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Abstract

Background: Rye is an important European crop used for food, feed, and bioenergy. Several quality and
yield-related traits are of agronomic relevance for rye breeding programs. Profound knowledge of the genetic
architecture of these traits is needed to successfully implement marker-assisted selection programs. Nevertheless,
little is known on quantitative loci underlying important agronomic traits in rye.

Results: We used 440 Fs.,4 inbred lines from two biparental populations (Pop-A, Pop-B) fingerprinted with about 800
to 900 SNP, SSR and/or DArT markers and outcrossed them to a tester for phenotyping. The resulting hybrids and
their parents were evaluated for grain yield, single-ear weight, test weight, plant height, thousand-kernel weight,
falling number, protein, starch, soluble and total pentosan contents in up to ten environments in Central Europe.
The quality of the phenotypic data was high reflected by moderate to high heritability estimates. QTL analyses
revealed a total of 31 QTL for Pop-A and 52 for Pop-B. QTL x environment interactions were significant (P <0.01) in
most cases but variance of QTL main effect was more prominent.

Conclusions: QTL mapping was successfully applied based on two segregating rye populations. QTL underlying
grain yield and several quality traits had small effects. In contrast, thousand-kernel weight, test weight, falling
number and starch content were affected by several major QTL with a high frequency of occurrence in cross
validation. These QTL explaining a large proportion of the genotypic variance can be exploited in marker-assisted
selection programs and are candidates for further genetic dissection.

Background

Rye (Secale cereale 1.) is an important European crop
grown on 4 million hectares. Main producers are Poland,
Germany, and the Russian Federation sharing about 60%
of the world production in 2010 [1]. Rye grain is used
for bread making, as feed for livestock, for ethanol
production, and as substrate in biogas plants. Hybrid
cultivars based on the high yielding heterotic pattern
Petkus times Carsten [2] were successfully introduced in
Germany three decades ago. Hybrids are now grown on
about 60-70% of the total rye acreage owing to their
yield superiority and better uniformity as compared to
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open-pollinating varieties. German commercial hybrid
varieties are also released and grown in Denmark, Austria,
and Poland.

The economically most important trait in hybrid rye
breeding is grain yield. Other agronomic relevant traits
are lodging resistance, plant height, thousand-kernel
weight (TKW), and falling number as indirect trait for
pre-harvest sprouting resistance. Relevant quality traits
differ depending on the end use of rye. For baking qual-
ity, for example, high pentosan and starch content play a
major role coupled with a low protein content. In con-
trast, for feeding purposes, protein content should be
maximized and pentosan content minimized. For etha-
nol production, breeding for high starch content is of
central importance. Several pairs of the above mentioned
quality traits are negatively correlated such as protein
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and starch content, which hampers simultaneous breed-
ing for the different end uses of rye.

The availability of reliable diagnostic markers for large
effect QTL underlying the above mentioned traits, would
tremendously alleviate breeding rye varieties meeting
these often contradictory demands. Unfortunately, not
much is known on the genetic architecture of most of
these traits and diagnostic markers are not available. The
main cause is that rye was lagging far behind other crops
in terms of genomic resources. Until recently, only about
250 (simple sequence repeat, SSR) markers were available
[3,4]. This changed with the development of DArT (diver-
sity array technique) markers [5,6] and, more recently, a
5 k-SNP (single nucleotide polymorphism) array [7]. Until
now, only a few QTL mapping surveys for a few specific
traits were published in rye studying the pleiotropically
acting reduced height gene locus Ddwl [8], in vitro re-
sponse [9], and a-amylase activity and related traits, e.g.
[10,11]. Genomic segments responsible for agronomic
traits were detected in two introgression libraries derived
from an Iranian primitive rye [12,13] using SSR and amp-
lified fragment length polymorphism (AFLP) markers.

We report the first genome-wide QTL analysis across
two segregating rye populations for a comprehensive set
of agronomic traits. We successfully identified QTL re-
sponsible for the expression of each of five yield- and
quality related traits (grain yield, plant height, TKW,
single-ear weight, test weight, falling number, total and
soluble pentosan, starch, and protein contents) and ana-
lyzed their reproducibility across environments. We ana-
lyzed trait associations at the overall level but also with
regard to their underlying QTL and report QTL with
major effects useful for marker-assisted selection and
map-based cloning.

Methods

Plant material

Three parental winter rye elite inbred lines (L0o90-N,
Lol115-N, Lol17-N) were chosen for this study. Two
segregating populations, each consisting of 220 F, lines
were generated by crossing (1) inbred line Lo115-N with
inbred line Lo90-N (Pop-A) and (2) inbred line Lo115-N
with inbred line Lo117-N (Pop-B). Parents belong to the
Petkus gene pool (seed parent) and possessed normal
cytoplasm (N). F, plants were randomly forwarded to F3
generation by single-seed descent and tested in F, gener-
ation (named F3,4 lines in the following) The 440 ran-
domly taken Fs, lines were crossed to an unrelated
cytoplasmic-male sterile (CMS) single-cross tester of the
Petkus gene pool (seed parent pool) by open pollination
between isolation walls. The resulting three-way crosses
of the type (A « B) x F34 line will be addressed as test-
crosses throughout the paper. They consisted only of
non-restorer materials (Petkus x Petkus), which required
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the supply of external pollen for fertilization during field
trials. For this, a 1:1-mixture of the two pollen-shedding
open-pollinated varieties ‘Danko’ and ‘Recrut’ was planted
in the alleys and in stripes in a regularly distance of ten
plots through the whole experiment. These two popula-
tion cultivars were chosen to result in an extended
flowering period. All plant materials used in this study
(except ‘Danko’) were kindly supplied by KWS LOCHOW
GMBH, Bergen, Germany.

Field experiments and traits

Field experiments were conducted in the years 2010 and
2011 at five locations: (1) Wohlde (WOH), Germany,
N52.8°, E10.0°, 80 m above sea level; (2) Beckedorf
(BEK), Germany, N52.5°, E10.3°, 80 m above sea level;
(3) Petkus (PET), Germany, N51.6°, E13.2°, 130 m above
sea level; (4) Stuttgart/Hohenheim (HOH), N48.4°, E9.1°,
400 m above sea level, and (5) Walewice (WAL), Poland,
N52.6°, E19.4°, 184 m above sea level. The location x
year combinations were referred to as environments in
the following.

Both populations with each of 220 lines were evaluated
in field trials together with their parents (repeated 9
times) and arranged in an incomplete 24 x 10 lattice de-
sign with two replications. Plot size ranged from 5 to
6 m” and seeding rate varied from 150—-200 kernels m™.
Standard production practices of mineral fertilizer, her-
bicides and fungicides applications were used following
local standards. To avoid lodging, growth regulators were
applied three times. Caused by insufficient rainfall during
both growing seasons irrigation was applied at WOH, PET,
and WAL by a drip irrigation system. Five drip lines per
plot were established to ensure a consistent irrigation in
each plot depending on the particular local condition. Data
were recorded for plant height (cm), grain yield (Mg ha™),
1000-kernel weight (TKW, g), test weight (kg), single ear-
weight (g), falling number (sec.), total pentosan (%), soluble
pentosan (%), protein (%), and starch contents (%). For the
first five traits data across ten environments and for the lat-
ter five traits data across six environments (WOH, PET,
WAL in 2010 and 2011) were available. For falling number,
data from one environment (WAL10) was missing. Plots
were machine-planted and combine-harvested and grain
yield was adjusted to a moisture concentration of 140 g
H,O kg’l. The traits total pentosan (%), soluble pentosan
(%), protein (%), and starch contents (%) were determined
by near-infrared reflectance spectroscopy (NIRS, calibra-
tion by KWS SAAT AG, Einbeck) taking two samples per
plot. Test weight refers to the weight of 100 | of grain.

Phenotypic data analysis

We used a two-step procedure to analyse the phenotypic
data. In a first step, ordinary lattice analyses of variance
were performed for each environment and population
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separately [14]. In a second step, adjusted means of each
genotype were used to estimate variance components
across environments for each of the two segregating
populations [15]. We assumed in this model that geno-
type and environment effects were random. Heritability
on an entry-mean basis was estimated from the variance
components as the ratio of genotypic to phenotypic
variance [16]:

h2 — GZG

2 29
2 O | ¢
ot Tk

where og; denotes the genotypic variance, og¢ the geno-
type x environment interaction variance, and o2 the
error variance, E and R are the numbers of environ-
ments and replications, respectively. Test of skewness
and kurtosis was performed for each trait [15, pp.
79-81]. All statistical analyses were performed with the
PLABSTAT software package [17].

Genetic linkage map construction

Genomic DNA was extracted from leaf samples of the
two segregating populations at seedling stage using the
procedure described by [18]. Pop-A (219 lines) was gen-
otyped by simple sequence repeat (SSR) and single nu-
cleotide polymorphism (SNP) markers, Pop-B (202 lines)
by SSR- and diversity array technology (DArT)-markers,
because SNP markers were not available. For SSR geno-
typing we followed established procedures [3]. Briefly,
PCR products were separated on an ABI3130x] Genetic
Analyzer (Applied Biosystems) according to manufac-
turer’s instructions. Allele identity was assigned using
the GENEMAPPER software (Applied Biosystems). The
[lumina iSelect Rye5k SNP array [7] was used for geno-
typing Pop-A. Briefly, a total of 200 ng genomic DNA
per plant was used for SNP genotyping on Illumina’s
iScan platform using the Infineon HD assay for Pop-A
and the GoldenGate assay for Pop-B following the
manufacturer’s protocol. Raw hybridization intensity
data processing, clustering, and genotype calling were
performed using the genotyping module in the BeadStu-
dio package (Illumina, San Diego, CA, USA). Data of the
Rye5k SNP array for Pop-A were generated by Eva
Bauer’s group at the Technische Universitdt Miinchen,
Freising, Germany. SSR genotyping for both populations
was done by KWS LOCHOW GMBH. DArT genotyping
with the current rye array was performed by Triticarte
Pty Ltd, Yarralumla, ACT, Australia (http://www.triti-
carte.com.au).

For the construction of the genetic linkage maps, poly-
morphic markers in each population were transformed
into genotype codes according to the parental score. For
quality checks a pre-selection with regard to their devi-
ation from expected segregation ratio was performed.
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The genetic linkage maps were constructed with the
software JoinMap® 4.0 [19]. Seven linkage groups were
established and chromosome names and orientation
were assigned to linkage groups based on a subset of
markers for which the positions have been published
previously [5]. Locus order and genetic distances in
centimorgan (cM) along the chromosome were calcu-
lated with the maximum likelihood algorithm using
Kosambi’s mapping function [20]. After each run post
mapping quality tools provided by JoinMap 4.0 were
used excluding markers which do not fit into the genetic
linkage map. To estimate average marker densities, mar-
kers with the same position were considered as single
marker (unique locus) to avoid an overestimation of the
marker density.

QTL analyses

For each trait and each population, QTL analyses were
based on the genetic linkage map of each population
and on adjusted entry means using the software
PLABQTL [21]. Markers with a distance below 1 ¢cM
were excluded by the software. Our QTL study is based
on testcross performance of F3,4 families. The genetic
make-up of our populations allows only the detection of
main effect QTL contributing to the additive genetic
variation. Therefore, we assumed an additive model as
outlined by [22]. QTL analyses were based on Compos-
ite Interval Mapping (CIM) with a multiple regression
approach [23]. Cofactors were selected by stepwise re-
gression according to Miller [24, pp. 49] with an “F-to-
enter” and “F-to-delete” value of 3.5. Estimates of QTL
positions were attained at the position where the LOD
score assumed its maximum in the region under consid-
eration. The critical LOD threshold was analysed empir-
ically for each trait using 1,000 permutation runs [25].
The proportion of the phenotypic variance explained by
the QTL was determined by the estimator Rﬁdi as
described by [22]. Additionally, five-fold cross validation
(CV) was applied to determine the bias of R* explained
by detected QTL resulting in RZy. For this, the entire
data set (DS) was split into five genotypic subsamples.
Means from four out of five subsamples served as esti-
mation set (ES) for QTL detection, localization, and es-
timation of genetic effects. The remaining subset forms
the test set (TS) in which predictions derived from the
ES are tested for their validity by correlating predicted
and observed data. By permuting the respective subsets
used for the ES and TS, five different cross-validation
runs were used [22]. As a measure of reliability we give
for each QTL the frequency of occurrence, i.e. the per-
centage of runs in which the QTL was detected within
1,000 cross-validation runs. The proportion of geno-
typic variance (pg) explained by the model was calcu-
lated: pg = Rﬁd,»/hz, where Rﬁd,» is the adjusted proportion


http://www.triticarte.com.au
http://www.triticarte.com.au

Miedaner et al. BMC Genomics 2012, 13:706
http://www.biomedcentral.com/1471-2164/13/706

of phenotypic variance explained by the model and h? is
the heritability of the trait [26].

Results

Phenotyping revealed a large genetic variation for the
ten agronomic and quality traits

For all traits significant (P <0.01) genotypic variation
was observed in both populations (Table 1, Additional
file 1). Variances due to genotype x environment inter-
action effects were also significantly (P < 0.05) greater than
zero with the exception of starch content. Intensive phe-
notyping at up to ten environments led to moderate to
high heritability estimates with the exception of falling
number and soluble pentosan content that had lower esti-
mates (0.3-0.4). Although parents of Pop-A only slightly
differed in their testcross performance, the segregation
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variance of their progenies was similar to that of Pop-B. In
contrast, parents varied widely for Pop-B: Loll7 was
lower yielding, shorter and had a lower TKW than Lol115.
Progeny means resembled parental means well. Both
populations differed in their medians for all traits, but the
genotypic variances indicated by the 50% quantile were ra-
ther similar (Figure 1). All phenotypic data did not signifi-
cantly deviate from normal distribution.

Coefficients of phenotypic correlation among traits
were low to moderate in both populations (Table 2).
Significant (P <0.01) correlations were found between
single-ear weight and grain yield or TKW in Pop-A (r =
0.54; r= 0.51). Plant height was significantly (P <0.01)
correlated with TKW and starch content (r=0.5; r=
-/+0.3) in both populations and additionally with grain
yield, test weight and single ear weight in Pop-A. Among

Table 1 First and second degree statistics of rye testcross progenies

Traits Parental mean Testcross progenies

1 2 Mean ol Ocxe’ o2 h?

Pop-A
Plant height [cm] 1186 118.0 1179 7.5%* 34%* 83 0.87
Yield-related traits:
Grain yield [Mg ha] 833 795 8.18 0.035%* 0.074** 0.077 0.70
TKW [g] 353 345 346 1.0%* 0.9%* 09 0.85
Single ear weight [g] 201 2.06 1.98 0.01** 0.01** 0.01 0.63
Quality-related traits:
Test weight [kg] 69.7 70.0 70.2 045%* 04 02 0.88
Falling number [s] ® 1733 174.0 1718 62.2%* 124.9%* 345.1 044
Total pentosan content [%)] 10.10 9.89 10.04 0.04** 0.08** 0.04 0.65
Soluble pentosan content [%] 2.29 225 229 0.002** 0.01** 0.01 033
Protein content [%)] 9.55 9.53 951 0.02** 0.09%* 0.06 048
Starch content [%)] 61.53 61.61 61.62 0.23%* 0.23 0.17 0.77
Pop-B

Plant height [cm] 1174 1124 115.6 12.0%% 4.5%% 6.3 0.92
Yield-related traits:
Grain yield [Mg ha™"] 844 733 7.82 0.037%* 0.087** 0.071 0.70
TKW [g] 35.1 338 340 0.9%* 0.9%* 08 0.85
Single ear weight [g] 1.93 1.94 1.92 0.003** 0.005** 0.01 0.52
Quality-related traits:
Test weight [kg] 69.9 718 709 0.8** 0.4** 03 0.92
Falling number [s] * 185.6 1752 180.7 35.8%* 41.0% 3029 0.39
Total pentosan content [%)] 10.32 10.35 10.30 0.04** 0.09** 0.04 0.63
Soluble pentosan content [%] 233 218 222 0.003** 0.01** 0.01 046
Protein content [%)] 9.70 10.0 9.81 0.06%* 0.08** 0.05 0.74
Starch content [%)] 61.40 61.45 6153 044 0.23 0.14 0.88

Means of parents (1=Lo115, 2=L090 in Pop-A and Lo117 in Pop-B, respectively) and each of 220 testcross progenies of two populations (Pop-A, Pop-B),
estimates of variance components (genotype, 0% genotype x environment interaction, 0%, error, 02), and entry-mean heritabilities (h?) for agronomic and quality

traits evaluated across six to ten environments.
?Analysis across 5 environments.
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Figure 1 Box-Whisker plots for agronomic and quality traits. Data based on each of 220 testcross progenies of two populations (A, B) across
ten (plant height and yield-related traits) and six (quality traits) environments.
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the quality traits, consistent significant coefficients were
found between starch content and test weight (r=0.2 to
0.5) or protein content (r = —0.6 to -0.7).

The joint use of SNP, DArT and SSR markers resulted in
dense genetic linkage maps

In this study, we used either a newly developed SNP
marker array [7] or DArT markers for successfully gen-
erating high-density genetic linkage maps for both
populations (Additional files 2 and 3). Finally, 813 and
921 markers were used for genetic linkage map con-
struction for Pop-A and for Pop-B, respectively. The
genetic linkage maps possess a total length of 980 cM
for Pop-A and 2,349 c¢M for Pop-B. We found for Pop-A
an average marker density of 1.48 cM and for Pop-B of
2.58 c¢cM. The seven rye chromosomes were covered
with each of 71 to 164 markers in Pop-A and 111 to 152
markers in Pop-B. The majority of neighbouring mar-
kers had a distance of less than 1 c¢M, only a few of the
pairs had a genetic map distance larger than 10 cM
(Figure 2). Map length and average marker density of
the latter population are comparable with a rye popula-
tion mapped by DArTs recently [5]. Obviously, the

combination of DArT and SSR markers resulted in
longer maps than that of SNP and SSR markers. How-
ever, for QTL mapping a marker distance of 15-20 cM
is sufficient [27]. The maps, therefore, provide a solid
basis for identifying genomic regions underlying the
analyzed traits.

Genomic regions controlling ten agronomic and quality
traits

QTL analyses yielded one to nine QTL per trait, for sol-
uble pentosan and protein contents no QTL were found
in Pop-A (Table 3, for details see Additional files 4 and
5). Cross-validated phenotypic variances R%y were of
similar order than the original Rﬁdj for all traits indicat-
ing a high quality mapping. QTL were distributed across
all chromosomes (Figures 3 and 4). The only QTL for
grain yield detected in Pop-A co-segregated with a QTL
for TKW on chromosome 1R. For TKW, in each popu-
lation two QTL with large effects were found on chro-
mosomes 6 and 7 in Pop-A and on chromosomes 5 and
6 in Pop-B, respectively (Additional files 4 and 5). Some
quality traits agreed in some of their QTL positions, es-
pecially in Pop-B.
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Table 2 Coefficients of phenotypic correlation among ten traits
Plant Yield-related traits Quality-related traits
height  Grain TKW Single ear Test Falling Total Soluble  Protein  Starch
yield weight weight number® pentosan pentosan
Plant height - 0.13 045%* 0.08 -0.05 0.12 0.22%* 0.25%* -0.02 0.31%*
Yield-related traits:
Grain yield 0.30** - 0.13 0.36** -0.10 0.16* =011 -0.06 —047%* 0.32%*
TKW 046** 0.15% - 0.02 -0.20 -0.09 0.33% —0.33** 0.32%* —0.55**
Single ear weight 042** 0.54** 0.51** - -0.12 -005 —-0.09 0.07 —0.33** 0.14*
Quality-related traits:
Test weight —0.25%* 0.05 -0.13* —0.27%* - -0.06 -0.06 0.09 0.16* 0.23%*
Falling number? —0.14* 0.08 —0.25%* -0.13 0.03 - 0.04 -0.03 —0.23** 0.14*
Total pentosan content 0.08 0.00 0.05 -0.06 —0.30%* 0.13* - -0.03 0.38** —0.52%*
Soluble pentosan content ~ —0.04 -002  —022%* -0.12 —0.32%* 0.00 0.14* - -0.07 0.22%*
Protein content -002  -023* -013 —0.23** -0.11 0.03 0.10 0.22** - —0.74**
Starch content —0.31% 0.12 —0.20%* -0.06 0.50** 0.05 —0.29%* —0.25** —0.60** -

Estimated for each of 220 testcross progenies of Pop-A (below diagonal) and Pop-B (above diagonal) across ten (agronomic traits) and six (quality traits)

environments.
*** Significant at the 0.05 and 0.01 probability level, respectively.
#Analysis across 5 environments.

The explained genotypic variance of the individual
QTL (pg) ranged from 5 to 55% (Figure 5). The highest
values of pg were observed for TKW, test weight, and
falling number. For these traits and starch content
several QTL with large effects and a frequency of recov-
ery of about 90% were identified in both populations
(Additional files 4 and 5). Parents of the two crosses
contributed equally to the detected QTL.

Stability of QTL effects across environments

Most QTL revealed significant (P <0.01) QTL x environ-
ment interaction variances as expected for quantitative
traits (Additional files 4 and 5). The QTL x environment
interaction variances, however, were in all cases smaller
than QTL variance (data not shown). The identified QTL
had a high stability across locations as illustrated for grain
yield and TKW QTL (Table 4). They had high additive

effects in at least nine out of ten environments.

Discussion

We used two large segregating populations to unravel
the genetic architecture underlying ten important agro-
nomic and quality traits in rye. The results of the QTL
mapping study opens for the first time comprehensive
insights into the potential of marker-assisted selection
(MAS) in rye.

Field testing resulted in high-quality phenotypic data

The precise estimation of phenotypic values is an im-
portant prerequisite for detecting QTL with a high
power. We used Fsz4 lines and consequently, only 1.5

times the additive genetic variance was exploited and
not 2 times the additive genetic variance as by using for
instance recombinant inbred line populations. Due to
the high inbreeding depression in the outcrossing
species rye, testcross progenies of two elite line popula-
tions were used in this study. This allows exploiting only
half of the total additive genetic variation, but takes into

Pop-A
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o
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Figure 2 Frequency distributions of distances between

neighbouring markers.
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Table 3 Summary of detected quantitative trait loci (QTL)
after permutation test for ten traits

Trait No. R4 (%) RYZ,  pc
QL Range Total (%)
Pop-A
Plant height 5 10-21 526 50.1 60.5
Yield-related traits:
Grain yield 1 - 37 27 52
TKW 6 6-40 66.0 63.9 777
Single ear weight 2 89 16.2 145 49.

Quiality-related traits:

Test weight 6 13-19 588 557 1200
Falling number? 2 10-23 289 275 657
Total pentosan content 7 6-15 484 478 744
Starch content 2 14-24 469 461 61.0
Pop-B
Plant height 9 6-19 703 677 765
Yield-related traits:
Grain yield 7 7-17 522 51.1 746
TKW 4 11-32 56.3 54.2 66.2
Single ear weight 3 7-10 26.1 232 501
Quality-related traits:
Test weight 8 6-23 575 54.1 62.5
Falling number? 2 5-13 276 270 708
Total pentosan content 5 6-13 385 34.3 61.8
Soluble pentosan content 3 7-13 30.7 280  66.7
Protein content 2 8-10 17.2 15.7 232
Starch content 9 8-28 739 710 84.0

Number (no.) of QTL, proportion of explained phenotypic variance before (Rf,dj)
and after cross validation (RZ,) and genotypic (pg) variance for each of 220
testcross progenies in two populations (Pop-A, Pop-B) estimated across ten
(plant height and yield-related traits) and six (quality-related

traits) environments.

?Analysis across 5 environments.

account that line per se performance is only of limited
predictive value for hybrid performance in yield-related
traits in rye [28]. Dominance is a serious obstacle when
testcross performance is used in mapping biparental
populations. When the tester contributes a strong dom-
inant allele, the effect of the allele contributed by the
other parent (an inbred line) is undetectable. The limita-
tions on the use of strong elite testers were discussed by
[29,30]. However, despite these limitations we observed
significant genetic variation (P <0.01) for all measured
traits. The significance of genotype-by-environment inter-
action for all traits illustrate that multi-environmental
phenotyping is indispensible. Entry-mean heritabilites
reached 0.9 for plant height, TKW, and test weight in both
populations and even grain yield had a heritability of 0.7.
Lower heritabilities of some traits were mostly associated
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with a small, although significant amount of genotypic
variation. Consequently, a high power to map QTL should
be possible.

The parents in the Pop-A did not differ much in their
testcross performance, which underscores a typical situ-
ation in elite rye breeding, which relies on crosses of the
“best x best” type. In contrast, in Pop-B a superior
(Lo115) and a lower performing (Lo 117) parent were
crossed. Despite this, genotypic variance in Pop-A was
similar (Figure 1) pointing towards a high importance of
transgressive segregation. Obviously, both parents con-
tributed different positive alleles at several loci for each
of the traits. This is in accordance with quantitative-
genetic theory assuming a large number of segregating
loci with mainly additive effects for complex traits [31].
The contrast of the mean testcross performance of the
parents and the average testcross performance of their
segregating progenies is a test for net epistasis across the
genome [32]. Consequently, the lack of differences be-
tween the mean performance of the parents and the pro-
genies suggests that epistasis was not important in these
populations. This can be explained by prevalence of
additive gene action but might also be due to the fact
that negative and positive effects at individual loci may
cancel each other out.

Plant height in elite rye populations is not controlled by
major QTL

Plant height is regulated to a large extent by dwarfing
genes in elite wheat and barley populations [33,34], because
they have positive effects on elite wheat grain yield [35].
The genetic architecture of plant height in rye detected in
this study, however, is in sharp contrast to the genetic
architecture of plant height in elite wheat and barley.
Five to nine QTL located on all seven chromosomes were
identified for plant height in both elite rye populations.
None of these QTL had a large genotypic effect and the
recovery rates in permutation tests were low although the
trait displayed a maximum heritability (0.9) and high pro-
portions of explained genotypic variances (61 and 77% in
Pop-A and Pop-B, respectively). This clearly illustrates
that plant height in rye is a typical quantitative trait with a
lot of segregating loci. Accordingly, [36] detected 11 gen-
omic regions significantly contributing to plant height
among testcrosses with two rye introgression line libraries.
The main cause for the difference between wheat and bar-
ley on one hand, and rye on the other is that in rye the
stem is used as reservoir for water and carbohydrates, es-
pecially when abiotic stress occurs. Very often grain yield
is associated with tall plant stature as demonstrated by the
significant correlation between plant height and grain
yield in Pop-B (r=0.30, P <0.01). Therefore, no dwarfing
gene has been successfully used in commercial rye culti-
vars until now although such a gene has been described
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and mapped [8]. Interestingly, we observed in Pop-B a
QTL for plant height in the telomeric region of chromo-
some 5RL (QTL #8) where the Ddw1 dwarfing gene from
a Russian source was located (Figure 4, [8]). This QTL
had in our population, however, a much smaller effect (R*
=18.9) than expected from a major gene although the
recovery rate was 96%, perhaps reflecting a multi-allelic
series at this locus. In conclusion, quantitative inheritance
of plant height in rye is an example for a highly crop-
specific trait.

Genetic architecture of yield and yield-related traits is
generally complex, but some major QTL occur
Segregation at major effect QTL underlying grain yield
in rye is not expected as any large-effect QTL would

have been long fixed in the course of breeding. In agree-
ment with this expectation, we observed for Pop-A
where two high-yielding elite parents were crossed only
one QTL explaining 5% of the genotypic variation (pg).
In Pop-B deducted from a high- and a lower-yielding
parent, seven QTL for grain yield were detected with pg
varying from 10 to 24% and low recovery rates. High
effects in most of the tested individual environments re-
veal their environmental stability (Table 4). Accordingly,
cross-validated variance explained by all QTL amounted
to RZy = 51%. Here, linkage blocks due to limited reso-
lution of QTL mapping in biparental populations may
have lead to detection of clusters of linked QTL, thus
underestimating the number of QTL involved in com-
plex traits and overestimating their effects as shown by
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[37] in a comparison of a conventional F3 and an inter-
mated F; population.

Population size used was about 220 lines per popula-
tion. This is similar to the US-nested association map-
ping (NAM) population [38] in maize, but an even
greater size might be valuable for quantitative traits. For
grain yield, [26] detected two QTL by analyzing 244 test-
cross progenies of maize, but up to seven QTL when
regarding 976 progenies. We can, therefore, expect that
the number of QTL estimated here might represent the
lower limit of QTL segregating.

In conclusion, grain yield follows an infinitesimal model
as already proposed by [39] and MAS for individual QTL

seems not to be a realistic option. Yield components
might identify better candidates. Indeed in Pop-A, where
grain yield had only a minimum cross-validated R* of 3%
only, TKW resulted in 64%. In Pop-B this value was simi-
lar high for both traits (>50%). Interestingly, in both popu-
lations individual QTL for TKW with large effects were
found: QTL on chromosomes 6 and 7 in Pop-A as well as
on chromosomes 5 and 6 in Pop-B.

The most prominent QTL for TKW on chromosome
7R had a remarkably high pg value of 48% and a recov-
ery rate of 87% (Additional file 4). Interestingly, a major
QTL on this chromosome was already reported in a Pet-
kus population associated with the marker SCM40 [40].
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This marker was located in the centromeric region of
the chromosome [41] and might correspond to our QTL
#5 for TKW in Pop-A. A second locus for this trait [40]
was associated with SSR marker WMS5 located in the
telomeric region of chromosome 5RL (renamed as
GWMS5, [4]) and might correspond to QTL #2 in Pop-B.
The two other loci with high pg values and recovery
rates >90% were located in a similar region on chromo-
some 6 in both populations but contributed by different
parents. These results illustrate that some QTL for
TKW (#4 and #5 in Pop-A and #3 in Pop-B) have such
high effects that they might be caused by single genes.
Further fine mapping of multiple alleles per QTL in this
region will be needed to test this hypothesis.

A similar localization of QTL was observed for
some yield-related traits. Two QTL for grain yield on
chromosome 1R (Pop-A) and 4R (Pop-B) had similar
positions like each of one QTL for TKW and test
weight reflecting the significant correlations between
the traits. The corresponding QTL were contributed
by the same parent in both instances. Thus, an indir-
ect improvement of grain yield by MAS of individual
QTL for yield components that have a higher recov-
ery rate might be feasible.

For yield and yield-related traits we tested our map-
ping populations at ten environments including loca-
tions from North, East and South Germany as well as
Poland. Compared to other QTL studies, this is a high
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number and broad range of environments and we report
here only QTL with significant effects across all environ-
ments. This surely restricts the number of QTL, but
enables us to detect only environmentally stable QTL
that should be valuable also in environments not tested
here. QTL for TKW and grain yield detected in the
combined analysis had similar effects in most of the in-
dividual environments.

In summary, QTL effects for grain yield were mainly
small as expected from theory, three QTL with high
effects, however, were detected for TKW. They were
highly stable across environments and had a high recov-
ery rate in the cross validation and, thus, should be
investigated further.

Quality traits are regulated by a complex genetic network
Two to nine QTL were detected for each of the quality
traits. Their pg values were mostly >60%, starch content
amounted even to 84% in Pop-B, although testing inten-
sity was lower than for the yield-related traits. It should
be noted that until now selection in practical breeding
programs where the elite parents were derived from was
solely based on falling number as a measure for pre-
harvest sprouting. Despite its high heritability reported
in earlier studies [42] it is a complex inherited trait
[10,11]. In this study, we found each of two QTL for
falling number in both populations and the QTL on
chromosome 4 RL might correspond to a QTL already
described [11].

Generally, quality traits are regulated by a complex
genetic network resulting in phenotypic and pleiotropic
interactions among the traits as shown for the maize
nested association mapping (NAM) population [38].
Also in hybrid rye, significant correlations were detected
among traits ranging from -0.2 to +0.6 (Table 1). In par-
ticular, QTL for starch content overlapped with QTL for
grain yield on chromosomes 3R, 4R and 7R in Pop-B.
Accordingly, both traits showed a significant (P <0.01)
phenotypic correlation (r=0.32). On chromosomes 1R,
3R and 5R a QTL for test weight had a similar position
than a QTL for starch content indicating that plumber
kernels might have higher starch content. Significant (P
<0.01) correlations were indeed found between starch
content and test weight. The negative correlation be-
tween starch and protein content in both populations (r
=-0.6 and r = -0.7) is well known from other studies in
cereals (Jansen, pers. commun.), but could not be
explained by co-localization of QTL in our populations.
A negative correlation between starch and TKW was
also observed in durum wheat [43]. The authors state
that end-use of the kernel is clearly influencing the
physio-chemical kernel characteristics implying proper-
ties such as milling quality, kernel hardness, and kernel
protein content. In rye, a high selection pressure is on
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Table 4 Additive effects within and across environments
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QTL Chr. Donor Additive effect
2010 2011 Combined
WOH PET WAL BEK HOH WOH PET WAL BEK HOH
Grain yield (Mg ha™')
Pop-A
1 1 Lo90 0.052 -0.034 0.206 -0.017 -0.500 0.101 0.112 0.005 0.061 0.063 0.054
Pop-B
1 1 Lo117 0.085 0.028 0.379 0.052 0.107 0.100 0.003 0.013 0.029 0.019 0.087
2 2 Lo117 0.048 0.119 0.035 0.077 0.040 0.200 0.109 0.010 0.139 0.106 0.093
3 2 Lo117 0.100 0.066 —-0.024 0.108 —-0.093 0.106 0.100 0.009 0.027 0247 0.064
4 3 Lo117 0.096 0.014 0.077 0.087 0.038 0.103 0.040 0.002 0.018 0.037 0.057
5 4 Lo117 1.094 0.161 0.070 0.155 0.109 0.035 0.128 0.008 0.065 0.051 0.089
6 5 Lo117 0.040 0.003 —-0.040 0.061 0.0M1 0.158 0.071 —0.001 0.158 -0.013 0.052
7 7 Lo117 1.014 0.140 0.001 0.040 0.025 0.056 0.136 0013 0.084 0.049 0.083
1000 kernel weight (g)
Pop-A
1 1 Lo90 0.347 0.035 0.823 0.352 0.208 0.299 0.280 0.139 0.184 0.265 0.291
2 3 Lo115 0.358 0.299 0.308 0.152 -0.169 0.241 0.374 0.546 0407 0.155 0.269
3 5 L090 0349 0353 0270 0344 0.286 0387 0.256 0461 0462 0226 0338
4 6 Lo90 0.354 0.536 0518 0461 -0.010 0.365 0.682 0494 0475 0457 0425
5 7 Lo115 0.594 1.152 0.747 0.527 0.135 0670 0.759 0.701 0.717 0623 0.659
6 7 Lo115 0.246 0.360 -0.028 0.047 —-0.109 0274 0348 0472 0.185 0.268 0.208
Pop-B
2 1 Lo115 0.379 0.350 0.193 0.324 0.026 0.550 0414 0419 0.625 0469 0.375
3 5 Lo117 0.697 0515 0.161 0.748 0.050 0.781 0460 0422 0910 0.546 0.529
4 6 Lo117 0406 0.788 0.647 0493 -0.124 0.655 0.624 0.711 0.628 0.749 0.557
5 7 Lo115 0.338 0.308 0436 0.591 0426 0434 0.394 0.384 0.566 0.334 0421

Effects of all detected quantitative trait loci (QTL) for grain yield (Mg ha™) and TKW (g) for each of 220 testcross progenies in two populations (A, B) at ten

individual environments and combined across environments.

large, plump kernels, because rye as a crop tends to low
kernel size limiting flour yield.

In conclusion, each of one QTL with large effects (pg
>20%) and high recovery rates (>90%) was found for test
weight (QTL #2), falling number (#2) and starch content
(#2) in Pop-A and starch content (#1) in Pop-B that
should be considered for MAS.

Conclusions

We provide in this study the first comprehensive QTL
analysis in rye based on a high-density genetic map in-
cluding about 900 markers per population. We detected
one to nine QTL per trait. Because all traits were inher-
ited quantitatively with a substantial amount of
genotype-by-environment interaction, this number is
most likely to be underestimated. Our results suggest
that in rye the number of QTL segregating for quantita-
tive traits is large even in biallelic populations and for
traits with high heritability as previously shown in maize

(e.g. [26,44]). These results explain the inefficiency of
MAS in the improvement of quantitative traits con-
trolled by many loci with small individual effects [45].
Meanwhile it is obvious, that only large-effect QTL, like
those found here for TKW, test weight, falling number
and starch content, could be candidates for successful
MAS in practical breeding. For all other traits with a
complex genetic architecture, genomic selection using
markers located on the whole genome without selecting
the most prominent ones might be more efficient [46].
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Additional file 1: Estimates of variance components (genotypic, 0&;
pooled error, 02), and repeatabilities (Rep.) for 10 traits in 2010 and
2011 for Pop-A and Pop-B evaluated at five and three locations,
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Additional file 2: Genetic linkage map of Pop-A for seven rye
chromosomes with the distance in cM.
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