database maintained by the International Cucurbit
Genomics Initiative (ICuGl, [17]) and are being success-
fully employed by cucurbit researchers to study gene
functions and their related polymorphisms.

High-throughput sequencing technologies, mainly
Roche 454 and Illumina GA [18], are contributing to
filling this gap for non-model crops, thereby allowing
the rapid generation of sequence information, even in
species about which there is little prior knowledge. One
of the most interesting applications of massive sequen-
cing is the large-scale discovery of genetic variants that
can be converted into genetic markers, mainly microsa-
tellites or Simple Sequence Repeats (SSR) and Single
Nucleotide Polymorphisms (SNP) [19]. SSR and SNP are
now the predominant markers in plant genetic analysis.
The first transcriptome of C. pepo was recently gener-
ated using 454 GS FLX Titanium technology. A total of
49,610 unigenes were assembled from 512,751 new EST
(Expressed Sequence Tags) and used to generate the
first large collection of EST-derived SSR and SNP in
this species [20]. SNP are abundant in the genomes, and
are stable, amenable to automation and increasingly
cost-effective, and are therefore fast becoming the mar-
ker system of choice in modern genomics research. SSR,
however, continue to be widely used in studies with no
need for automation due to their co-dominant and mul-
tiallelic nature.

A practical way of optimizing large SNP collections is
that of using them with cost-effective platforms for
medium- to high-density genotyping. A large number of
commercial platforms for SNP genotyping are currently
available (reviewed by Gupta et al. [21]). The [llumina
GoldenGate assays that genotype 384, 768 or 1,536 SNP
in parallel have been the most widely used for mid-
throughput applications [22]. This genotyping technique
has been used extensively in humans [23] and several
animal species [24-26]. SNP platforms are also available
for several plant species, made up mostly of cereals,
legumes and conifers [27-35]. One of their main applica-
tions is the rapid development and saturation of genetic
maps [36,37].

Dense genetic maps are necessary tools for efficient
molecular breeding. They are particularly useful for

Page 2 of 21

quantitative trait loci (QTL) mapping and for the
development of new high-quality mapping populations,
such as introgression line libraries [38,39]. Four genetic
maps have been reported in the Cucurbita genus to
date. The first two maps were constructed using a
population derived from an inter-specific cross
between C. pepo x C. moschata Duchesne, a closely
related species, with Random Amplified Polymorphic
DNA (RAPD) markers [40,41]. Two maps were subse-
quently produced from two intra-specific crosses, one
using a cross between the oil-seed Pumpkin x Zuc-
chini “True French” varieties (both of which belong to
C. pepo subsp. pepo), and the other using a C. pepo
subsp. pepo x C. pepo subsp. ovifera cross (oil-seed
Pumpkin x Italian Crookneck, respectively). These
maps consisted mainly of RAPD and Amplified Frag-
ment Length Polymorphisms (AFLP) [42,43]. These
markers are dominant and cannot be transferred read-
ily to other populations. The first collection of SSR
markers was recently produced from genomic libraries
in Cucurbita by Gong et al. [44]. Part of this collec-
tion, consisting of 178 SSR, was used to increase the
density of the Pumpkin x Crookneck map and also to
study macrosynteny with C. moschata [45]. Before the
study by Blanca et al. [20], no SNP were available for
the species, which is why these markers have not pre-
viously been used for mapping purposes.

Even though nearly one hundred major genes control-
ling different aspects of Cucurbita biology have been
described [46], most have not been mapped. The avail-
able maps only include a few monogenic traits and have
not yet been efficiently used for QTL mapping. There is
a growing need for generating new maps with more
informative and transferable markers that are amenable
to large-scale genotyping. Markers linked to traits of
interest are necessary for molecular breeding in these
species, mainly in the Zucchini type, which by far domi-
nates the squash market and the breeding efforts of seed
companies. The current availability of a collection of
19,980 EST-SNP, located mostly in gene-coding regions
[20], will facilitate map development with functional
markers.

In this study, we used a set of 9,043 EST-SNP that
were detected in silico by Blanca et al. [20], and which
are suitable for detecting polymorphism between two
main commercial types of C. pepo (Zucchini and Scal-
lop) that have contrasting vine, flowering and fruit phe-
notypes, in order to develop an Illumina GoldenGate
384-SNP platform. This platform was employed to build
the first SNP-based genetic map with an F, population
(Zucchini x Scallop) and to detect QTL for the very
first time. The genotyping platform and the genetic map
are invaluable new tools for molecular breeding in
Cucurbita.
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Methods

Plant material

An F, population of 146 plants derived from the C. pepo
subsp. pepo var. Zucchini MU-CU-16 x C. pepo subsp.
ovifera var. Scallop UPV-196 cross was used to generate
the linkage map. These are the same parental genotypes
that were previously employed to generate the first C.
pepo transcriptome [20]. Both represent the main sum-
mer squash cultivar groups of each subspecies, and have
contrasting phenotypes for vine, flowering and fruit
traits (Figure 1). Four F; plants and several individuals
of each backcross generation to MU-CU-16 (BCZ, 30)
and to UPV-196 (BCS, 30) were also included in the
assay. In order to check if the selected SNP might also
be useful for genetic diversity studies and genotyping in
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other mapping populations, a panel of seven accessions
of C. pepo, including representatives of the four mor-
photypes of the subspecies pepo (two Zucchini landraces
from southern Spain, MU-20 and E-27; one Vegetable
Marrow from Morocco, AFR-12; one Spanish Cocozelle
landrace, V112; and two Pumpkin accessions, Styrian
Pumpkin and the Mexican landrace, CATIE 18887) and
one morphotype of the subspecies ovifera (the cultivar
Early Summer Crookneck) were included in the geno-
typing assay. One accession of the related species, C.
moschata, was also genotyped (the Spanish landrace
AN-45). All these accessions belong to the Cucurbita
core collection of the Cucurbits Breeding Group of the
Institute for the Conservation and Breeding of Agricul-
tural Biodiversity (COMAYV) [47,48] except for CATIE

Figure 1 Fruit characteristics of the map parentals and derived populations. Pictures showing fruit characteristics of Scallop and Zucchini
parentals and derived populations. Immature fruits of Scallop UPV-196 and Zucchini MU-CU-16 (a and b), mature fruits of Scallop UPV-196 and
Zucchini MU-CU-16 (c and d), mature fruits of F; (e) and a sample of mature fruits of the F, population (f).
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18887, which was kindly provided by the Genebank of
the Centro Agronémico Tropical de Investigacion y
Ensenianza (CATIE) in Costa Rica.

Total DNA was extracted from young leaves using the
CTAB method [49], with minor modifications. To
improve the quality of the obtained DNA, 70% ethanol
containing 15 mM ammonium acetate was used in the
last wash, and the DNA was treated with RNase. DNA
concentrations in TE buffer were adjusted to 50 ng/ul,
with the PicoGreen fluorescence being measured on an
ABI7900 apparatus (Applied Biosystems). Samples were
sent for genotyping to the Centro Nacional de Genoti-
pado (CEGEN-ISCIII, CRG-Node, Barcelona), a high-
throughput genotyping service. A minimum of 200 ng
of DNA were used for SNP genotyping.

SNP selection for the GoldenGate platform

Using the first C. pepo transcriptome [20] as a refer-
ence, a collection of 512,751 C. pepo EST, generated
using 454 pyrosequencing, from the two genotypes used
as the parentals for the mapping population (Zucchini
MU-CU-16 and Scallop UPV-196), was mined for SNP.
This screening yielded a total of 19,980 putative SNP
and 1,174 INDEL, distributed in 8,147 unigenes. Using
the different filters established in [20], we selected a set
of markers that, in silico, were monomorphic within
and polymorphic between the two sequenced genotypes
and suitable for genotyping with the Illumina Golden-
Gate system. Only SNP were selected, as the INDEL
were discarded [20]. Sequences with more than 4 SNP
or INDEL per 100 bp were discarded (using filter
HVR4) to avoid SNP located in hypervariable regions.
This selection was intended to reduce false polymorph-
isms caused by the alignment of paralogs, a potentially
significant problem when aligning short sequence reads.
To facilitate their use in a GoldenGate genotyping
assay, we also discarded those SNP that were closer
than 60 bp to another SNP or INDEL, to an intron or
to the unigene edge (filtering them out with CS60, 160
and CL60, respectively). Only SNP with two or more
reads per allele were selected, since our previous experi-
ence with in silico-detected SNP in melon [13] indicated
that putative SNP with only one read in one allele have
a low percentage of validation (even when the quality of
the sequenced nucleotide is high). Blanca et al. [20]
annotated the unigene collection using the Blast2GO
package [50], which assigns Gene Ontology (GO) terms
based on the BLAST definition. We used this annota-
tion to prioritize the selection of SNP located in the
Open Reading Frame regions (ORF) of annotated uni-
genes (with GO terms and significant BLAST in the
Swiss-Prot, Arabidopsis org or Uniref90 databases
[51-53] and with orthologs of Arabidopsis and/or
melon). A set of SNP that generate allele-specific
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restriction targets, with the possibility of being detected
via Cleaved Amplified Polymorphic Sequences (CAPS),
was also included, even though they did not meet some
of the aforementioned requirements.

The GO terms were reclassified into different func-
tional groups based on a set of GO slims in the Molecu-
lar Function and Biological Process categories in order
to provide a broad overview of the ontology content of
the final platform.

SNP genotyping

The sequence of each selected locus, including the poly-
morphic nucleotide and a 60 bp flanking sequence, was
submitted to the Illumina Assay Design Tool (ADT)
(Ilumina, San Diego, CA), and designability scores were
used for final marker selection. These scores ranged
from O to 1.0, where a score of > 0.6 means a high suc-
cess rate for the conversion of an SNP into a successful
GoldenGate assay. On the basis of these scores, a final
set of 384 SNP was selected, which was predicted to
have a high likelihood of success. The GoldenGate gen-
otyping assay was conducted as described elsewhere
[22,28,33].

To summarize, three primers were designed for each
locus. Two were allele-specific oligos (ASOs), comple-
mentary to the sequence directly adjacent to the SNP,
only differing at the 3’ base complementary to each
allele. The third primer was a locus-specific oligo (LSO),
which hybridizes to the complementary sequence
located downstream of the target SNP. The three oligos
had three universal primers attached at the 5" end. Each
locus-specific oligo also had an “IllumiCode” sequence
complementary to the array. The sequence of each locus
and the 1,152 custom oligos, three at each of the 384
different SNP /oci, are listed in Additional File 1:
“Sequence and primers for genotyping the 384 SNP
included in the GoldenGate platform”.

After DNA hybridization, an extension and ligation
step was performed connecting each allele-specific oligo
with the locus-specific oligo. A PCR step was then con-
ducted for all 384 loci using common universal primers.
The GoldenGate assay was deployed on the BeadX-
press® platform using Veracode® technology (Illumina,
San Diego, CA) [54]. The PCR products, labeled Cy3 or
Cy5 depending on the allele, were hybridized to glass
Veracode micro-beads, each bearing a locus-specific bar-
code via the corresponding Illumicode sequence. Then,
each SNP was identified by its IllumiCode and alleles
were discriminated by their fluorescent signals on a Ver-
acode BeadXpress Reader [55].

The automatic allele calling for each locus was accom-
plished using the GenomeStudio software (Illumina, San
Diego, CA). The clusters were manually edited when
necessary.
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SSR selection and amplification

A set of 25 genomic SSR (gSSR), evenly distributed in
the previously published map constructed by Gong et al.
[44] using the F, C. pepo subsp. pepo oil-Pumpkin vari-
ety “Lady Godiva” x C. pepo subsp. ovifera Crookneck
variety “Bianco Friulano”, were selected to be used as
anchors between both maps. Information about the
selected SSR is included in Additional File 2: “Primers
for genotyping the SSR included in the map”.

PCR reactions were carried out in a total volume of 15
pl in PCR buffer 1x (75 mM Tris-HCI pH 9, 20 mM
(NH4),SO4, 50 mM KCl), 3 mM MgCl,, 200 uM each
dNTP, 0.15 uM each primer, 0.2 pM M13 IRDye700/
800 (LI-COR. Lincoln, Nebraska) tagged tail, 0.35 U Taq
DNA Polymerase (Biotools B&M Labs, S.A., Madrid,
Spain) and 10-15 ng DNA. Forward primers were
designed with an added M13 tail sequence at their 5
end. The thermal profile was the following for all the
loci: 3 min denaturation at 95°C, 10 cycles of 30 s at 95°
C, 30 s at 65°C (decreasing 1°C every cycle) and 30 s at
72°C, 20 cycles of 30 s at 95°C, 30 s at 55°C and 30 s at
72°C with a final extension of 5 min at 72°C. A LICOR
4300 analyzer was employed to visualize SSR-allele size
differences on a denaturing polyacrylamide gel, loading
a 1/10 or 1/20 dilution in formamide.

Linkage analysis and map construction

The genetic map was constructed using the genotyping
results for the F, Zucchini x Scallop mapping popula-
tion, obtained with the new 384-SNP GoldenGate plat-
form and the anchor SSR. Segregation distortion at each
marker Jocus was tested against the expected ratio for F,
(1:2:1) using a % test. The linkage map was generated
with MAPMAKER/EXP version 3.0b [56]. Markers were
associated with the “group” command with LOD> 4.
Markers within groups were ordered using the “order”
command. Distances in centiMorgans (cM) were calcu-
lated from the recombination frequencies using the
Kosambi mapping function [57]. The remaining markers
were then located with the “try” command. The map
was drawn with MapChart version 2.1 [58].

Synteny with cucumber

The colinearity of the C. pepo genetic map with the
cucumber genome was evaluated by doing a BLAST
search of the unigenes corresponding to every C. pepo
SNP against the cucumber genome. The FASTA sequence
of this genome was downloaded from the ICuGI database
[17]. The hits obtained in the tBLASTx search of the C.
pepo unigenes against the cucumber genome were consid-
ered to be significant if they had an e-value above 10°°.
The locations of these significant hits were plotted in a
scatter plot in which one axis represented the cucumber
genome and the other the C. pepo map. The processing of
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the BLAST results was carried out with a custom Python
script that is available upon request.

Phenotyping

All F,, BCZ and BCS plants were cultivated in a green-
house with a fully randomized experimental design
(February to July, 2010) and extensively phenotyped.
Five plants of each parental and the F; generation were
also included in the assay. Fifty traits were measured for
each single plant, and twelve were scored visually (Table
1). Vine traits were related to plant color, length and
branching intensity, and flowering traits were related to
the flowering time and male/femaleness tendency. Each
plant was selfed and two fruits per plant were analyzed.
One fruit per plant was analyzed when immature, 7
days after pollination, which corresponds to the com-
mercial state of summer squashes. The second fruit per
plant was analyzed at physiological maturity (ranging
from 20 to 60 days after pollination). Traits measuring
fruit size, shape, texture, firmness, rind and flesh color,
sugar content and acidity were analyzed. More details
about quantitative and qualitative traits are included in
Table 1. Correlations between pairs of traits were esti-
mated by using the Pearson correlation coefficient.

QTL analysis

QTL for quantitative traits were analyzed by composite
interval mapping with Windows QTL Cartographer 2.5
[59] using the developed genetic map and the stepwise
forward regression procedure with a walking speed of 1
cM, a window size of 15 ¢cM and the inclusion of up to
5 maximum background marker loci as QTL cofactors.
The LOD threshold for a Type I error P < 0.05 value
was calculated by a permutation test [60] implemented
in Windows QTL Cartographer with 1,000 permutations
independently for each trait. Additive and dominant
QTL effects (a and d, respectively), the degree of domi-
nance (d/[a]) and the proportion of phenotypic variance
explained by QTL (R?) were estimated at the highest
peaks depicted by the QTL analysis.

A positive value of additive effects (positive a) indi-
cates that the Zucchini allele increases the trait, and,
conversely, a negative value indicates the Scallop allele
increases the trait. For positive a values, positive values
of d indicate that the Zucchini allele is dominant,
whereas negative values indicate that the Scallop allele is
dominant. Conversely, for negative a values, positive and
negative d values indicate dominance of the Scallop and
Zucchini alleles, respectively.

In order to validate the QTL effects and the utility of the
linked markers for breeding purposes (Marker-Assisted
Selection, MAS), genotypic and phenotypic data of the
two backcross populations, BCZ and BCS, were analyzed
for the detected QTL. ANOVA analysis conducted using
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Table 1 Quantitative and Qualitative traits measured/scored in the mapping populations

Trait Description/categories
code

Quantitative traits

Vine traits

N°Br Number of branches 7 days after the appearance of the first female flower
PLe Plant length measured at the end of the assay (cm)

NoN® Number of nodes measured at the end of the assay

Flowering traits

NoMaF First node with a male flower

NoFeF First node with a female flower

DMaF Days from sowing to the development of the first male flower

DFeF Days from sowing to the development of the first female flower

N°MaF Number of male flowers measured 7 days after the opening of the first female flower
N°FeF Number of female flowers measured 7 days after the opening of the first female flower
TN°F Total number of flowers measured 7 days after the opening of the first female flower

MaF/FeF  Ratio male to female flowers

Immature fruit

IPele Peduncle length (mm)

IFLe Fruit length (cm)

IFWi Fruit width (cm)

IFWe Fruit weight (g)

IRTh Rind thickness (mm)

IFTh Flesh thickness (mm)

|CaTh Cavity thickness (mm)

IBrix Total soluble solids measured with refractometer (Brix degrees)

IRFi Rind firmness measured with penetrometer (kg)

IFFi Flesh firmness measured with penetrometer (kg)

IRBr Rind brightness, scored visually as matte (0), medium (1) and bright (2)

ILoN® Number of locules

ILRCo Rind color measured with colorimeter, Hunter parameter L (Lightness: from white, L = 100, to black, L = 0)

laRCo Rind color measured with colorimeter, Hunter parameter a (from redness for positive values to greenness for negative values)
IbRCo Rind color measured with colorimeter, Hunter parameter b (from yellowness for positive values to blueness for negative values)
ILFCo Flesh color measured with colorimeter, Hunter parameter L

laFCo Flesh color measured with colorimeter, Hunter parameter a

IbFCo Flesh color measured with colorimeter, Hunter parameter b

Mature fruits

DMa Days from pollination to maturity

MPeLe Peduncle length (mm)

MFLe Fruit length (cm)

MFWi Fruit width (cm)

MFWe Fruit weight (g)

MRib Intensity of fruit ribbing, scored visually based on presence and depth of the ribs as absent (0), surface ribbing (1), intermediate ribbing
(2) and strong ribbing (3)

MRTh Rind thickness (mm)

MFTh Flesh thickness (mm)

MCaTh Cavity thickness (mm)

MBrix Total soluble solids measured with refractometer (Brix degrees)

MpH pH measured with paper
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Table 1 Quantitative and Qualitative traits measured/scored in the mapping populations (Continued)

MRFi Rind firmness measured with penetrometer (kg)

MFFi Flesh firmness measured with penetrometer (kg)

MRBr Rind brightness, scored visually as matte (0), medium (1) and bright (2)
MLoN® Number of locules

MLRCo Rind color measured with colorimeter, Hunter parameter L

MaRCo Rind color measured with colorimeter, Hunter parameter a

MbRCo Rind color measured with colorimeter, Hunter parameter b

MLFCo Flesh color measured with colorimeter, Hunter parameter L

MaFCo Flesh color measured with colorimeter, Hunter parameter a

MbFCo Flesh color measured with colorimeter, Hunter parameter b

Qualitative traits

Vine traits

SC Stem color, scored as dark green, intermediate or light green

Lins Green to white color change in leaf insertion scored as absent or present
T Presence of tendrils scored as absent or present

Immature fruit

IFSh Fruit shape, scored as elongated, pear-shaped, discoid or oval

IPriRCo Primary rind color, scored as dark green, green, light green, white-green or white
IPSecRCo  Pattern of secondary color, scored as dotted speckled, striped or absent

IFCo Flesh color, scored as green, light green, white-green or white

Mature fruit

MFSh

Fruit shape, scored as elongated, pear-shaped, discoid or oval

MPriRCo

Primary rind color, scored as black, green, orange, yellow, cream or white

MPSecRCo Pattern of secondary color, scored as dotted speckled, banded, striped or absent

MFCo Flesh color, scored as green, orange, yellow, cream or white

MRTe Rind texture, scored as smooth or warted

the SPSS v. 16.0 software was employed to detect signifi-
cant differences in the average value of homozygous back-
cross individuals (Zucchini, a, or Scallop, b) versus
heterozygous individuals (h) for the markers located
within or near the 1-LOD interval for the QTL. In those
traits displaying QTL confirmed in the backcrosses,
broad-sense heritabilities were estimated as described by
Wright [61]: H* = [V, - (0.25V + 0.25Vg + 0.5VE1)]/ Vs,
where V is the variance of F,, Zucchini (Z), Scallop (S) and
F, populations, respectively.

For the QTL analysis, the qualitative traits were coded
as dummy variables, absent (0) or present (1), and ana-
lyzed with the Qgene v. 4.3.9 software [62] using compo-
site interval mapping analysis and conducting 1,000
permutations to calculate the LOD threshold value for P
< 0.05 using a resampling test. In order to confirm the
observed linkage with the flanking markers, a contin-
gency % test was conducted in those cases in which sig-
nificant LOD values were found. A null hypothesis (Hy)
of independence of frequency between a trait (scored as
0-1) and the marker (genotyped as homozygous or het-
erozygous) was checked for the F,, with an error type I

rate of a = 0.05 and 2 degrees of freedom (df). BCZ and
BCS populations were also used for validating QTL
effects in qualitative traits. We checked the frequency of
the corresponding category in each group of individuals
classified according to their genotype for the correspond-
ing linked markers. The association between trait cate-
gories and linked markers was also checked using the
Fisher exact probability test, as the number of individuals
was too low [63,64]. P was calculated as the probability of
the observed array of cell frequencies plus the sum of the
probabilities of all other cell-frequency arrays that are
smaller than the probability of the observed array. Hy of
independence was rejected when P < 0.05.

Information on those QTL for quantitative and quali-
tative traits that were validated in the backcrosses was
also included in the MapChart file to obtain a more
complete map of the species.

Results and discussion

Design of the 384-SNP GoldenGate genotyping platform
Of the 19,980 SNP identified in silico [20], 9,043 were
monomorphic within and polymorphic between the two
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parents of the map (Zucchini MU-CU-16 and Scallop
UPV-196) (Figure 1) and were not located in highly
variable regions (filtered out with HVR4). A total of
3,538 of these high-confidence SNP met the criteria for
high-throughput genotyping platforms, i.e., being absent
of any other known SNP in their vicinity and having
enough sequence information up- and downstream of
the SNP (filtered out with CS60, CL60 and 160). A preli-
minary set of 713 SNP, located in different unigenes,
was selected, prioritizing SNP in long unigenes with
well-defined functions. Designability scores were then
given to each locus using the Illumina ADT. Only SNP
with scores of > 0.6 were selected. Sequences and pri-
mers of the finally selected SNP collection are included
in Additional File 1. The Illumina scores and annotation
details of the corresponding unigenes are also described
in Additional File 3: “Annotation data and map position
of the 384 loci included in the GoldenGate platform”.

The final set of the 384 SNP included in the Golden-
Gate platform had a mean designability score of 0.89.
The average length of the selected unigenes was 1,057
bp (ranging from 398 to 2,336). These unigenes were
previously annotated [20]. Most SNP (367, 95.6%) were
located in the ORF of the corresponding unigene, with
only 17 in the untranslated regions (UTR).

Blanca et al. [20] functionally classified the unigenes
following the Gene Ontology (GO) scheme. Only 24 of
the 384 selected unigenes (6.25%) with SNP could not
be assigned to any GO term. We used the GO annota-
tions to assign most unigenes (360, 93.8%) to a set of
GO slims in the Biological Process and Molecular Func-
tion categories (Additional File 4: “Number of unigenes
in each functional category”). The GO annotations for
the unigenes showed a fairly consistent sampling of
functional classes, indicating that these SNP markers
represent genes with different molecular functions and
that they are involved in various different biological pro-
cesses. Cellular, metabolic, biosynthetic and develop-
mental processes were among the most highly
represented groups under the Biological Process cate-
gory (Additional File 4). Other abundant assignments
were transcriptional regulation, translation, signal trans-
duction, transport and oxidation-reduction functions.
Stimulus, stress- and defense-responsive genes were also
well represented. Genes involved in other important bio-
logical processes, such as growth, ripening and hor-
mone-signaling processes were included. Some of these
genes might play a role in the response to diseases,
floral sex determination and fruit development and
quality. Under the Molecular Function GO hierarchy
(Additional File 4), assignments were mainly to catalytic
and binding activities. A large number of hydrolases,
kinases and transferases, representing genes involved in
the secondary metabolite synthesis pathways, were also
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included. Transcription and translation factors were also
well-represented.

The putative orthologs of all the unigenes were identi-
fied [20] by doing a reciprocal BLAST search of the
Arabidopsis and melon databases [52,17]. Most unigenes
selected for the GoldenGate platform had an Arabidop-
sis ortholog (236, 61.4%) and/or a melon ortholog (228,
59.4%). Only 22.4% had no orthologs. GO terms, gene
description and a list of the identified orthologs are
included in Additional File 3.

Genotyping results: allele call and polymorphism

The GoldenGate genotyping assay was carried out suc-
cessfully, with 90.1% of the SNP successfully genotyped
taking into account both monomorphic and poly-
morphic SNP. Only 38 of the 384 SNP included in the
platform failed to give a clear genotype. Fifteen and six-
teen SNP could not be analyzed due to the absence of
or low cluster separation, respectively; five displayed
more than three clusters and two had low intensities,
according to quality Veracode genotyping (Additional
File 3). The absence of cluster separation might be the
result of a non-allele-specific match of the primers.
Likewise, the existence of more than two alleles and/or
the amplification of a non-unique genomic region might
be the cause of the existence of more than three
clusters.

The average designability score values for failed mar-
kers was significantly lower than that of the successful
markers (0.86 versus 0.89, P < 0.05), but all scores were
> 0.6, which is considered to be the optimal threshold
for a GoldenGate assay. The percentage of failed mar-
kers with only 2 reads in one or both alleles (according
to the sequencing results, [20]) was higher compared to
that of the successful SNP (65.8% versus 43.6%).

All in all, a total of 346 SNP were classified as suc-
cessful assays. Similar success rates have been reported
in soybean [28], barley [65], maize [37] and pea [33]. All
of these markers amplified in nearly all the accessions of
C. pepo. Knowing their polymorphism in diverse germ-
plasm could help to determine their usefulness in future
genetic diversity studies or mapping efforts.

One hundred and ninety-six SNP detected variation
among the morphotypes of C. pepo subsp. pepo (Zuc-
chini, Vegetable Marrow, Cocozelle and Pumpkin), mak-
ing them useful for genetic diversity studies or for
mapping purposes using intra-subspecific crosses.
Eighty-two detected variability among the assayed Zuc-
chini types. Zucchini is by far the most important com-
mercial type of summer squash and at the same time
the most recently developed and the least variable.
Therefore, markers detecting variability within this culti-
group could be of interest for cultivar fingerprinting.
Fifty-nine SNP detected variation between the two
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accessions of C. pepo subsp. ovifera (Crookneck and
Scallop) and seventy-eight markers yielded alleles exclu-
sive to only one subspecies. The latter could be of inter-
est for mapping purposes using inter-subspecific crosses.
We included two accessions in our assay that belong to
the morphotypes of the map parentals of Gong et al.
[44] (Styrian Pumpkin and Early Summer Crookneck).
Two hundred and fourteen markers were polymorphic
between them, and may be used to increase the density
of that map, connecting both maps with common
markers.

In addition, 305 SNP (79%) were amplified in the C.
moschata accession. This is an interesting result as most
of the platform’s markers could potentially be used in
introgression programs aimed at transferring traits from
C. moschata into C.pepo. The only previous set of mar-
kers that proved to be transferable between C. pepo and
C. moschata was a set of 76 genomic SSR used to per-
form the first macrosynteny studies between the two
species [45]. Our set of functional markers will be useful
for further macrosynteny studies with this species and
for the marker-assisted selection of traits introgressed
from C. moschata into C. pepo.

Details about the polymorphism detected by each SNP
are included in Additional File 3. In order to facilitate
the future application of this marker set, information
about possible detection via CAPS is also provided.
Sixty-two of the 384 SNP affected restriction targets and
could be easily assayed as CAPS.

The 384-SNP set was selected in silico for being poly-
morphic between Zucchini MU-CU-16 and Scallop
UPV-196 [20]. Of the 346 successfully called SNP, 330
were polymorphic between these genotypes, yielding 3
clear clusters representing the two homozygous plus the
heterozygous genotypes. Sixteen did not show poly-
morphism between the parentals. This could be
explained by artifacts generated during the sequencing
process. However, the lack of polymorphism could also
be explained by the incapacity of this technique to dis-
criminate an SNP at this locus, for example, because of
the lack of amplification of one allele due to polymorph-
ism in the priming site. In order to reduce false SNP, we
only selected SNP with two or more reads per allele.
Most of the monomorphic markers have only 2 reads in
one or both alleles (81.3%). These results suggest that a
higher number of reads per allele is a good criterion for
selecting true SNP from in silico-mined collections.

SSR results

The microsatellite transferability rate from the previous
Cucurbita map [44] to our mapping population proved
to be low, as only 17 out of 25 SSR (68%) amplified, and
only 11 (44%) could be mapped. SSR that displayed sev-
eral amplification problems, such as nonspecific
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amplification (CMTp235 and CMTp245) and preferen-
tial amplification of the MU-CU-16 allele (CMTp86,
CMTp188, CMTp47, CMTp256, CMTp33 and
CMTp208), were discarded. The preferential amplifica-
tion of the MU-CU-16 parental is consistent with the
origin of these genomic SSR, which were developed
from a genomic library derived from a Pumpkin geno-
type (subsp. pepo). Four of the 17 amplified markers
were monomorphic in our parentals and two resulted in
a distorted F, segregation. Details of the SSR results are
included in Additional File 2. SSR are multiallelic mar-
kers, easily used by single PCR. However, SSR genotyp-
ing cannot be automated and the analysis of large
populations is still time-consuming. This makes SNP
the preferred markers for different high-throughput gen-

otyping purposes.

Genetic map of the Zucchini x Scallop population

We were able to successfully map 304 of the 330 SNP
that were polymorphic between the parentals. A set of
26 validated markers was discarded for mapping, either
because the SNP did not show the three genotypic
classes in the F, or because one of the parents was het-
erozygous. The genetic map was constructed using a set
of 315 high-quality markers (304 SNP and 11 SSR)
using MAPMAKER at a LOD score of 4 (Figures 2, 3, 4,
5 and 6). The MU-CU-16 x UPV-196 genetic map cov-
ered 1,740.8 cM and was divided into 22 major linkage
groups (LGs) and a minor group (LG23, with only 2
markers, 1.1 ¢cM), with an average of 6.02 + 6.65 cM
between markers. The maximum gap between markers
was 30.3 cM in LG13. Two SNP, C007167 and
C008395, remained unlinked.

The total number of markers included in major LGs
varied from 5 in LG17 to 31 in LG2. Apart from LG23,
only three groups contained less than eight markers
(LG17, LG19 and LG22), with the markers being more
or less evenly distributed among and within each LG
group. LG length ranged from 12.2 ¢cM in LG22 to
173.8 cM in LG2. On average, a linkage group covered
79.1 + 34.7 cM and contained 14.1 + 5.8 markers,
resulting in an average map density of 5.56 + 1.70 cM/
marker. Less coverage was presented herein in compari-
son to the previous map for the species (1,936 cM and a
density of 2.9 cM/marker) [44]. However, the previous
map was mainly constructed with dominant, non-trans-
ferable RAPD or AFLP. Of the 659 loci mapped, only
178 correspond to co-dominant SSR, which appeared
unevenly distributed across the genome. Our results
with the transferability of these markers have also been
very low. The SNP-based map presented here is the first
to include high-quality markers amenable to automation
in the genus Cucurbita, many of which are putatively
transferable to other populations and even to other
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significantly associated with the trait at P < 0.05.

Figure 2 Genetic map of Zucchini x Scallop F, population (LG1, LG2, LG3). Linkage map and locations of quantitative trait foci (QTL) whose
effects have been verified in the backcross populations associated with vine development, flowering and fruit quality based on 146 F, plants
derived from a Zucchini x Scallop cross. The linkage groups (LGs) have been ordered according to the results obtained in this paper. Group
numbers in parenthesis (LGp) correspond to LGs in the map by Gong et al. [44]. The correspondence between the two linkage groups has been
determined according to the common SSR markers between maps (underlined). Markers with distorted segregation in F, are in italics. QTL
indicated in light grey, grey or black correspond to flowering, immature of mature fruit traits, respectively. QTL are represented with bars (2-LOD
interval) and boxes (1-LOD interval). QTL for qualitative traits are represented with red lines spanning the region between flanking markers
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species, and most of which are in fully annotated genes
involved in diverse biological processes. In addition, dis-
tances have been reported not to be comparable
between different software, as Joinmap lengths of the
individual linkage groups are usually shorter than those
obtained with MAPMAKER [66,67,44].

Distorted segregation was observed in 30 SNP and 2
SSR, a larger number than in the Pumpkin x Crookneck
cross [43,44], but lower than that reported in maps con-
structed from interspecific crosses [41]. Grouped mar-
kers were especially observed in LG2 and LG5 (Figures
2 and 3).

Using the microsatellites as anchors to the previous
Cucurbita map, it was possible to associate the linkage
groups of both maps: LG2, LG5, LG7, LG8, LG9, LG12,
LG14, LG16, LG18, LG21 and LG23 correspond to
groups LGp2, 6, 9, 14, 3a, 18, 4, 10a, 8, 10a and 15 from

Gong et al. [44], respectively. In the previous map,
CMTpl145 and CMTp66 mapped in the same group
(10a) at LOD 3, but in this study, they appear associated
with different groups (LG16 and LG21). In the future,
newly developed SNP will have to be mapped to
improve the map saturation and obtain the 20 expected
linkage groups, merging some of those that are less
represented in the current map.

The distorted segregation found in LG2 was not
reported in the corresponding LGp2 [44], even though
only three markers were mapped in this linkage group
and the anchor SSR mapped in LG2 is out of this area.
Scallop alleles were over-represented, suggesting that
the alleles in this region may be subject to gametic or
zygotic selection and/or related to preferential germina-
tion or better seedling viability. Different functions were
associated with the distorted markers (Additional File
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significantly associated with the trait at P < 0.05.

S oNOTA

Figure 3 Genetic map of Zucchini x Scallop F, population (LG4, LG5, LG6, LG7). Linkage map and locations of quantitative trait /oci (QTL)
whose effects have been verified in the backcross populations associated with vine development, flowering and fruit quality based on 146 F,
plants derived from a Zucchini x Scallop cross. The linkage groups (LGs) have been ordered according to the results obtained in this paper.
Group numbers in parenthesis (LGp) correspond to LGs in the map by Gong et al. [44]. The correspondence between the two linkage groups
has been determined according to the common SSR markers between maps (underlined). Markers with distorted segregation in F, are in italics.
QTL indicated in light grey, grey or black correspond to flowering, immature of mature fruit traits, respectively. QTL are represented with bars (2-
LOD interval) and boxes (1-LOD interval). QTL for qualitative traits are represented with red lines spanning the region between flanking markers
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3). Some of these unigenes may be the cause of the seg-
regation distortion, but it could also be the result of
linkage to other genes.

Synteny with cucumber

Three hundred of the 304 mapped unigenes, yielded sig-
nificant tBLASTx hits (threshold e-value of 10°) and
were assigned to the cucumber chromosomes. Figure 7
shows the colinearity between the genomes of the two
species, C. sativus and C. pepo; details about the posi-
tion of the unigenes in the cucumber genome are also
included in Additional File 3. We found syntenic blocks
between most of the C. pepo linkage groups and C. sati-
vus chromosomes.

Syntenic studies in the family Cucurbitaceae have been
conducted with the two main cultivated species of the
Cucumis genus: cucumber (2n = 14) and melon (2n
24). Recent studies, using common markers and the
whole genome sequence of cucumber, have shown that

colinearity exists between cucumber and melon, indicat-
ing that chromosome fusions and other complex struc-
tural changes have generated cucumber chromosomes
from a progenitor species with 2n = 24 [68]. We also
found a high level of colinearity between C. pepo and
the cucumber genome. Some Cucurbita linkage groups
(LG) can be considered homoeologous to cucumber
chromosomes (Chr). For example, Cucurbita LGs 3, 5
and 18 showed syntenic blocks with cucumber Chromo-
some 1, LG9 and 17 with Chr2, LG6 and 10 with Chr3,
LG21 with Chr4, LG1, 2 and 14 with Chr5, LG7 with
Chr6, and LG11 and 15 with Chr7. Some of the remain-
ing LGs (4, 8, and 20) were syntenic to genetic blocks
from two cucumber chromosomes (Chr 2-6, and Chr 4-
6).

Most cucumber chromosomes contained two to three
partially overlapping syntenic blocks with different LGs
of C. pepo, which may suggest a certain level of duplica-
tion in this species. The higher chromosome number
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Figure 4 Genetic map of Zucchini x Scallop F, population (LG8, LG9, LG10, LG11). Linkage map and locations of quantitative trait /oci
(QTL) whose effects have been verified in the backcross populations associated with vine development, flowering and fruit quality based on 146
F, plants derived from a Zucchini x Scallop cross. The linkage groups (LGs) have been ordered according to the results obtained in this paper.
Group numbers in parenthesis (LGp) correspond to LGs in the map by Gong et al. [44]. The correspondence between the two linkage groups
has been determined according to the common SSR markers between maps (underlined). Markers with distorted segregation in F, are in italics.
QTL indicated in light grey, grey or black correspond to flowering, immature of mature fruit traits, respectively. QTL are represented with bars (2-
LOD interval) and boxes (1-LOD interval). QTL for qualitative traits are represented with red lines spanning the region between flanking markers

(2n = 40) of Cucurbita suggests that this genus may be
of polyploid origin. In fact, previous cytogenetic and iso-
zyme studies indicate that this genus may be an ancient
tetraploid [69,70]. Our results agree with a certain
degree of duplication in this species.

A recent study on the level of macrosynteny between
two species of the genus, C. pepo and C. moschata,
through a comparative alignment of SSR markers, did
not provide any indication of a possible ancient poly-
ploid origin of the species [45]. In that paper, the
authors studied the segregation of SSR loci, previously
selected to be uniquely located in the genome. However,
in our study, synteny has been analyzed by blasting
whole unigene sequences, which is more likely to yield
significant matches in diverse genome sites than the
uniquely located SSR primers. Differences in the
approaches and the higher number of markers used in
our study may explain the differences between the
BLAST-based and SSR-based results.

QTL identification and QTL effect validation for Marker-
Assisted Selection

Additional File 5: “Quantitative and qualitative traits”
shows the values found for each attribute in the parents,
F, and the backcross populations, clearly demonstrating

phenotypic variability for most attributes. Forty-eight
QTL were detected for 31 quantitative traits and 11
QTL were detected for 11 qualitative traits. These QTL
were distributed in 24 independent positions in 13 link-
age groups. The proportion of the phenotypic variance
explained by a single QTL (R?) varied from 7% to 81%.
Fifteen major QTL (R%> 25%) were detected for flower-
ing traits (associated with late flowering and maleness
tendency) and for immature and mature fruit traits
(associated with fruit length and rind and flesh color).
Detailed information about all these QTL (explained
variance, LOD peaks, flanking markers, additive and
dominance effects and heritabilities) are shown in Addi-
tional Files 6 and 7: “QTL analysis for quantitative and
qualitative traits 1 and 2”.

The genetic inheritance of important agronomic traits
is largely unknown in Cucurbita. This QTL analysis pro-
vides the first results of the genetic control of most of
these plant, flowering and fruit traits. Our preliminary
results should be further confirmed using additional
populations and phenotypic replications. In this paper,
we confirmed the utility of some of these QTL for Mar-
ker-Assisted Selection by validating their effects on the
backcross populations. Despite the limited number of
plants, the effects of eleven of the 15 major QTL
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Figure 5 Genetic map of Zucchini x Scallop F, population (LG12, LG13, LG14, LG15, LG16). Linkage map and locations of quantitative trait
loci (QTL) whose effects have been verified in the backcross populations associated with vine development, flowering and fruit quality based on
146 F, plants derived from a Zucchini x Scallop cross. The linkage groups (LGs) have been ordered according to the results obtained in this
paper. Group numbers in parenthesis (LGp) correspond to LGs in the map by Gong et al. [44]. The correspondence between the two linkage
groups has been determined according to the common SSR markers between maps (underlined). Markers with distorted segregation in F, are in
italics. QTL indicated in light grey, grey or black correspond to flowering, immature of mature fruit traits, respectively. QTL are represented with
bars (2-LOD interval) and boxes (1-LOD interval). QTL for qualitative traits are represented with red lines spanning the region between flanking
markers significantly associated with the trait at P < 0.05.

(NoMaF_3, NoFeF_3, DMaF_3, DFeF_3, N°MaF_3,
MaF/FeF 3, IFLe_6, MFLe_6, MLRCo_14, MaRCo_14
and MbFCo_16) detected in the F, were verified in one
or both backcross populations (Table 2). In addition, six
minor QTL (all with R®*> 10%) (IFLe_18, MFWi_6,
MRib_11, MCaTh_6, MFFi_2 and MLoN°_5) and eight
QTL involved in qualitative traits (SC_14, Lins_14, T 1,
IFCo_20, MFSh_6, MPriRCo_14, MPSecRCo_14 and
MFCo_16) were also verified in the backcrosses (Table
2). The verified QTL segregated differently between the
backcross populations, segregating only in one or in
both of them. This differential segregation is in general
compatible with the direction of additive effects and
dominance deviation estimated in the F,. Information
about the QTL set validated in the backcross popula-
tions is detailed in Additional File 7. The most likely
positions on the linkage map for these validated QTL
are shown in Figures 2, 3, 4, 5 and 6. The most impor-
tant QTL displaying real effects in backcrosses related

to flowering, fruit shape and color are described below
in greater detail.

Flowering

A cluster of QTL controlling several flowering traits (all
with medium-high broad-sense heritabilities,0.71 - 0.85)
was detected in LG3, most of which had major effects
(R*> 25%) and partial or complete dominance of the
Zucchini alleles (d/[a] from -0.78 to -1.05), associated
with the early appearance of male and female flowers as
well as an enhanced femaleness tendency of the plant
(NoMaF 3, DMaF 3, NoFeF 3, DFeF 3, N°MaF 3,
MaF/FeF_3) (Additional File 7, Figure 2). In agreement
with the a and d values estimated in the F,, the back-
crosses show how the Scallop alleles delayed flowering
and increased maleness with a recessive gene action
(Table 2). Consequently, no differences between plants
homozygous for the Zucchini alleles versus heterozygous
were found in the BCZ population, whereas the mean of
the plants homozygous for the Scallop alleles was
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Figure 6 Genetic map of Zucchini x Scallop F, population (LG17, LG18, LG19, LG20, LG21, LG22, LG23). Linkage map and locations of
quantitative trait loci (QTL) whose effects have been verified in the backcross populations associated with vine development, flowering and fruit
quality based on 146 F, plants derived from a Zucchini x Scallop cross. The linkage groups (LGs) have been ordered according to the results
obtained in this paper. Group numbers in parenthesis (LGp) correspond to LGs in the map by Gong et al. [44]. The correspondence between the
two linkage groups has been determined according to the common SSR markers between maps (underlined). Markers with distorted
segregation in F, are in italics. QTL indicated in light grey, grey or black correspond to flowering, immature of mature fruit traits, respectively.
QTL are represented with bars (2-LOD interval) and boxes (1-LOD interval). QTL for qualitative traits are represented with red lines spanning the
region between flanking markers significantly associated with the trait at P < 0.05.

significantly higher than those of the heterozygous geno-
types in the BCS population. The sex expression in
Cucurbitaceae is known to be controlled by various
genetic, environmental and hormonal factors, with ethy-
lene being the main hormone involved in this trait. In
C. sativus and C. melo, it is controlled by several major
independent genes, some of which have been cloned
[71-73]. Our results also suggest the existence of a
major gene controlling flowering time and the enhanced
female/maleness phenotype in summer squash. Further
research is necessary to determine whether the co-segre-
gation of the flowering time traits and female/male

tendency is due to pleiotropy at a single locus or linkage
between /loci.

Fruit shape

Two major QTL (R%> 25%) involved in fruit shape,
controlling the length of immature and mature fruits
(IFLe_6 and MFLe_6), co-segregate in LG6, along with
various minor QTL that control mature-fruit width
and cavity thickness (MFWi_6, MCaTh_6) and also
with a QTL controlling fruit shape (MFSh_6) (Addi-
tional File 7, Figure 3). The Zucchini type contributed
alleles producing elongated fruits, while the Scallop
alleles produced wider fruits with wider cavities. Most
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Figure 7 Synteny with cucumber. Graphical representation of the tBLASTx hits found between the cucumber (Y-axis) chromosomes and the
Cucurbita linkage groups (X-axis). Both the chromosomes and the linkage groups are numerically sorted in their respective axis and their limits
are shown by grey lines. Only the tBLASTx hits with an e-value above 10-° are shown in the figure.

of these traits presented moderate heritabilities. The
two major QTL (IFLe_6 and MFLe_6), with additive
gene action estimated in the F, (d/[a] 0.24 and -0.09
respectively), were verified in both the BCS and BCZ
populations with the expected direction of allelic
effects (Table 2). These results suggest that these QTL
can be exploited in both genetic backgrounds for
hybrid or pure line development. MFWi_6 and
MCaTh_6 were also additive in the F,, but they were
verified only in one of the backcross populations,
which may be due to the low capacity for QTL detec-
tion in the backcross populations due to their modest
sample size or to genetic background effects. An inde-
pendent QTL for fruit length was detected in LG18
(IFLe_18). Also, Scallop alleles of MLoN° 5 and
MRib_11 modified fruit shape by increasing the num-
ber of locules and the ribbing intensity.

Several genes have been reported to be related to fruit
shape. A dominant gene (Di) seems to control the dis-
coid fruit shape of scallop squash [46]. This gene was
reported to be dominant over spherical or pyriform
shapes. A digenic epistatic control has also been
reported for summer squash fruit shape. Our results are
consistent with the existence of a major gene that is,
however, not dominant, and several minor modifiers.
Fruit color
Major QTL for the rind color of mature fruits mapped
in LG14 (MLRCo_14 and MaRCo_14), with lightness (L
Hunter parameter, white color) increasing with Scallop
alleles and greenness increasing with Zucchini alleles
(Additional File 7, Figure 5). High heritabilities were
found (0.95 and 0.97) for these rind color parameters.
Also, the visual scores of primary rind color and the
pattern of secondary color mapped in the same region
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Table 2 QTL effects validated in backcross populations

A Quantitative traits

QTL Marker' BCZ? BCS®
a h b h
Flowering
NoMaF_3 C001057 1273 1.143 3.467 1.929
NoFeF_3 C001057 11.546 9714 19.400 14.286
DMaF_3 C001057 24.818 23.571 30.200 26.786
DFeF_3 C001057 31.364 27.571 41.000 36.357
N°MaF_3 C001057 19.000 21.000 35.300 30.800
MaF/FeF_3 C001057 3974 2.531 18.900 11.600
Immature fruits
IFLe_6 C002852 19.633 15.450 7.890 11.556
IFLe_18 C003897 17.717 17.367 8.300 10.500
Mature fruits
MFLe_6 002852 31.806 26.994 9.728 13.386
MFWi_6 002852 9.361 10.950 13469 13.250
MRib_11 004998 0.000 0.000 2.118 1.500
MCaTh_6 C008686 61.847 75.932 80.080 85.575
MFFi_2 C011474 10614 10.830 11.648 8.671
MLoN®_5 C016718 3450 3.500 4.600 3.900
MLRCo_14 C005730 50.285 77.989 82.382 78.662
MaRCo_14 C005730 -7.902 0.419 -0.4406 09755
MbFCo_16 C030754 22.338 26.532 10.636 12.139
B Qualitative traits*
QrL Marker' BCZ? BCS®
a H b h
Vine traits
SC_14 C005730
dark green 0.64 0.29 0.18 0.67
intermediate 0.36 0.71 0.64 0.33
light green 0.00 0.00 0.18 0.00
p° 0.192 0.0111
Lins_14 C005730
absent 1.00 0.29 0.00 0.00
present 0.00 0.71 1.00 1.00
P 0.020t 1.00
T_1 C003546
present 0.58 033 0.53 1.00
absent 042 0.67 0.47 0.00
P 0.864 0.011+
Immature fruits
IFCo_20 C005014
green 0.13 0.00 0.00 0.00
light green 0.00 0.50 0.00 0.08
white-green 0.88 0.50 0.17 0.46
white 0.00 0.00 0.83 046

P 0.0511 0404
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Table 2 QTL effects validated in backcross populations (Continued)

Mature fruits

MFSh_6 002852
elongated 1.00 0.89 0.00 0.00
pear-shaped 0.00 0.11 0.06 0.36
discoid 0.00 0.00 0.94 0.64
P 0.500 0.0421
MPriRCo_14 C005730
black 0.91 0.00 0.00 0.00
green 0.09 0.00 0.00 0.00
cream 0.00 0.29 0.00 0.06
white 0.00 0.71 1.00 0.94
P 0.000t 1.000
MPSecRCo_14 C004187
dotted speckled 0.92 0.50 0.17 0.00
banded 0.00 0.00 0.00 0.00
striped 0.00 0.00 0.00 0.00
absent 0.08 0.50 0.83 1.00
p 0.0221 0.163
MFCo_16 C017913
green 0.09 0.00 0.00 0.00
orange 0.45 0.00 0.00 0.00
yellow 0.27 0.67 0.00 0.00
cream 0.09 0.00 0.15 0.00
white 0.09 0.33 0.85 1.00
p 0.051t 0.222

A. Average data for quantitative traits with QTL displaying significant differences (P > 0.05) between homozygous and heterozygous individuals for linked
markers in BC populations. Major QTL (R?> 25%) are indicated in bold. Data traits with significant differences are indicated in bold. B. Frequency for the different
categories for qualitative traits with QTL displaying significant differences between homozygous and heterozygous individuals for linked markers in BC
populations and results of the Fisher exact test. Data traits with significant differences are indicated in bold.

! Tested markers located in the QTL region (see Figures 2, 3, 4, 5 and 6).

2 Homozygotes for the Zucchini allele of the corresponding marker in BCZ are indicated as a (allele from MU-CU-16), while heterozygotes are indicated as h.
3 Homozygotes for the Scallop allele of the corresponding marker in BCS are indicated as b (allele from UPV-196), while heterozygotes are indicated as h.

4 Only the categories represented in the BC populations are included.

® Fisher's exact probability test. P (o = 0.05). P < 0.05 implies association and linkage with the marker, as H, of independence is rejected (1).

(MPriRCo_14 and MPSecRCo_14), with Zucchini alleles
leading to dark rind colors and Scallop alleles to the
absence of a secondary color (Table 2).

The genetic control of flesh color seems to be inde-
pendent. A major QTL for immature flesh color is
located in LG20 (IFCo_20), whereas a major QTL was
found for mature fruit flesh color in LG16 (MbFCo_16),
which is consistent with the location of the qualitative
trait color MFCo_16 (Additional File 7, Figures 5 and 6).

Squash fruit color has been studied intensively, and a
complex genetic control has been proposed for rind
color, with major genes (one dominant, derived from
Scallop W (weak rind coloration)) [46], complemented
by modifiers, whereas less complexity is reported for
flesh color. The QTL that control rind color in mature
fruits were validated in one or both backcrosses (Table

2). Plants homozygous for the Zucchini allele are dark
green or black, whereas individuals that are heterozy-
gous or homozygous for the Scallop allele are white or
cream-colored in any genetic background, consistently
with the major gene W, which confers a white or cream
color independently of genetic background [46]. This
gene has been reported to be complementary to the
major gene, Wf, also from Scallop, which is dominant
over colored flesh [46], as most white-rinded squashes
are also white-fleshed. Accordingly, mature homozygous
Zucchinis for the SNP marker C017913, which is linked
to MFCo-16, were mostly orange/yellow-fleshed,
whereas homozygous Scallops were mostly white-
fleshed. However, heterozygous individuals were all
white-fleshed in the Scallop background, while some
yellow-fleshed fruits appeared in the Zucchini
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background. Consistently, a significant effect of Scallop
alleles of C030754 (linked to MbFCo_16), reducing flesh
yellowness, was only detected in the Scallop background.
Therefore, it seems to be a major gene with dominance
of white flesh (WJ), although other minor genes also
seem to contribute to the control of flesh color.

Most of the QTL reported in this paper had not been
located previously. The maps that have been developed
to date include six monogenic traits (precocious yellow
fruit, B; bush growth habit, Bu; leaf mottling, M; hull-
less seed coat, n; and mature fruit color) [41,42,44],
most of which did not segregate in our population. QTL
for fruit length, width and number of fruit locules were
located on a Zucchini x Crookneck map constructed
using RAPD markers [42]. Other QTL were also report-
edly associated with RAPD markers for fruit shape and
leaf indentation using an interspecific C. pepo x C.
moschata map [41]. However, the comparison of the
results is not possible due to the lack of common mar-
kers with the current map. These previously detected
QTL have not been used to date for MAS selection in
Cucurbita.

Conclusions

Our results demonstrate the utility of the 384-SNP
GoldenGate genotyping array in Cucurbita pepo. Next-
generation sequencing, together with this cost-effective
genotyping technique, have been successfully applied
to constructing the first SNP-based genetic map
reported in the genus. This Zucchini x Scallop map is
not only an important resource for high-quality mar-
kers that are polymorphic between two highly con-
trasting squash types, but is also an invaluable tool for
breeding purposes, since these markers are developed
in coding regions involved in different physiological
processes. Several preliminary QTL related to vine,
flowering and fruit traits in the mature and immature
stages have been reported and mapped for the first
time. QTL effects have been validated as has been the
utility of various markers for marker-assisted selection,
which demonstrates the suitability of the current popu-
lation and genetic map for dissecting genetically com-
plex fruit traits in Cucurbita ssp. This information will
be essential for future breeding programs focused on
obtaining better-adapted varieties. The SNP platform
has been successfully assayed to detect variability
between/within both C. pepo subspecies and different
squash morphotypes, and has also revealed a great
number of loci transferable to C. moschata. This will
facilitate synteny studies with other cucurbits and sub-
sequent diversity and mapping studies that will contri-
bute to increasing the genomic resources for these
crops.
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Additional material

Additional file 1: Sequence and primers for genotyping the 384
SNP included in the GoldenGate platform. The sequences of each of
the 384 SNP included in the GoldenGate platform are indicated,
including the polymorphic nucleotide and a 60 bp flanking sequence,
along with the locus-specific and two allele-specific primers designed for
detecting each locus with the GoldenGate assay, the three universal
primers and the lllumicode.

Additional file 2: Primers for genotyping the SSR included in the
map. The primers for genotyping the 25 SSR selected from the previous
C. pepo map [44] are listed, along with the genotyping results and map
position for each locus.

Additional file 3: Annotation data and map position of the 384 loci
included in the GoldenGate platform. Annotation data of the 384
unigenes included in the GoldenGate platform are described. Previous
annotation data provided by Blanca et al. [20], after in silico detection of
the unigenes, consist of unigene length, position of the SNP, in ORF or
UTR, number of reads in each parental, GO terms, gene description after
sequential BLAST of Swissprot, Arabidopsis org and Uniref90 [51-53],
orthologs detected with Arabidopsis and C. melo by reciprocal BLAST of
Arabidopsis_pep and ICUGI databases [52,17] and putative SNP-CAPS.
Data generated in this paper are final CRG/CEGEN scores for GoldenGate
genotyping reactions, GoldenGate genotyping results, distribution of the
unigenes in the C. sativus genome (scaffolds or chromosomes) after
BLAST against cucumber genome available at ICUGI [17], linkage group
according to the Zucchini x Scallop map obtained, variability of SNP in
the germplasm panel of C. pepo subsp. pepo and subsp. ovifera
accessions and amplification in C. moschata.

Additional file 4: Number of unigenes in each functional category.
Number of unigenes, of the 384 included in the GoldenGate platform,
assigned to each GO Slim in the Biological Process category (A) and the
Molecular Function category (B).

Additional file 5: Quantitative and qualitative traits. A. Scored
quantitative traits are described. Mean values, ranges and standard
deviation for parental, F, and backcross populations are indicated. B.
Pearson correlations between pairs of quantitative traits. C. Visually
scored qualitative traits are described. Relative frequency of each
phenotype is shown for both parental, F, and backcross population.

Additional file 6: QTL analysis for quantitative and qualitative traits
1. QTL whose effects have not been validated in the backcross
populations are included. A. Linkage group positions and flanking
markers of 31 QTL, along with their associated logarithms of odds (LOD)
for 20 vine, flowering and fruit quantitative traits analyzed in the F,
population derived from the Zucchini x Scallop cross. Major QTL (R*>
25%) are indicated in bold. B. Linkage group positions and flanking
markers of 3 QTL, along with their associated logarithms of odds (LOD)
and contingency y results for fruit qualitative traits analyzed in the F,
population derived from the cross Zucchini x Scallop. Major QTL (R*>
25%) are indicated in bold.

Additional file 7: QTL analysis for quantitative and qualitative traits
2. QTL whose effects have been validated in the backcross populations
are included. A. Linkage group positions and flanking markers of 17 QTL,
along with their associated logarithms of odds (LOD) for 16 flowering
and fruit quantitative traits analyzed in the F, population derived from
the Zucchini x Scallop cross. Major QTL (R*> 25%) are indicated in bold.
Heritabilities have been calculatedfor these traits B. Linkage group
positions and flanking markers of 8 QTL, along with their associated
logarithms of odds (LOD) and contingency 2 results for vine and fruit
qualitative traits analyzed in the F, population derived from the cross
Zucchini x Scallop. Major QTL (R*> 25%) are indicated in bold.
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