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Abstract

Background: Recent studies have shown that copy number variation (CNV) in mammalian genomes contributes to
phenotypic diversity, including health and disease status. In domestic pigs, CNV has been catalogued by several
reports, but the extent of CNV and the phenotypic effects are far from clear. The goal of this study was to identify
CNV regions (CNVRs) in pigs based on array comparative genome hybridization (aCGH).

Results: Here a custom-made tiling oligo-nucleotide array was used with a median probe spacing of 2506 bp for
screening 12 pigs including 3 Chinese native pigs (one Chinese Erhualian, one Tongcheng and one Yangxin pig), 5
European pigs (one Large White, one Pietrain, one White Duroc and two Landrace pigs), 2 synthetic pigs (Chinese
new line DIV pigs) and 2 crossbred pigs (Landrace x DIV pigs) with a Duroc pig as the reference. Two hundred and
fifty-nine CNVRs across chromosomes 1-18 and X were identified, with an average size of 65.07 kb and a median
size of 98.74 kb, covering 16.85 Mb or 0.74% of the whole genome. Concerning copy number status, 93 (35.91%)
CNVRs were called as gains, 140 (54.05%) were called as losses and the remaining 26 (10.04%) were called as both
gains and losses. Of all detected CNVRs, 171 (66.02%) and 34 (13.13%) CNVRs directly overlapped with Sus scrofa
duplicated sequences and pig QTLs, respectively. The CNVRs encompassed 372 full length Ensembl transcripts. Two
CNVRs identified by aCGH were validated using real-time quantitative PCR (gPCR).

Conclusions: Using 720 K array CGH (aCGH) we described a map of porcine CNVs which facilitated the
identification of structural variations for important phenotypes and the assessment of the genetic diversity of pigs.

Background

Genetic and archaeological findings suggest that pig do-
mestication began about 9000-10000 years before
present (YBP) at multiple sites across Eurasia, followed
by their subsequent spread at a worldwide scale [1]. His-
torically, Europe and China are two major areas of pig
breeding [2]. Over the past centuries, pigs have shown
marked differences between these two areas, even if
many European pig breeds carry far Eastern haplotypes
at high frequencies because of an ancient introgression
with Chinese swine [1]. The Chinese pigs differ signifi-
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cantly from European pig breeds such as the Large White
for many traits including fatness and ear traits [3-5]. Gen-
etic variation within the gene pool which produce the
above different phenotypes are selected for or against by
evolution. Microsatellites, single nucleotide polymorphisms
(SNPs) were the main measures of genetic variations in
pigs, producing a USMARC pig SNP map (http://www.
marc.usda.gov/genome/swine/marker_listhtml) and the
PorcineSNP60 Genotyping BeadChip with 62163 SNP
probes [6]. Recently, structural variations including inser-
tions, duplications, deletions, inversions and translocations
of DNA have been shown to contribute to the major
phenotypic variations [7]. Copy number variation (CNV)
is described as a segment of DNA >1 kb that is copy num-
ber variable when compared with a reference genome [8].
This variation may either be inherited or caused by de
novo mutation [9-12]. It has become apparent that CNVs
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are genome-wide present in the human genome [8] and
the genome of farm animals including cattle [13-16], avian
[17-19], sheep [20], goat [21]. About a range from 5% to
16% of the human genome was covered by CNVs [22,23].
CNVs can lead to striking phenotypic consequences as a re-
sult of altering gene dosage, disrupting coding sequences,
or perturbing long-range gene regulation by position effects
[24-26]. These striking phenotypic consequences include
some common complex diseases such as autism [11],
schizophrenia [12], auto-immune Addison's disease [27].
Recently many efforts have been used to detect pig
CNVs. By a custom-made tiling oligonucleotide array, 37
CNV regions (CNVRs) across chromosomes 4, 7, 14, and
17 were identified in 12 unrelated Duroc boars [28]. Com-
parative genome hybridization (CGH) array was also con-
ducted for chromosomes 7 and 8 in 9 different pig
populations including Duroc, Large White, Meishan, Pie-
train, Hampshire and Wild Boar [29]. By analyzing data
from the Porcine SNP60 BeadChip, 49 CNVRs were iden-
tified in 55 animals from an Iberian x Landrace cross
(IBMAP) [30] and 382 CNVRs were identified from three
purebred populations (Yorkshire, Landrace and Songliao
Black) and one Duroc x Erhualian crossbred population
[31]. Up until now, few studies have confirmed the
genome-wide presence of CNVs in pigs using array CGH
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(aCGH) with high-density probes. Here we reported the
use of high-resolution oligonucleotide aCGH to identify
the CNV regions in 12 individual pigs from different pig
populations. This analysis provided a high-resolution map
of copy number variations in the pig genome with a me-
dian probe spacing of 2506 bp relative to the latest porcine
genome assembly (Sscrofa9.2).

Results and discussion

The overview of CNVR library

Array CGH (NCBI GEO accession no. GPL16165) was
carried out using a custom-made array comprising
719,336 oligonucleotide probes covering the whole pig
genome assembly with a median probe spacing of 2506 bp
(Additional file 1). CNV was assessed by equating the log2
ratio of signal intensity between the reference (Duroc) and
test samples. As we did not perform a self-to-self experi-
ment, a stringent criterion with the mean |log2 ratio| > 0.5
was used to reduce the false positive rate of CNV calling
according to the studies of Wang et al. [19] and Fadista
et al. [28]. Therefore, the segments with at least 5 con-
secutive probes and a mean |log2 ratio| of>0.5 were
merged [28,32]. A CNVR was then called if detected in
two or more animals. Accordingly, we identified 259
CNVRs (Figure 1, Additional file 2). The CNVRs ranged
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Figure 1 Graphical representation of the CNVRs. Blue lines represent gain predicted status, losses are indicated in green, and regions with
both gains and losses status are represented in red. X axis values are chromosome position in Mb. Y axis values are chromosome names.
Chromosome sizes are represented in proportion to the real size of the Sus scrofa karyotype obtained from the Ensembl database.
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in size from 2.30 kb to 1.55 Mb with a mean of 65.07 kb
and a median of 98.74 kb, covering 16.85 Mb or 0.74% of
the whole genome (Figure 2A, Additional file 2). The lar-
gest CNV region, CNVR_85 with 1.55 Mb in size on
chromosome 7, showed copy gain in the White Duroc pig,
the Pietrain pig, 2 Landrace x DIV pigs and loss in the
Yangxin pig and the Large White pig.

Using the custom tiling oligonucleotide aCGH ap-
proach, Fadista et al. [28] addressed 37 CNVRs on the
Sus scrofa chromosomes (SSCs) 4, 7, 14, and 17 of the
preliminary assembly of pig genome among 12 Duroc
boars. Ramayo-Caldas et al. [30] detected 49 CNVRs
using the Porcine SNP60 BeadChip data of 55 animals
from an Iberian x Landrace cross. Wang et al. [31]
detected 382 CNVRs based on the Porcine SNP60 geno-
typing data of 474 pigs. Two of the 37 CNVRs (5.41%)
detected by Fadista et al. [28], 8 of the 49 CNVRs
(16.32%) detected by Ramayo-Caldas et al. [30], 24 of
the 382 CNVRs (6.28%) detected by Wang et al. [31]
were identical or overlapped with the detected CNVRs
in this study (Additional file 2). Totally 39 of the pres-
ently detected 259 CNVRs (15.06%) were identical or
overlapped with those previously reported pig CNVRs
(Additional file 2). The main potential reasons for this
less well-overlapping result could be the different genetic
backgrounds of pig samples, different platforms and
various calling algorithms between the present study and
other studies.

Compared with PorcineSNP60 Genotyping BeadChip,
the detection power of 720 K aCGH was enhanced by
dense marker density, uniform distribution of probes
along each chromosome [6,30]. Hence, some small
CNVRs can be detected by aCGH technique, as the
minimum CNV lengths were 2.30 kb in our present
study, and 2.08 kb in the study of Fadista et al. [28],
whereas the minimum CNV length detected by SNP
chip were 5.03 kb and 44.65 kb, respectively [30,31].
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CNVRs chromosome distribution and status
CNVRs were distributed throughout the genome in a
non-random manner (Additional file 2), which was coher-
ent with the previous studies on heterogeneous distribu-
tion of CNVs in primate genomes [9,14]. Chromosomes 2,
7,10-12 and 17 had the dense CNVs covering more than
1.00% of genomic sequences (Table 1). A conserved
synteny between Homo sapiens chromosome 17 (HSA17)
and SSC12 had been proposed (https://www-lgc.toulouse.
inra.fr/pig/compare/SSC.htm). Proportional to its length,
HSA17 was especially rich in primate-specific breakpoint
regions which would appear to be highly enriched for both
segmental duplications (SDs) and CNVs [33,34].
Concerning copy number status, 93 (35.91%) CNVRs
were called as gains, 140 (54.05%) were called as losses
and the remaining 26 (10.04%) were called as both gains
and losses. Previously, it has been suggested that dele-
tions are under stronger purifying selection than dupli-
cations [35]. If so, deletions should be both less frequent
and shorter than duplications [14]. However, when we
compared the length of gains with losses in the CNVRs,
loss regions had slightly larger sizes than gain regions
with the average length of 57.39 kb and 45.86 kb re-
spectively (T-test not statistically significant at p value >
0.05). The possible reason was that the aCGH approach
might favor the identification of deletions [14,15,21,28].
As the samples were collected from 9 different popula-
tions, the considerable number of CNVRs status display-
ing in ‘both gains and losses’ might be due to the
different genetic origins.

Putative population-specific CNVRs and cluster analysis

Some putative population-specific CNVRs were detected.
For example, 6 CNVRs including CNVR_132 were pure-
bred Landrace-specific, and CNVR_145 were purebred
DIV-specific. CNVR _100 including KIT gene contained
amplifications specifically in 8 pigs with dominant white
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Figure 2 CNVR characteristics. A: Size range distribution of the CNVRs; B: Number of transcripts in CNVRs.
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Table 1 Chromosome distribution of CNVRs in pigs

Chr. No.CNVRs CNVR Size (bp)

Chr. Size (bp)

Percentage (%)

1 12 1158170
2 19 1524080
3 9 757763
4 13 416439
5 13 542338
6 11 363611
7 19 2572973
8 12 1185818
9 18 927039
10 13 1673511
11 12 1220486
12 16 885260
13 7 198599
14 18 665744
15 15 407233
16 8 325153
17 14 869490
18 9 360816
X 22 798761
Total 259 16853284

295534705
140138492
123604780
136259946
100521970
123310171
136414062
119990671
132473591
66741929
79819395
57436344
145240301
148515138
134546103
77440658
64400339
54314914
125876292
2262579801

0.392
1.088
0613
0.306
0.539
0.295
1.886
0.988
0.699
2.507
1.529
1.541
0.137
0448
0.303
0419
1.350
0.664
0634
0.745
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color and a Pietrain pig with black spots, and CNVR_251
contained gains in pigs without dominant white color such
as Yangxin, Erhualian, Tongcheng and Pietrain pigs. How-
ever, due to the limited samples used in the present study,
the putative population-specific CNVRs need future study.
And we also found 3 de novo CNVRs, of which
CNVR_IDs 36, 149 were present in 2 Landrace x DIV
crossbred pigs but not in their parents, while CNVR_259
were absent in 2 Landrace x DIV crossbred pigs but
present in their parents.

Using the cluster tool, average linkage hierarchical clus-
tering based on the CNV profiles of 12 tested pigs was per-
formed. Figure 3 showed the dendrogram of 12 pigs
generated by average linkage clustering algorithm of Cluster
3.0 software. Basically, the Chinese native pigs (Erhualian,
Yangxin, Tongcheng) clustered together, while the other 9
pigs with European haplotypes belonged to another big
cluster. Therefore, CNVs could be used to investigate pig
genetic diversity and evolution.

Duplicated sequences colocalize with CNVRs in the pig
genome

Although the exact interpretation of mechanisms re-
sponsible for generating CNVs is still unclear, previous
studies have noted a four- to twenty-fold enrichment of
CNVs near SDs in the other mammalian genomes
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Figure 3 The dendrogram of 12 pigs generated by average linkage clustering algorithm of Cluster 3.0 software.
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[22,32,36]. Duplicated sequences are typical segments of
DNA which range in size from one to hundreds of kb,
share a high level of sequence identity (> 90%) and occur
at more than one site within the genome [28]. Under the
same filter criterion, about 66.02% (171/259) of CNV
regions directly overlapping with Sus scrofa duplicated
sequences were identified through blasting the CNVR
sequence against the Ensembl pig genomic sequences.
As our present BLAST results did not retain a CNVR
overlapping with a duplicated sequence by less than
1000 bp, so the overlaps of CNVs and their targeted
duplicated sequences were under reporting. There were
13.5-25.0% CNVRs mapped to duplicated sequences in
the previous reports [28,37]. The difference may be
related to differences in samples. CNVRs overlapping
duplicated sequences were significantly different in aver-
age size (87.12 kb versus 22.23 kb, t-test p <0.01) with
the CNVRs that did not overlap duplicated sequences,
consistent with previous CNV studies reporting a stron-
ger association between duplicated sequences and long
CNVRs [9,11].

Gene contents of pig CNV regions

When CNV signals in two or more animals overlapped on
a chromosome, they were considered to be high confi-
dence CNVs [19]. Presently, the high confidence CNVRs
contained transcripts from 0 to 89. The largest region
(CNVR_5) detected in all tested pigs showed an 87.21 kb
gain without overlapping any gene or duplicated sequence
(Additional file 2). Same as the previous report in chicken
[19], our results showed the small CNVs resided in none
coding sequences, while larger CNV regions spanned
more genes (Figure 2B, Additional file 2). The 259 CNVRs
encompassed 372 unique transcripts which corrsonded
154 mouse orthologous genes annotated in Ensembl
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(Additional file 3). In order to determine the likely bio-
logical effects of the 154 mouse orthologous genes, func-
tional annotation analysis was performed with the DAVID
tool [38]. Gene Ontology (GO) analysis revealed that
CNVR genes belonged to these classes of genes that parti-
cipated in sensory perception of smell, sensory perception
of smell or chemical stimulus, sensory perception, cogni-
tion, G-protein coupled receptor protein signaling path-
way, olfactory receptor activity and other basic metabolic
processes (Table 2). KEGG pathway analyses indicated that
50 genes involved in olfactory transduction (p < 0.05) were
over-represented in the porcine CNVRs, as previously
identified in cattle [15,31,37]. These CNV genes also
included ATP-binding cassette, sub-family C (CFTR/
MRP), tyrosine-protein kinase Kit (KIT) and cytochrome
P450 (CYTP450) as described previously [30,37]. A certain
degree of conservation of CNVs across mammals has
been observed, which suggests that selective pressure
may drive acquisition or retention of specific gene dos-
age alterations.

To test whether genes unaffected by CNVs exhibited a
different selective constraint than the ones affected, we
compared the dN/dS ratios for orthologous genes of
pigs with those of mouse and human species (Table 3,
Additional file 3). Compared with mouse, all pig CNVR
genes had dN/dS ratios significantly higher than mono-
morphic genes by Wilcoxon rank-sum test, which was the
same as the previous results [14]. It might indicate a relax-
ation of purifying selection due to the redundancy frag-
ments generated during the formation process of the
variable number of genes [39-42]. However, compared
with mouse, the pig CNVR genes with the status of gains
had dN/dS ratios lower than monomorphic genes, indicat-
ing these genes subjected to stringent purifying selection
compared with non-polymorphic genes.

Table 2 Enriched GO terms and KEGG pathway associated with the CNV regions (Modified Fisher Exact P-value < 0.05)

Category Term Count Involved genes/ P value Validation
total genes (%)
GO_BP GO:0007608 ~ sensory perception of smell 52 35.14 1.58-29 Pig [31]
GO_BP GO:0007606 ~ sensory perception of chemical stimulus 52 35.14 3.3E-28 Pig [31]
GO_BP GO:0007600 ~ sensory perception 53 3581 6.8E-26 Pig [31]
GO_BP GO:0050890 ~ cognition 53 3581 8.9E-25 Pig [31]
GO_BP GO:0007186 ~ G-protein coupled receptor protein signaling pathway 56 37.84 1.26-22 Pig [31]
GO_BP GO:0050877 ~ neurological system process 53 3581 34E-22 Pig [31]
GO_BP GO:0007166 ~ cell surface receptor linked signal transduction 60 40.54 6.1E-20 Pig [31]
GO_MF GO:0004984 ~ olfactory receptor activity 55 37.16 1.6E-28  Pig [31] Cattle [14]
GO_MF GO:0047961 ~ glycine N-acyltransferase activity 2 1.35 0.025
GO_CC GO:0016021 ~ integral to membrane 77 52.03 45E-6 Pig [31]
GO_CC G0:0031224 ~ intrinsic to membrane 78 52.70 9.3E-6 Pig [31]
KEGG_PATHWAY mmu04740:Olfactory transduction 50 3378 8.8E-19 Pig [31]
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Table 3 Evolutionary rates of pig monomorphic and
CNVR genes compared with human and mouse

CNVR(gain) CNVR(loss) CNVR(both) No CNVR
Human  dN/dS 0.20 0.32 0.27 0.21
Pvalue  241E-03 3.82E-12 1.08E-06 -
Mouse  dN/dS 0.87 033 0.22 0.19
P value 1.72E-07 2.20E-16 2.14E-10 -

dN: nonsynonymous rate; dS : synonymous rate; p-value compares CNVR
genes with monomorphic genes by Wilcoxon rank-sum test.

Pig CNVRs overlapped with QTL regions

We queried the animal QTL database that held publicly
available QTL data on livestock species. Retrieving all
the porcine QTLs (http://www.animalgenome.org/cgi-
bin/QTLdb/SS/download?file=gbpSS_10.2) within 2 Mb
of our CNVRs resulted that 34 CNVRs overlapped with
QTLs for several important traits including average daily
gain (ADG) (Additional file 4). However, as the pig
QTLs are not fully defined, the contribution of these
QTL-overlapping CNVRs to complex traits needs fur-
ther study.

Validation of CNVRs by real-time quantitative (QPCR)
qPCR was performed to validate 2 CNVRs (CNVR_IDs
100 and 215) detected by the aCGH experiment. Thir-
teen DNA samples including the reference used in
aCGH were used for qPCR analysis. CNVR_100 and
CNVR _215 were validated (Additional file 5) with the p
threshold values 0.05 as the previous reports [43].

CNVR_100 contained Mast/stem cell growth factor
receptor gene, also known as KIT gene (ENSSSCT
00000009679). In pigs, the dominant white color was
associated with a splice mutation leading to the skip-
ping of exon 17 of KIT gene [44] and a duplication of a
450 kb fragment encompassing the KIT gene [45]. The
results of the aCGH array and qPCR analyses revealed
that the copy number varied greatly among the different
breeds (Figure 4). Coinciding with the previous study
[45], 8 pigs with white hair color (one White Duroc pig,
one Large White pig, two Landrace x DIV pigs, two
Landrace pigs and two DIV pigs) and the Pietrain pig
had KIT duplication, but 3 Chinese native pigs without
pure white color did not have. In addition to the im-
portant role in proliferation, survival and migration of
melanocytes [45], the KIT gene also had effects on fol-
licle and oocyte development [46,47]. Therefore, it was
worthy to further investigate the selection impact of
white hair color on pig reproduction traits.

Conclusions

In summary, we described a map of porcine CNVs be-
tween breeds by a high-resolution array CGH, which
was confirmed to be a very valid method to detect por-
cine genome-wide CNVs. With a stringent CNV calling
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criterion, 259 highly reliable CNV regions were reported
here among diverse pig breeds. Future studies are
required to assess the function of CNVs on pig import-
ant phenotypes. Our results facilitated the identification
of structural variations for important phenotypes and
the assessment of the genetic diversity in pigs.

Methods

Sample preparation

All animal procedures were performed according to pro-
tocols approved by the Biological Studies Animal Care
and Use Committee of Hubei Province, PR China.
Twelve pigs including one White Duroc pig (), one
Chinese Yangxin pig (d), one Chinese Erhualian pig (%),
one Chinese Tongcheng pig (), one Large White pig
(?), one Pietrain pig (J), two Landrace pigs (J), two
DIV pigs (9) and two Landrace x DIV pigs (¥, &) were
selected to function as test animals. Chinese Erhualian
pigs were a strain of Chinese Taihu pig breed. Synthetic
Line DIV was a result of cross of Landrace, Large White,
Tongcheng or Taihu pigs. An unrelated female Duroc
pig was selected as the common reference. The genomic
DNA of 13 pig samples was extracted and purified from
semen, whole blood or ear notch.

Oligonucleotide aCGH

A 3 x 720 K whole genome tiling aCGH (NCBI GEO ac-
cession no. GPL16165) was designed (NimbleGen Sys-
tems, http://www.nimblegen.com) from the Sscrofa9.2
release (http://www.sanger.ac.uk/Projects/S_scrofa/), which
was the new release at the time of the experiment. The
probe design fundamentals were described in the Nimble-
Gen technical note (http://www.nimblegen.com/products/
lit/probe_design_2008_06_04.pdf). The probes with length
of 50-60 bp were integrated into an array design using
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ArrayScribeTM, which resulted in a design with a median
probe spacing of 2506 bp. Test DNA and reference DNA
samples were independently labeled with either Cy3 or
Cy5 dyes. Labeled DNA was co-hybridized to the custom-
made NimbleGen CGH array (3 x 720 K). The array format
included 3 arrays on single slides containing 719,336
probes. The arrays were scanned using a 5 pm scanner,
and NimbleScan software (Roche NimbleGen) was used to
retrieve fluorescent intensity raw data from the scanned
images of the oligonucleotide tiling arrays. For each spot
on the array, log2 ratios of the Cy3-labeled test sample ver-
sus Cyb5-labeled reference sample were computed. Before
normalization and segmentation analysis, spatial correction
was applied. Specifically, locally weighted polynomial re-
gression (LOESS) was used to adjust signal intensities
based on X, Y feature position [48]. Normalization was
then performed using the q-spline method followed by seg-
mentation using the CNV calling algorithm segMNT
included in NimbleScan software [11]. CNVRs were called
as the segments with at least 5 consecutive probes, a mean
|log2 ratio| of >0.50 and detected in two or more animals
[28]. Since the CNV calling pipeline requires at least 5 con-
secutive probes, our theoretical resolution for CNV detec-
tion is 10299 bp (median spacing x 4 + median oligo
length x 5). As females had two copies of X-linked genes
and males only had one copy, male—female aCGH resulted
in an excess of female signals for X-linked genes that can
be used to calibrate the threshold values and detection
methods [49]. aCGH data have been submitted to the Gen-
Bank gene expression omnibus database under the acces-
sion number GSE41488. The dendrogram were generated
by average linkage clustering algorithm of Cluster 3.0 soft-
ware [50].

Enrichment analysis

In order to check if the CNVRs overlapped any dupli-
cated sequence, BLAST was used to query the CNVRs
sequences against the Sus scrofa genome sequence
(Sscrofa9.2). Sequences were retained as duplicated
sequences if they had >1 kb and >90% identity and oc-
curred at more than one site within the genome.

Gene contents in the identified CNVRs were retrieved
from the Sscrofa9.2 assembly using the BioMart (http://
www.biomart.org/) [51]. Gene content of pig CNV regions
was assessed using Ensembl transcripts. The DAVID func-
tional annotation tool (http://david.abcc.ncifcrf.gov/) was
used to perform GO classification and KEGG pathway an-
notation of CNV mRNAs. Functional annotation terms
from the ontologies of "biological processes’, "molecular
function” and "cellular component” were recorded. Since
only a limited number of genes in the pig genome have
been annotated, we converted the pig Ensembl transcripts
IDs to orthologous mouse and human Ensembl gene IDs
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by BioMart, then carried out the GO and pathway analyses,
as described previously [31].

All the porcine QTLs data were downloaded from pig
QTL database (http://www.animalgenome.org/cgi-bin/
QTLdb/SS/download?file=gbpSS_10.2) [52]. The CNVRs
were considered to be overlapping pig QTLs if they were
within 2 Mb of pig QTLs [14].

Validation of CNVRs by qPCR

Determination of CNVRs by qPCR was performed using
the Roche LightCycler® 480 Detection System and
obtained the crossing thresholds (Ct) value following the
guidelines of the manufacturer. The primers were
designed using the Primer Premier 5 software and were
available in the Additional file 6. As previously reported
[28], the copy number of each CNVR was normalized
against the Col10 region, a control region in the genome
that did not vary in copy number between the pigs.
Triplicate wells of reactions (15 pL) contained 7.5 pL
SYBR Green Real-time PCR Master Mix, 1 pL of 10—
20 ng/pL gDNA, 0.3 pL 5 pM of each primer and 0.1 pL
ROX. The cycling conditions consisted of 1 cycle at 95°C
for 10 min, followed by 40 cycles at 94°C for 20 sec, 60°C
for 20 sec, and 72°C for 20 sec, with fluorescence acquisi-
tion at 74°C in single mode. The specific PCR products
were confirmed by the results of melting curve analysis
and agarose gel electrophoresis. Analysis of resultant
crossing thresholds (Ct) was performed using the -AACt
method [53].

Additional files

Additional file 1: Probe summary of the 720 K custom-made CGH
array designed by Roche NimbleGen.

Additional file 2: Description of the CNVRs detected by a whole-
genome CGH array. The genomic coordinates were expressed in bp
and were relative to the Sus scrofa genome sequence assembly
(Sscrofa9.2). BLAST was used to query the CNVRs sequences against the
Sus scrofa genome sequence (Sscrofad.2). Sequences were retained as
duplicated sequences if they had 2 1 kb and 2 90% identity and occur at
more than one site within the genome. WD: White Duroc (9); YX:
Yangxin (&); EH: Erhualian (); TC: Tongcheng (9); LW: Large White (9);
PT: Pietrain (&); LD1: Landrace x DIV pig 1 (&3); LD2: Landrace x DIV pig 2
(9); DIV1: Chinese new pig line DIV 1 (Q); DIV2: Chinese new pig line DIV
2 (Q); L1: Landrace 1 (&); L2: Landrace 2 (&).

Additional file 3: Gene contents of CNVRs.

Additional file 4: QTLs overlapped with the CNVRs. All the porcine
QTLs within 2 Mb (http://www.animalgenome.org/cgi-bin/QTLdb/SS/
download?file=gbpSS_10.2) of our CNVRs were counted.

Additional file 5: The validation of the aCGH results using qPCR
method.

Additional file 6: The primers of qPCR to validate the CNVRs
detected by aCGH.

Abbreviations

CNV: Copy number variation; CNVR: CNV region; PCR: Polymerase chain
reaction; CGH: Comparative genome hybridization; aCGH: Array CGH;
gPCR: Real-time quantitative PCR; RQ: Relative quantification value;


http://www.biomart.org/
http://www.biomart.org/
http://david.abcc.ncifcrf.gov/
http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file=gbpSS_10.2
http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file=gbpSS_10.2
http://www.biomedcentral.com/content/supplementary/1471-2164-13-725-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-725-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-725-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-725-S4.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-725-S5.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-725-S6.xlsx

Li et al. BMC Genomics 2012, 13:725
http://www.biomedcentral.com/1471-2164/13/725

QTL: Quantitative trait locus; KIT: Tyrosine-protein kinase Kit;

CYTP450: Cytochrome P450 gene family; SNP: Single nuclotide
polymorphism; HSA: Homo sapiens chromosome; SSC: Sus scrofa
chromosome; GO: Gene ontology; DAVID: The database for annotation,
visualization and integrated discovery; KEGG: kyoto encyclopedia of genes
and genomes; LOESS: locally weighted polynomial regression; Ct: crossing
thresholds; SD: Segmental duplication.

Competing interests
The authors have declared that no financial competing interests exist.

Authors' contributions

YL, SM, FL carried out most of bioinformatics analysis and lab works. XZ, XP,
HW, GL, HT participated in the animal samples collection and statistical
analysis. FL, SJ, YX participated in the experiment design and coordination.
FL conceived the study and drafted the manuscript. All authors read and
approved the final manuscript.

Acknowledgments

We thank the anonymous reviewers for critical reading and discussions of
the manuscript. We are grateful to Prof. Alan Archibald (The Roslin Institute)
for the suggestions for this study, and to CapitalBio Corporation for the
technical assistance with NimbleGen CGH analysis. The authors also
acknowledge the farmers for providing pig samples.

Author details

'Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture &
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction
of Ministry of Education, Huazhong Agricultural University, Wuhan 430070,
PR China. “Hubei Key Laboratory of Animal Embryo Engineering and
Molecular Breeding, Hubei Academy of Agriculture Science, Wuhan 430070,
PR China.

Received: 17 August 2012 Accepted: 19 December 2012
Published: 24 December 2012

References

1. Amills M, Clop A, Ramirrez O, Perrez-Enciso M: Origin and genetic diversity
of pig breeds. In Encyclopedia of Life Sciences (ELS). Chichester: John Wiley &
Sons, Ltd; 2010.

2. Megens HJ, Crooijmans RP, San Cristobal M, Hui X, Li N, Groenen MA:
Biodiversity of pig breeds from China and Europe estimated from
pooled DNA samples: differences in microsatellite variation between two
areas of domestication. Genet Sel Evol 2008, 40:103-128.

3. Haley CS, Agaro E, Ellis M: Genetic components of growth and ultrasonic
fat depth traits in Meishan and Large White pigs and their reciprocal
crosses. Anim Prod 1992, 54:105-115.

4. Haley CS, Lee GJ, Ritchie M: Comparative reproductive-performance in
Meishan and Large White pigs and threir crosses. Anim Sci 1995,
60:259-267.

5. Wei WH, de Koning DJ, Penman JC, Finlayson HA, Archibald AL, Haley CS:
QTL modulating ear size and erectness in pigs. Anim Genet 2007,
38:222-226.

6. Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE,
Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL,
Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA,
Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann
RT, Schook LB, Groenen MA: Design of a high density SNP genotyping
assay in the pig using SNPs identified and characterized by next
generation sequencing technology. PLoS One 2009, 4:e6524.

7. Sebat J: Major changes in our DNA lead to major changes in our
thinking. Nat Genet 2007, 39:53-S5.

8. Feuk L, Carson AR, Scherer SW: Structural variation in the human genome.
Nat Rev Genet 2006, 7:85-97.

9. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H,
Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez
JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR,
Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F,
Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T,
Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP,

20.

22.

23.

24.

25.

Page 8 of 9

Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME: Global variation in
copy number in the human genome. Nature 2006, 444:444-454,
Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, Ergul E,
Conta JH, Korn JM, McCarroll SA, Gorham JM, Gabriel S, Altshuler DM,
Quintanilla-Dieck Mde L, Artunduaga MA, Eavey RD, Plenge RM, Shadick NA,
Weinblatt ME, De Jager PL, Hafler DA, Breitbart RE, Seidman JG, Seidman CE:
De novo copy number variants identify new genes and loci in isolated
sporadic tetralogy of Fallot. Nat Genet 2009, 41:931-935.

Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B,
Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J,
Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK,
Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC,
Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M: Strong association of
De Novo copy number mutations with Autism. Science 2007,

316:445-449.

Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M: Strong
association of de novo copy number mutations with sporadic
schizophrenia. Nat Genet 2008, 40:830-885.

Bae JS, Cheong HS, Kim LH, NamGung S, Park TJ, Chun JY, Kim JY, Pasaje
CF, Lee JS, Shin HD: Identification of copy number variations and
common deletion polymorphisms in cattle. BVMC Genomics 2010,

11:232.

Fadista J, Thomsen B, Holm LE, Bendixen C: Copy number variation in the
bovine genome. BMC Genomics 2010, 11:284.

Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, Mitra A, Alexander
LJ, Coutinho LL, Dell'Aquila ME, Gasbarre LC, Lacalandra G, Li RW,
Matukumalli LK, Nonneman D, Regitano LC, Smith TP, Song J, Sonstegard
TS, Van Tassell CP, Ventura M, Eichler EE, McDaneld TG, Keele JW: Analysis
of copy number variations among diverse cattle breeds. Genome Res
2010, 20:693-703.

Liu GE, Van Tassel CP, Sonstegard TS, Li RW, Alexander LJ, Keele JW,
Matukumalli LK, Smith TP, Gasbarre LC: Detection of germline and somatic
copy number variations in cattle. Dev Biol (Basel) 2008, 132:231-237.
Griffin DK, Robertson LB, Tempest HG, Vignal A, Fillon V, Crooijmans RP,
Groenen MA, Deryusheva S, Gaginskaya E, Carré W, Waddington D, Talbot R,
Volker M, Masabanda JS, Burt DW: Whole genome comparative studies
between chicken and turkey and their implications for avian genome
evolution. BMC Genomics 2008, 9:168.

Skinner BM, Robertson LB, Tempest HG, Langley EJ, loannou D, Fowler KE,
Crooijmans RP, Hall AD, Griffin DK, Volker M: Comparative genomics in
chicken and Pekin duck using FISH mapping and microarray analysis.
BMC Genomics 2009, 10:357.

Wang X, Nahashon S, Feaster TK, Bohannon-Stewart A, Adefope N: An
initial map of chromosomal map of chromosomal segmental copy
number variations in the chicken. BMC Genomics 2010, 11:351.

Fontanesi L, Beretti F, Martelli PL, Colombo M, Dall'olio S, Occidente M,
Portolano B, Casadio R, Matassino D, Russo V: A first comparative map of
copy number variations in the sheep genome. Genomics 2011,
97:158-165.

Fontanesi L, Martelli PL, Beretti F, Riggio V, Dall'Olio S, Colombo M, Casadio
R, Russo V, Portolano B: An initial comparative map of copy number
variations in the goat (Capra hircus) genome. BMC Genomics 2010, 11:639.
ltsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM, Myers
RM, Ridker PM, Chasman DI, Mefford H, Ying P, Nickerson DA, Eichler EE:
Population analysis of large copy number variants and hotspots of
human genetic disease. Am J Hum Genet 2009, 84:148-161.

McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A,
Shapero MH, de Bakker PI, Maller JB, Kirby A, Elliott AL, Parkin M, Hubbell E,
Webster T, Mei R, Veitch J, Collins PJ, Handsaker R, Lincoln S, Nizzari M,
Blume J, Jones KW, Rava R, Daly MJ, Gabriel SB, Altshuler D: Integrated
detection and population-genetic analysis of SNPs and copy number
variation. Nat Genet 2008, 40:1166-1174.

Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R,
Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S,
Deloukas P, Hurles ME, Dermitzakis ET: Relative impact of nucleotide and
copy number variation on gene expression phenotypes. Science 2007,
315:848-853.

Orozco LD, Cokus SJ, Ghazalpour A, Ingram-Drake L, Wang S, van Nas A,
Che N, Araujo JA, Pellegrini M, Lusis AJ: Copy number variation influences
gene expression and metabolic traits in mice. Hum Mol Genet 2009,
18:4118-4129.



Li et al. BMC Genomics 2012, 13:725
http://www.biomedcentral.com/1471-2164/13/725

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Butler MW, Hackett NR, Salit J, Strulovici-Barel Y, Omberg L, Mezey J, Crystal
RG: Glutathione S-transferase copy number variation alters lung gene
expression. Eur Respir J 2011, 38:15-28.

Bronstad |, Wolff AS, Levas K, Knappskog PM, Husebye ES: Genome-wide
copy number variation (CNV) in patients with autoimmune Addison's
disease. BMC Med Genet 2011, 12:111.

Fadista J, Nygaard M, Holm LE, Thomsen B, Bendixen C: A snapshot of
CNVs in the pig genome. PLoS One 2008, 3:e3916.

Tang H, Li F, Finlayson HA, Smith S, Lu Z, Langford C, Archibald A:
Structural And Copy Number Variation In The Pig Genome. In Book
Structural And Copy Number Variation In The Pig Genome. City: Plant &
Animal Genomes XVIIl Conference. Town; 2010. January 9-13, 2010.
Ramayo-Caldas Y, Castellé A, Pena RN, Alves E, Mercadé A, Souza CA,
Ferndndez Al, Perez-Enciso M, Folch JM: Copy number variation in the
porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics 2010,
11:593.

Wang J, Jiang J, Fu W, Jiang L, Ding X, Liu J, Zhang Q: A genome-wide
detection of copy number variations using SNP genotyping arrays in
swine. BMC Genomics 2012, 13:273.

Nicholas TJ, Cheng Z, Ventura M, Mealey K, Eichler EE, Akey JM: The
genomic architecture of segmental duplications and associated copy
number variants in dogs. Genome Res 2009, 19:491-499.

Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X: Enrichment of
segmental duplications in regions of breaks of synteny between the
human and mouse genomes suggest their involvement in evolutionary
rearrangements. Hum Mol Genet 2003, 12:2201-2208.

Kemkemer C, Kohn M, Cooper DN, Froenicke L, Hogel J, Hameister H,
Kehrer-Sawatzki H: Gene synteny comparisons between different
vertebrates provide new insights into breakage and fusion events
during mammalian karyotype evolution. BMC Evol Biol 2009, 9:84.

Locke DP, Sharp AJ, McCarroll SA, McGrath SD, Newman TL, Cheng Z,
Schwartz S, Albertson DG, Pinkel D, Altshuler DM, Eichler EE: Linkage
disequilibrium and heritability of CNPs within duplicated regions of the
human genome. Am J Hum Genet 2006, 79:275-290.

Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM,
Clark RA, Schwartz S, Segraves R, Oseroff W, Albertson DG, Pinkel D, Eichler
EE: Segmental duplications and copy-number variation in the human
genome. Am J Hum Genet 2005, 77:78-88.

Hou Y, Liu GE, Bickhart DM, Cardone MF, Wang K, Kim ES, Matukumalli LK,
Ventura M, Song J, VanRaden PM, Sonstegard TS, Van Tassell CP: Genomic
characteristics of cattle copy number variations. BMC Genomics 2011,
12:127.

Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis
of large gene lists using DAVID bioinformatics resources. Nature Protoc
2009, 4:44-57.

Kondrashov FA, Kondrashov AS: Role of selection in fixation of gene
duplications. J Theor Biol 2006, 239:141-151.

Nguyen DQ, Webber C, Ponting CP: Bias of selection on human copy-
number variants. PLoS Genet 2006, 2:e20.

Ohno S: Evolution by gene duplication. 1st edition. New York Heidelberg
Berlin: Springer-Verlag; 1970.

Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, Veltman J, Ponting CP:
Reduced purifying selection prevails over positive selection in human
copy number variant evolution. Genome Res 2008, 18:1711-1723.

Van Belle G, Fisher LD, Heagerty PJ, Lumley T: Association and prediction:
linear models with one predictor variable. In Biostatistics: A Methodology
For the Health Sciences, 9. 2nd edition. New Jersey: Wiley; 2004:291-356.
Giuffra E, Evans G, Tornsten A, Wales R, Day A, Looft H, Plastow G,
Andersson L: The Belt mutation in pigs is an allele at the Dominant white
(I/KIT) locus. Mamm Genome 1999, 10:1132-1136.

Giuffra E, Tornsten A, Marklund S, Bongcam-Rudloff E, Chardon P, Kijas JM,
Anderson S|, Archibald AL, Andersson L: A large duplication associated
with dominant white color in pigs originated by homologous
recombination between LINE elements flanking KIT. Mamm Genome
2002, 13:569-577.

Wehrle-Haller B: The role of Kit-ligand in melanocyte development and
epidermal homeostasis. Pigment Cell Res 2003, 16:287-296.

Hutt KJ, McLaughlin EA, Holland MK: Kit ligand and c-Kit have diverse
roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod
2006, 12:61-69.

Page 9 of 9

48. Smyth GK, Speed T: Normalization of cDNA microarray data. Methods
2003, 31:265-273.

49. Zhou J, Lemos B, Dopman EB, Hartl DL: Copy-number variation: the
balance between gene dosage and expression in Drosophila
melanogaster. Genome Biol Evol 2011, 3:1014-1024.

50. de Hoon MJ, Imoto S, Nolan J, Miyano S: Open source clustering software.
Bioinformatics 2004, 20:1453-1454.

51. Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, Chelala C, Croft D,
Cros A, Cutts RJ, Di Génova A, Forbes S, Fujisawa T, Gadaleta E, Goodstein
DM, Gundem G, Haggarty B, Haider S, Hall M, Harris T, Haw R, Hu S,
Hubbard S, Hsu J, lyer V, Jones P, Katayama T, Kinsella R, Kong L, Lawson D,
Liang Y, Lopez-Bigas N, Luo J, Lush M, Mason J, Moreews F, Ndegwa N,
Qakley D, Perez-Llamas C, Primig M, Rivkin E, Rosanoff S, Shepherd R, Simon
R, Skarnes B, Smedley D, Sperling L, Spooner W, Stevenson P, Stone K,
Teague J, Wang J, Wang J, Whitty B, Wong DT, Wong-Erasmus M, Yao L,
Youens-Clark K, Yung C, Zhang J, Kasprzyk A: BioMart Central Portal: an
open database network for the biological community. Database (Oxford)
2011, 18:bar041.

52. Hu ZL, Fritz ER, Reecy JM: AnimalQTLdb: a livestock QTL database tool set
for positional QTL information mining and beyond. Nucleic Acids Res
2007, 35:D604-D609.

53. Graubert TA, Cahan P, Edwin D, Selzer RR, Richmond TA, Eis PS, Shannon
WD, Li X, McLeod HL, Cheverud JM, Ley TJ: A high-resolution map of
segmental DNA copy number variation in the mouse genome. PLoS
Genet 2007, 3:e3.

doi:10.1186/1471-2164-13-725

Cite this article as: Li et al: Identification of genome-wide copy number
variations among diverse pig breeds by array CGH. BMC Genomics 2012
13:725.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	The overview of CNVR library
	CNVRs chromosome distribution and status
	Putative population-specific CNVRs and cluster analysis
	Duplicated sequences colocalize with CNVRs in the pig genome
	Gene contents of pig CNV regions
	Pig CNVRs overlapped with QTL regions
	Validation of CNVRs by real-time quantitative (qPCR)

	Conclusions
	Methods
	Sample preparation
	Oligonucleotide aCGH
	Enrichment analysis
	Validation of CNVRs by qPCR

	Additional files
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

