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The origin of modern frogs (Neobatrachia) was
accompanied by acceleration in mitochondrial
and nuclear substitution rates
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Abstract

at the origin of Neobatrachia.

Neobatrachia, Evolution

Background: Understanding the causes underlying heterogeneity of molecular evolutionary rates among lineages
is a long-standing and central question in evolutionary biology. Although several earlier studies showed that
modern frogs (Neobatrachia) experienced an acceleration of mitochondrial gene substitution rates compared to
non-neobatrachian relatives, no further characterization of this phenomenon was attempted. To gain new insights
on this topic, we sequenced the complete mitochondrial genomes and nine nuclear loci of one pelobatoid
(Pelodytes punctatus) and five neobatrachians, Heleophryne regis (Heleophrynidae), Lechriodus melanopyga
(Limnodynastidae), Calyptocephalella gayi (Calyptocephalellidae), Telmatobius bolivianus (Ceratophryidae), and
Sooglossus thomasseti (Sooglossidae). These represent major clades not included in previous mitogenomic analyses,
and most of them are remarkably species-poor compared to other neobatrachians.

Results: We reconstructed a fully resolved and robust phylogeny of extant frogs based on the new mitochondrial
and nuclear sequence data, and dated major cladogenetic events. The reconstructed tree recovered Heleophryne as
sister group to all other neobatrachians, the Australasian Lechriodus and the South American Calyptocephalella
formed a clade that was the sister group to Nobleobatrachia, and the Seychellois Sooglossus was recovered as the
sister group of Ranoides. We used relative-rate tests and direct comparison of branch lengths from mitochondrial
and nuclear-based trees to demonstrate that both mitochondrial and nuclear evolutionary rates are significantly
higher in all neobatrachians compared to their non-neobatrachian relatives, and that such rate acceleration started

Conclusions: Through the analysis of the selection coefficient (w) in different branches of the tree, we found
compelling evidence of relaxation of purifying selection in neobatrachians, which could (at least in part) explain the
observed higher mitochondrial and nuclear substitution rates in this clade. Our analyses allowed us to discard that
changes in substitution rates could be correlated with increased mitochondrial genome rearrangement or
diversification rates observed in different lineages of neobatrachians.
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Background

It has been long acknowledged that character change in
evolution occurs at different rates, which can vary ex-
tremely between different lineages [1]. Although initially
described for morphological characters, among-lineage
rate heterogeneity also occurs at the molecular level, and
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evolutionary biologists have been long interested in
quantifying molecular evolutionary rates as well as de-
termining which are the underlying mechanisms that
trigger their acceleration or slowdown in different
lineages [2]. However, uncovering the causes of lineage-
specific rate variation has proven to be challenging, and
previous studies reached different conclusions, which
attempted to explain rate heterogeneity through correl-
ation with species body size, generation time, population
dynamics, metabolic rates, or habits (eg, [2-4]).
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Furthermore, molecular evolutionary rates have also
been correlated with diversification [5-7], but given the
multiple factors that shape diversification patterns, the
generalization of this correlation is elusive, and there-
fore, the cause-effect between rates of genome evolution
and cladogenesis remain largely unknown [2].

At the molecular level, the fixation of mutations in an evo-
lutionary lineage (i.e., substitution events), is a complex dy-
namic process determined by the interaction between
evolutionary (selection) and demographic (drift) forces [8].
Comparative studies of relative substitution rates have been
particularly useful in providing insights into particular con-
straints of specific genetic systems, such as e mitochon-
drial (mt) genomes [9]. Mitochondrial DNA has been widely
used as a marker in molecular systematics during past dec-
ades [10,11]. As data accumulated, it has become apparent
that animal mt DNA evolves at a rate 5 to 10 times faster
than single-copy protein coding nuclear genes, although this
varies extremely across genes and taxa [10,12,13]. Mitochon-
drial DNA suffers from high mutational pressure [14] likely
due to the inaccuracy of its DNA repair system [15], the ab-
sence of histone-like proteins [14], the particular replica-
tion model with single-strand intermediates [16], and the
presence of reactive oxidative compounds produced in the
mitochondria [17]. This high mutational pressure, to-
gether with a reduced population size [18] and the ab-
sence of substantial recombination [19] (but see [20]),
leads to an increase of substitution rate in mt DNA. The
comparison of evolutionary rates among lineages permits
the identification of events of acceleration and slowdown
of rates, which can be further studied to uncover the
underlying process (or processes) that produced the
observed patterns [2].

Furthermore, phylogeneticists are particularly interested
in understanding evolutionary rate variation because the
unequal substitution rates among lineages are a well-
known source of phylogenetic artifacts [21,22]. Rapidly
evolving lineages may appear closely related (and often
placed close to outgroups) regardless of their true evolu-
tionary relationships (long-branch attraction; [23]),
whereas short branches may also attract each other
because of the “leftover” similarity of symplesiomorphic
states that “eroded” away in rapid-evolving lineages [24].

Previous studies have shown that rates of molecular evolu-
tion, both for mt DNA and some nuclear genes are un-
equally distributed among lineages of frogs [25].
Neobatrachian frogs exhibit higher mt substitution rates
compared to their non-neobatrachian relatives [25-29]. Yet,
it is neither clear when the shifts in substitution rates oc-
curred during the evolutionary history of modern frogs nor
whether rate changes are exclusive to the mt genome. More-
over, the heterogeneous distribution of mt substitution rates,
together with the high genetic divergence between frogs and
their closest living sister taxa (i.e, salamanders; [30]) are the
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source of several phylogenetic artifacts in previous studies,
such as the monophyly of non-neobatrachian frogs
(“Archaeobatrachia” [29,31,32]) or the incorrect phylogen-
etic placement of Neobatrachia due to long-branch attrac-
tion effects [27]. The unequal distribution of mt substitution
rates across the anuran tree has also been suggested to yield
considerably older time estimates for divergences among
neobatrachians [33].

Neobatrachia (modern frogs) is acknowledged as the
most derived lineage of frogs [34,35] and the sister group
of Pelobatoidea [36,37]. Modern frogs constitute an evo-
lutionarily highly successful clade that contains over 96%
of the overall species diversity of extant amphibians
[38-40]. Most of this diversity is concentrated in two
major clades: Ranoides (= Ranoidea), which comprises
three well-supported monophyletic groups (Afrobatra-
chia, Microhyloidea, Natatanura), and Nobleobatrachia
[39,41]. Neobatrachia® also includes the following
species-poor families: Calyptocephalellidae, Heleophryni-
dae, Limnodynastidae, Myobatrachidae, Nasikabatrachi-
dae, and Sooglossidae, whose relative position is still a
contentious issue in anuran phylogeny [39,41]. Most of
the diversity of Ranoides and Nobleobatrachia is located
in the Old World and the Neotropics, respectively [25],
whereas the abovementioned species-poor neobatrachian
families show a relict distribution [40]. It was suggested
that the shift in mt substitution rates in Neobatrachia
could be related with the higher diversification rates
observed in Ranoides and Nobleobatrachia, provided
that further data and analyses could possibly assign short
branches to species-poor lineages [25]. To validate such
possibility, it is necessary to precisely delimit the node in
the anuran phylogeny at which the shift in evolutionary
rates took place.

In this study, we newly determined the mt genomes and
partial sequences of nine nuclear genes of several key repre-
sentatives of species-poor neobatrachian families outside
Ranoides and Nobleobatrachia. These new sequence data
together with previously available orthologous sequence data
from other anurans were used to infer a robust phylogeny
and a timetree of major lineages of frogs. The new sequence
data and the phylogeny were used to (i) confirm that mt
substitution rates are (statistically) significantly higher in the
different neobatrachian lineages; (ii) localize the rate shift in
the phylogeny; (iii) explore whether substitution rates of nu-
clear genes are also accelerated in modern frogs; and (iv) de-
termine whether changes in substitution rates could be
correlated with life-history traits, an increase in mt genome
rearrangement, or an increase in diversification rates.

Methods

Taxon sampling and DNA sequencing

Taxon sampling in this study was designed to represent
all major groups of frogs with particular emphasis on
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neobatrachian lineages outside Ranoides and Nobleoba-
trachia. For phylogeny reconstruction, we used Leio-
pelma and Ascaphus as outgroup taxa. For timetree
inference, the outgroup included three salamanders,
three caecilians, a lizard, a bird, and a mammal. These
extra outgroup taxa were included to provide additional
calibration points, and thus to infer more accurate time-
tree estimates. In-group frog species were largely chosen
based on available complete mt genomes, and to allow
direct comparison and combination of mt and nuclear
data. Available frog mt genomes were expanded with
newly determined complete sequences for one peloba-
toid (Pelodytes sp., from the southwest of the Iberian
Peninsula, probably representing an undescribed species
currently under study; in this paper, we name it P. punc-
tatus following current taxonomy) and the following
neobatrachians: Heleophryne regis (Heleophrynidae),
Lechriodus melanopyga (Limnodynastidae), Calyptoce-
phalella gayi (Calyptocephalellidae), Telmatobius bolivia-
nus (Ceratophryidae), Sooglossus thomasseti (Sooglossidae).
The nearly complete sequence of another Sooglossidae,
Sooglossus sechellensis, was also determined. A nuclear
DNA data set of partial sequences of nine protein-coding
genes was compiled, including the recombination-activating
genes 1 and 2 (ragl and rag2), brain-derived neutro-
trophic factor (bdnf), proopiomelanocortin (pomic), che-
mokine receptor type 4 (cxcr4, exon 2), members 1 and 3
of the solute carrier family 8 (s/c8a1, exon 2, and slc8a3,
exon2), rhodopsin (10 exon 1), and histone 3 (h3a). The
nuclear matrix was generated expanding a recent dataset
[37] with new data for the aforementioned species. Since
our phylogenetic analyses were focused mainly on the
family level or above, and in order to maximize the com-
pleteness of the nuclear data set, sequences from congen-
eric anuran species (for which there is strong evidence
for the monophyly of the genus) were merged in few
cases see (e.g, [42-44]). Similarly, chimerical sequences
were also used to represent some non-anuran major evo-
lutionary lineages in the outgroup of the timetree ana-
lysis. Detailed information on the studied species and the
corresponding GenBank accession numbers can be found
in Additional file 1.

Total DNA was prepared from ethanol-preserved muscle
tissue by proteinase k digestion, phenol-chloroform extrac-
tion, and ethanol precipitation [45]. The complete mt gen-
ome of Pelodytes was amplified in several overlapping
fragments by PCR using the primers and conditions reported
in [46]. The remaining mt genomes, corresponding to neoba-
trachians, were partially amplified using the same set of pri-
mers (from 5-trnF to 3’-cox3) (abbreviations of mt genes
follow [47]). Due to the gene rearrangements found in neo-
batrachians (see Results and discussion), the remaining
halves of the mt genomes (from 5-cox3 to 3-trnF) were
amplified using the primers and conditions reported in [48].
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Partial sequences of nuclear genes were amplified using the
primers and conditions reported in the literature: ragl [46],
rag2 [2549), slc8al [36], bdnf and pomc [50], rho [25], h3a
[51]. In all cases, PCR cycling conditions were experimentally
adjusted from those reported in the original publications.
Specific primers were designed when general primers did
not work (mainly for control regions), and to sequence long-
PCR products by primer walking (available from authors
upon request). PCR reactions of fragments up to 1500 bp
were carried out with 5PRIME Tag DNA polymerase
(5PRIME GmbH, Hamburg, Germany), and longer frag-
ments were amplified using LA Tag polymerase (TaKaRa Bio
Inc., Otsu, Shiga, Japan), following manufacturer’s instruc-
tions. PCR amplicons were purified by ethanol precipitation
[45] or directly from electrophoresis gels using the Speed-
tools PCR clean-up kit (Biotools B&M Labs. S.A., Madrid,
Spain). The long-PCR products containing the control region
of L. melanopyga and T. bolivianus were digested with Pstl
at 37°C for four hours, obtaining two fragments from each of
the original amplicons. These four fragments as well as all
other PCR products containing the control regions of the
remaining species were cloned into pGEM-T vectors (Pro-
mega, Madison, W1, USA). PCR fragments and positive re-
combinant clones were cycle-sequenced with the ABI Prism
BigDye Terminator v3.1 cycle sequencing ready reaction kit
(Applied Biosystems, Foster City, CA, USA) using PCR and
M13 universal primers, and following manufacturer’s instruc-
tions. Cycle sequencing products were run on ABI Prism
3700 and 3130x] DNA Analyzers (Applied Biosystems, Foster
City, CA, USA).

The new mt sequences were annotated by comparison
with other reported frog mt genomes using DOGMA
[52]. In this web-based tool, genes are identified by
BLAST searches, open reading frames of protein-coding
genes are translated using the appropriate genetic code
(vertebrate mt code), and transfer RNA (tRNA) genes
are further identified based on their putative cloverleaf
secondary structure. The gene arrangements of the new
mt genomes were compared against the Mitozoa data-
base release 7.1 [53].

Sequence alignment

Mitochondrial and nuclear protein-coding genes were
analyzed at the nucleotide and amino acid levels. Align-
ments were generated using TranslatorX ([54]. First,
amino acids of deduced proteins were aligned using
MAFFT L-INS-i [55] and default settings. Then, am-
biguously aligned positions were removed using
Gblocks, v.0.19b [56] and the following settings: mini-
mum number of sequences for a conserved position 29,
minimum number of sequences for a flanking position
29, maximum number of contiguous non-conserved
positions 8, minimum length of an initial block 5, mini-
mum length of a block 5, allowed gap positions with
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half. Finally, trimmed protein alignments were used as
guide for a codon-based alignment of nucleotide sequences.
Mitochondrial tRNA gene nucleotide sequences were
aligned manually based on their putative secondary struc-
ture, whereas mt ribosomal RNA (rRNA) gene nucleotide
sequences were aligned with MAFFT L-INS-i [55] and
corrected by eye for any obvious misalignment. Ambigu-
ously aligned positions in both mt tRNA and rRNA gene
alignments were excluded with Gblocks v.0.19b [56] using
the following settings: minimum number of sequences for
a conserved position 31, minimum number of sequences
for a flanking position 36, maximum number of contigu-
ous non-conserved positions 5, minimum length of a
block 10, allowed gap positions with half.

Phylogenetic reconstruction

Previous studies (e.g,, [27]) showed long-branch attraction
artifacts in phylogenetic reconstruction of the anuran tree
due to high rates of evolution of mt DNA in neobatra-
chians. In order to avoid such phylogenetic inference
artifacts, especially those caused by possible saturation
in the fast-evolving lineages, first and third codon posi-
tions of mt protein-coding genes, and third codon posi-
tions of nuclear protein-coding genes were excluded
from the corresponding nucleotide alignments. For
phylogenetic and dating analyses, protein-coding gene
alignments at the nucleotide or amino acid level were
combined together with tRNA and rRNA genes into two
matrices, hereafter the combined nucleotide and amino
acid data sets, respectively.

The combined nucleotide and amino acid data sets were
analyzed by maximum likelihood (ML; [57]) using RAXML
v.7.04 [58], and by Bayesian inference (BL [59]) using
MrBayes v.3.1.2 [60,61]. ML searches used the rapid hill-
climbing algorithm [62] starting from 100 randomized
maximum-parsimony trees. RAXML optimized parameters
of the GTR+I+I' model in all partitions independently. For
BL, two independent runs were performed, each with 4 sim-
ultaneous Markov chains for 20 million generations, sam-
pling every 1000 generations. Convergence was checked a
posteriori using Tracer v.1.5 [63] and the online tool AWTY
[64]. The first 1 million generations were discarded as burn-
in to prevent sampling before the Markov chains reached
stationarity. Support for internal branches was evaluated
performing 1000 replicates of non-parametric bootstrapping
[65] (ML) and by posterior probabilities (BI). The genera
Leiopelma and Ascaphus were used as outgroups, as they
are confidently identified as the sister taxa of all other extant
frogs [26,39,41,66,67].

The Akaike information criterion (AIC; [68]) was used
to select the best partition schemes as well as best-fit
nucleotide and amino acid models for each partition.
The best partitioning scheme for the combined nucleo-
tide data set was determined with PartitionFinder [69]
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and included five partitions: (i) second codon positions
of all mt protein-coding genes, (ii) mt rRNA genes,
(iii) mt tRNA genes, (iv) first codon positions of all nu-
clear genes, and (v) second codon positions of all nu-
clear genes. For the combined amino acid data set,
partitions had to be determined separately for amino
acid (PartitionFinderProtein; [69]) and nucleotide (Parti-
tionFinder) data. The best partition scheme favored indi-
vidual protein-coding gene partitions, a single mt rRNA
partition and a single mt tRNA gene partition.

Estimation of divergence times

We used BEAST v.1.6.1 [70] to estimate divergence times
among major frog lineages based on molecular data. This
program implements a Bayesian dating method, and
assumes a relaxed uncorrelated clock in which the rate
for each branch is drawn independently from an under-
lying lognormal distribution [71]. We used the combined
nucleotide data set, and constrained the tree topology to
the best ML tree (Figure 1) by removing the operators
that act on tree topology from the .xml file. The Yule
process [72] was used to describe cladogenesis, and inde-
pendent GTR+I+I' models were applied for each of the
five data partitions. The final Markov chain was run twice
for 100 million generations, sampling every 10,000 gen-
erations and the first 1 million was discarded as part of
the burn-in process, according to the convergence of
chains checked with Tracer v.1.5. [63]. The effective sam-
ple size of all the parameters was above 200 [70].

Seven calibration points were used as priors for diver-
gence times of certain splits, using a lognormal distribu-
tion of prior probability. Calibration points were chosen
based on previous literature and the online resource
Lisanfos KMS v.1.2 [73] that compiles data on amphibian
fossils. Fossils provided hard minimum bounds (offset)
and mean and standard deviations (SD) were chosen so
that the 95% probability limit corresponds to a soft
maximum bound. Details on fossil dates and prior dis-
tribution parameters for each calibration point are pro-
vided in Additional file 2.

Evolutionary rate heterogeneity analyses

Topological congruence

To examine among-lineage rate heterogeneity patterns,
we reconstructed phylogenetic trees based on mt and
nuclear data, separately, and compared their topological
congruence and branch length patterns. In these com-
parative analyses, we were not interested in recovering
the species phylogeny (as above) but in evidencing the
empirical differences in evolutionary rates between neo-
batrachian and non-neobatrachian lineages as inferred
based on the two types of molecular markers. Therefore,
all codon positions of protein-coding genes were
included in the analyzed nucleotide data matrices.
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Figure 1 Phylogenetic relationships of extant frogs. The ML phylogram inferred from the combined nucleotide data set is shown. The
inferred tree based on the combined amino acid data set arrived at the same topology, which represents our best hypothesis for anuran
phylogenetic relationships. Numbers at nodes are support values from ML (bootstrap proportions; left) and BI (posterior probabilities; right).
Names of major clades of frogs are shown in capitals, Neobatrachia is highlighted in blue, and familial and supra-familial assignments are
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variations of this gene order along the phylogeny. Genes encoded by the light strand are underlined. Different colors are used to indicate the
origin of replication of the light strand (grey), translocated protein-coding genes (orange) and transfer RNA genes (blue). Abbreviations of mt

Phylogenetic analyses were based on the concatenation
of the nucleotide sequences of all mt single-gene align-
ments (hereafter the mt nucleotide data set) or all nu-
clear single-gene alignments (hereafter the nuclear
nucleotide data set), as well as on the same alignments
but with open reading frames translated into proteins
(hereafter the mt amino acid and the nuclear amino acid
data sets). Trees were reconstructed under ML as
explained in the phylogenetic reconstruction section
above. Protein-coding genes were partitioned by codon
position in the mt and nuclear nucleotide data sets, or
by gene in the mt and nuclear amino acid data sets. The
mt nucleotide and amino acid data sets had two add-
itional partitions corresponding to combined rRNA and
tRNA genes, respectively.

Relative-rate tests

In order to compare substitution rates of mt and nuclear
genes, relative-rate tests (RRTs; [74]) were performed
with the program RRTree [75]. This program extends
the method of Li and Bousquet [76] and compares mean
rates between lineages relative to the outgroup, taking
phylogenetic relationships into account by topological
weighting [77]. RRTs were performed for each single-
gene alignment (note that all tRNA genes, due to their
short length, were concatenated, and here considered
like a single-gene alignment for analytic purposes), as
well as for the mt and nuclear data sets at both the
nucleotide and amino acid levels. In the case of
protein-coding genes at the nucleotide level, tests were
carried out (i) taking into account all codon positions
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and (if) without first and third-codon positions of mt
genes and third positions of nuclear genes. Genetic dis-
tances were estimated with K2P [78] and Poisson [75]
models at the nucleotide and amino acid levels, re-
spectively. We defined the three salamander species
used in the timetree analysis as outgroup, and divided
frogs into three assemblages: species-rich clades within
Neobatrachia (Ranoides and Nobleobatrachia), species-
poor neobatrachian lineages (Heleophryne, Calyptocepha-
lella, Lechriodus and Sooglossus), and non-neobatrachian
relatives (Amphicoela, Discoglossoidea, Pipoidea, and
Pelobatoidea). RRTs were performed among these three
assemblages, as well as between all neobatrachians versus
non-neobatrachians.

Branch length comparisons

We optimized model parameters and branch lengths
separately for the mt and nuclear data sets both at the
nucleotide and amino acid levels using RA x ML v.7.0.4
[58], and constraining the topology to the preferred ML
tree as recovered based on the combined nucleotide and
amino acid data sets. In order to compare the branch-
specific bias of mt versus nuclear branch lengths, the
ratios between branch lengths (mt / nuclear) were calcu-
lated for each individual internal and terminal branch in
the nucleotide- and amino acid-based trees, separately.
The estimated ratios were subjected to one-way ANO-
VAs, after being log-transformed to meet the assump-
tions of normality and homogeneity of variance. The
first ANOVAs compared neobatrachians against non-
neobatrachians. For the second ANOVAs, neobatrachians
were further divided into species-rich and species-poor
lineages (following the scheme of RRT analyses; see
above), and orthogonal contrasts were used to compare
the three groups. All statistical analyses were performed
with IBM SPSS Statistics, release 19.0.0.1.

Detecting changes in selective pressure

Simulation studies have shown that analyses of selection
coefficients are rather robust to sequence divergence
[79] (as is the case in the present study), having been
successfully used in various studies with highly divergent
species (e.g, [80]). In order to understand whether accel-
eration of evolutionary rates in neobatrachians is due to
changes in selective pressure, we tested alternative
models with different assumptions about ratios of non-
synonymous/ synonymous substitution rates (w). The
software PAML v.3.15 [81] was used to estimate the
likelihood and the o values of different models derived
from the preferred topology (Figure 1) and sequence
information from single-gene alignments with all
codon positions, as well as the mt and nuclear nucleo-
tide data sets. Branch lengths were first optimized for
each data set assuming a single o for the whole tree,
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and they were fixed when all other parameters were
estimated under alternative models. The null model
had a single o value for all branches, and it was com-
pared against four alternatives, which allowed a second
 value on (i) the stem branch of Neobatrachia, (i) all
neobatrachian branches, (ii{) Ranoides, or (iv) Noble-
obatrachia (including their stem branch). Given that
the alternative hypotheses nest the null model, a likeli-
hood ratio test (LRT) was used to determine their signifi-
cance [82]. To gain insight into the obtained results, we
additionally allowed o to vary on main non-neobatrachian
lineages (including their stem branch): (v) Amphicoela,
(vi) Discoglossoidea, (vii) Pipoidea, (viii) Pelobatoidea, or
(ix) the stem branch of Pelobatoidea. These additional five
models were compared against the null model by LRT,
and, in addition, all 10 (non nested) models were
compared simultaneously using the AIC [68].

Functional analysis of neobatrachian amino acid
synapomorphies

Ancestral character states were reconstructed using
MrBayes v3.1.2 [61] based on single-gene protein align-
ments, for (i) Neobatrachia, (ii) its closer sister group
(Pelobatoidea), and (iii) their last common ancestor. The
three hypothetical ancestral sequences were compared
against each other to identify synapomorphic amino acid
changes in Pelobatoidea and Neobatrachia, taking only
into account the sites with reliably reconstructed states
(we empirically found that p > 0.75 offered a good
balance between the number of predictions and their
corresponding reliability). A two-sided binomial test
was used to assess the asymmetrical distribution of
molecular synapomorphies between the two clades. In
addition, to further understand if molecular synapo-
morphies of neobatrachians (or pelobatoideans) were
associated to particular regions of the proteins, we
predicted the accessibility to solvent and the occurrence
at the different trans-membrane regions for each of the
identified synapomorphic sites. Solvent accessibility was
calculated through BLAST searches against the PDBFIN-
DER2 database [83], and trans-membrane helices of
genes were predicted with TMHMM v.2.0 [84].

Data availability

The newly determined mt (JF703228-34) and nuclear
(JF703235-51) sequences are available at NCBI (http://
www.ncbi.nlm.nih.gov/genbank/). The data sets used in
this study (combined nucleotide, combined amino acid,
mt nucleotide, mt amino acid, nuclear nucleotide, and
nuclear amino acid data sets) as well as the .xml file
used for the BEAST analyses can be accessed in the
Dryad Digital Repository (doi:10.5061/dryad.3qd54).
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Results and discussion

New mitochondrial genomes and nuclear data

We newly determined the complete nucleotide sequence
of the light strand of the mt genome of one pelobatoid
(Pelodytes punctatus; JF703231) and five neobatrachian
species (Helephryne regis, JF703229; Lechriodus melano-
pyga, JF703230; Calyptocephalella gayi, JF703228; Tel-
matobius bolivianus, JF703234; Sooglossus thomasseti,
JE703233), as well as the nearly complete mt genome of
Sooglossus sechellensis (JF703232). We also determined
partial sequences of several nuclear genes (see
Additional file 1 for details) in order to construct a nu-
clear data matrix that complemented the mt sequence
data set. Main structural features of the newly sequenced
mt genomes are highlighted below, and other features
can be found in Additional file 2.

The gene order of the mt genome in Pelodytes punctatus
follows the consensus of vertebrates and other reported
pelobatoids [27,47] (Figure 1). Calyptocephalella gayi,
Telmatobius bolivianus, Sooglossus thomasseti and S.
sechellensis conform to the consensus mt gene order of
neobatrachians (Figure 1). The neobatrachian and verte-
brate consensus mt gene orders differ in the relative pos-
ition of the trnL(CUN), trnT and trnP genes, which in
neobatrachian mt genomes are found next to the trnF
gene (forming the LTPF tRNA cluster) downstream the
control region [85] (Figure 1). The mt genome of
Lechriodus melanopyga follows the consensus neobatra-
chian gene order with the only exception of the location
of the putative origin of replication of the light strand in
a 218 bp-long intergenic spacer between the genes trnY
and cox! (Figure 1). Heleophryne regis departs from the
consensus order of neobatrachians in two regions. The
trnM gene is pseudogenized (Figure 1; ¥™) in its ances-
tral location (IQM tRNA gene cluster) because the anti-
codon has a deletion. The functional trnM appears
within the WANCY tRNA gene cluster, which is rear-
ranged as ANCMWY, without changes in the coding
strands (Figure 1). The putative origin of the replication
of the light strand (Figure 1; Op) is located in a 165 bp-
long intergenic spacer between trnW and trnY genes
(Figure 1). Interestingly, the two described new mt gene
rearrangements are associated with origins of replication,
which are considered hot spots for gene order change in
the vertebrate mt genome [26,86,87].

These two newly reported gene rearrangements are
consistent with the tandem duplication-random loss
model [88,89], which is considered the main mechanism
of gene order change in vertebrate mt genomes [26,87].
The tandem duplication-random loss model is rein-
forced by the presence of the trnM pseudogene, which
remains in the ancestral location of truM in H. regis
(Figure 1). Other trnM pseudogenes have been reported
in mt genomes of several members of the frog family
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Mantellidae [90,91], and several fishes including parrot
fishes of the family Scaridae [92], Carapus bermudensis
(Ophidiiformes; [93]), and Diaphus splendidus (Mycto-
phiformes; [94]). It has been suggested that these
pseudogenes are maintained because they are needed
for the posttranscriptional processing of the nad2
gene [91,92].

The mt gene order of Heleophryne regis is key for
understanding the evolution of mt genome rearrange-
ments in neobatrachians given that this species is basal
in this clade (see reconstructed phylogeny in Figure 1).
The mt gene order of H. regis has the characteristic
LTPF tRNA gene cluster, which can, thus, be confidently
considered a molecular synapomorphy of all neobatra-
chians. We speculate that the long intergenic spacer be-
tween trnP and trnF genes found in H. regis could be a
remnant of the ancestral tandem duplication and ran-
dom loss event by which the trnL(CUN), trnT and trnP
genes moved to the LTPF tRNA cluster in the origin of
Neobatrachia [85].

Phylogenetic relationships

Due to reported long-branch attraction effects in recon-
structed anuran phylogenies based on mt sequence data
[27], the concatenated data set of all mt and all nuclear
single-gene alignments was trimmed to only retain most
conserved positions (combined nucleotide data set:
11,136 positions). Based on the combined nucleotide
data set with five partitions, both ML (-/nL=76,155.99)
and BI (-nL=76,547.00 for run 1; -InL.=76,548.29 for run
2) arrived at an identical topology (Figure 1), which is
our best hypothesis for frog phylogenetic relationships.
Phylogenetic analyses based on the combined amino
acid data set (data not shown) also recovered the same
topology (Figure 1). Five major clades of frogs were
recovered with high support: non-neobatrachian lineages
branched off successively as (i) Amphicoela (Ascaphus +
Leiopelma), (ii) Discoglossoidea, (iif) Pipoidea and (iv)
Pelobatoidea, which was the sister group of (v) Neoba-
trachia, in agreement with recent molecular studies
[36,37,39,66]. Internal relationships within Discoglossoi-
dea [28], Pipoidea [36,37,39,66], and Pelobatoidea [95]
fully agreed with recent morphological and molecular
analyses.

Neobatrachia has traditionally been acknowledged as
monophyletic [96,97], a fact that has been corroborated
by most morphological [34,35] and molecular [36,37,39]
studies, including the present work (Figure 1). The
reconstructed tree recovered Heleophryne as sister group
to all other neobatrachians, as reported by most recent
molecular studies [25,41,66], and this placement received
moderate support from ML and maximal from BI
(Figure 1). The Australasian Lechriodus and the South
American Calyptocephalella were recovered together in
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the same clade, and both as sister group to Nobleobatra-
chia (Figure 1). The two Seychellois Sooglossus species
were grouped together as sister group of Ranoides (as early
suggested by Savage [98]) (Figure 1). Although support for
this relationship was maximal for B, it received only mod-
erate support for ML. Notably, other recent molecular
studies failed to resolve the relative position of sooglossids
with confidence [25,39,41,66].

Estimation of divergence times

The two independent BEAST analyses gave very similar
estimates of divergence times for each node (mean dif-
ference between runs was 0.638 + 0.687 million years),
and these estimates roughly agreed with other recent
studies of divergence times among anurans [66,67,99].
The obtained estimates of divergence among amphibians
were especially in agreement with those of a recent
BEAST analysis [99], despite the differences in taxon
sampling, choice of molecular markers, and calibration
points. The origin of crown-group Anura was inferred in
the Middle Triassic (about 230 mya) (Figure 2), and the
initial diversification of non-neobatrachian frogs (succes-
sive branching of Amphicoela, Discoglossoidea, Pipoi-
dea, and Pelobatoidea) in the Late Triassic — Early

Page 8 of 19

Jurassic (about 210-192 mya) (Figure 2), confirming
other recent molecular dating studies [43,99]. The split
between Neobatrachia and Pelobatoidea was dated in
the Late Triassic — Early Jurassic, before the initial
break-up of Pangaea (mean 192 mya; 95% CI 219-166),
and the initial neobatrachian diversification that led to
Ranoides and Nobleobatrachia in the Late Jurassic —
Early Cretaceous (160—130 mya) (Figure 2) in agreement
with divergence time estimates of other recent
studies [33,67,99-101].

Our estimates were younger than those inferred by
earlier studies [67,99,100] that used MultiDivtime
[102,103], even though the 95% credibility intervals
(CI) mostly overlapped. These discrepancies could be
due to differences of both programs in methodological
assumptions of rate change (auto-correlated in Multi-
Divtime, uncorrelated in BEAST), implementation of
evolutionary models and prior calibrations, and techni-
ques to calculate credibility intervals [104]. Moreover,
molecular dating estimates are much older than the first
neobatrachian fossils (dated in the Early Cretaceous; [105]),
indicating either that currently available fossils might be a
poor indicator of this particular branching event [105] or
that the molecular dating could be overestimated [106].
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Figure 3 ML phylograms derived from separate (a) mt and (b) nuclear nucleotide data sets. Neobatrachian lineages are abbreviated as Ca,
Calyptocephalellidae, He, Heleophrynidae; Li, Limnodynastidae; Nob, Nobleobatrachia; Mh, Microhyloidea; and Nt, Natatanura. Note that the most
conspicuous differences between both trees are (i) the relative phylogenetic position of Sooglossoidea, (i) the scale bar (substitutions/ site),
which is proportionally 10 times larger in (a) than in (b), and (ii)) that neobatrachian branches are distinctively longer in (a) than in (b).

Congruence between mt- and nuclear-based phylogenies
Separate phylogenetic analyses of the mt (13,580 posi-
tions) and nuclear (7,083 positions) nucleotide data sets
rendered two almost identical topologies (see Figure 3)
with levels of support only slightly lower than those
obtained in the phylogenetic analysis based on the com-
bined nucleotide and amino acid data sets (not shown).
The recovered phylogenetic tree based on the mt nucleo-
tide data set (Figure 3a) placed sooglossids as the most
basal neobatrachians (branching off before Heleophryne),
which is likely an artifact due to the attraction of the
extremely long branch leading to sooglossids towards
that of Heleophryne and the stem branch of Neobatrachia
(which is the longest branch in the tree) [23]. Addition-
ally, this phylogenetic tree (Figure 3a) favored with low
statistical support alternative relationships for (Duttaph-
rynus + (Telmatobius + Hyla)) within Nobleobatrachia.
Interestingly, the phylogenetic analysis of the mt amino
acid data set differed from our best hypothesis (Figure 1)
only in the basal position of sooglossids within Neobatra-
chia (not shown). The phylogenies reconstructed based
on the nuclear nucleotide (Figure 3b) and nuclear amino
acid (not shown) data sets recovered our best hypothesis
for frog phylogenetic relationships (Figure 1).

In addition to assessing topological congruence, the
separate analyses of the mt and nuclear data sets (both
at nucleotide and amino acid levels) offer further infor-
mation on the mode of evolution of these two different
genetic systems. The comparison of mt- and nuclear-
based trees (Figure 3) reveals that branch lengths in the
mt tree (Figure 3a), which ultimately correspond to the
underlying substitution rates, are on average 3.29 (0.42 —
12.15) and 2.82 (0.31-18.19) times longer than those in
the nuclear tree (Figure 3b) at the nucleotide and amino
acid levels, respectively. This confirms previous evidence

of higher substitution rates in the mt DNA of metazoans
[10,12,13]. More importantly, neobatrachians exhibit
much longer branches in the mt trees compared to their
non-neobatrachian relatives, with Heleophryne, Sooglos-
sus, and natatanuran species having the longest branches.
In contrast, neobatrachians do not display such conspicu-
ous long branches in the nuclear tree, and a lineage-specific
pattern of branch lengths is only subtle (Figure 3b).

Relative-rate tests and comparison of branch lengths

In order to test whether the mt substitution rate is
significantly higher in neobatrachians, and to study puta-
tive lineage-specific rate changes in nuclear genes, we
conducted RRTs, as well as a direct comparison of the
ratios of the lengths of the same branch in the mt- and
nuclear-based phylogenies (both at the nucleotide and
amino acid levels). Overall, RRTs clearly showed that
neobatrachians had significantly higher mt substitution
rates compared to non-neobatrachians (K2 versus K1;
Table 1). RRTs were applied to 16 individual mt gene
alignments (13 protein-coding genes, 2 rRNA genes, and
a single alignment combining all tRNA genes) at the
nucleotide level, and neobatrachians had higher mean
relative rates in all cases but the nad3 gene (Table 1).
Differences were significant (p < 0.05) for 12 out of 16
mt genes, and highly significant (p < 0.001) for the
concatenation of all mt genes (mt nucleotide data set;
Table 1). RRTs of individual nuclear genes at the nucleo-
tide level showed that six out of nine genes had higher
mean substitution rates for neobatrachians (although sig-
nificant only in the case of the genes rag2 and sic8al).
Genes h3a, pomc, and rho showed lower rates for Neoba-
trachia, but differences were non-significant (Table 1).
Notably, the concatenation of all nuclear genes (nuclear
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Table 1 Results from relative-rate tests based on nucleotide single-gene alignments and mt and nuclear nucleotide

data sets

Mean weighted substitution rates Probability of relative-rate tests
gene K1 K2 K3 K4 p (1vs.2) p (1 vs. 3) p (1 vs. 4) p (3 vs.4)

p < 0.05 p < 0.0167 p < 0.0167 p < 0.0167

atpb 0427863 0473377 0481832 0455958 0.014730* 0.005722* 0.105996 0.139169
atp8 0.548420 0.597954 0.603741 0.598698 0.262944 0.238598 0.273487 0916317
cob 0.357846 0.395422 0400600 0.376129 0.153630 0.127295 0461317 0438624
coxl 0.258230 0.291037 0.294927 0.288984 1.26:107** 4.86-10°* 4.59-10°* 0475097
cox2 0279140 0349751 0355794 0328478 6.31-10°* 3.76-10°%* 5.41-10%* 0.068572
cox3 0.289143 0.322240 0.328289 0.304404 0.007560* 0.002549* 0.170152 0.046288
nadl 0371027 0401329 0413424 0.383640 0.023124* 0.002486* 0.296321 0.020798
nad?2 0.507982 0.547513 0.548407 0525736 0.025438* 0.026856 0.251499 0.170942
nad3 0434548 0430927 0434119 0433411 0.869559 0.985402 0.956541 0.974496
nad4 0431683 0.557581 0.560891 0.590991 1.00-107* 1.00-107* 1.00-107* 0.050825
nad4l 0497599 0631415 0.643682 0.588595 8.27.107** 6.30-10** 0.009870* 0.150316
nad5 0411432 0519950 0517924 0538763 1.00-107* 1.00-107* 1.00-107* 0081618
nadé6 0463362 0.505592 0.512071 0518343 0.088626 0.056897 0.026638 0.765287
rrnS 0.191816 0.26154 0.265755 0.253359 1.00-107* 1.00-107* 9,73-10°* 0.267807
rrnL 0.193460 0.217439 0.219738 0.214547 0.005620* 0.003273* 00176213 0.516844
tRNAs 0.272203 0.309978 0.312829 0.299828 0.001434* 0.000809* 0.010368* 0.221773
all mt genes 0330116 0379173 0.384017 0372441 1.00-107* 1.00-107* 1.00-107* 0.001898*
bdnf 0.162298 0.183220 0.183143 0.188813 0.063971 0.066639 0.019606 0425053
cxcrd 0.305898 0.310540 0310616 0317277 0.749761 0.760622 0463425 0635922
h3a 0.072185 0.071813 0.074309 0.069597 0.967280 0.831715 0.787527 0.662899
pomc 0.383197 0374114 0.370759 0.381447 0.747452 0.671607 0.956266 0.667038
ragl 0278115 0.298226 0.297262 0.300048 0.177027 0.210499 0.172426 0.837948
rag2 0436022 0493728 0494946 0.512607 0.002539* 0.003285* 2.38-107% 0.314455
rho 0.177431 0.164405 0.167539 0.177528 0444978 0.596616 0.995982 0.609647
slc8al 0.236296 0.253733 0.253592 0.255299 0.029208* 0.041528 0.030535 0.840326
slc8a3 0.223439 0.233366 0.232416 0.238298 0.280968 0.356872 0.115003 0460431
all nuc genes 0.067158 0.075283 0.074880 0.072843 0.036588* 0.055309 0.164760 0.607197

K values are mean weighted substitution rates for (1) non-neobatrachians, (2) all neobatrachians, (3), species-poor neobatrachians (Heleophrynidae,

Calyptocephalellidae, Limnodynastidae, Sooglossoidea), and (4) species-rich neobatrachians (Ranoides and Nobleobatrachia). Probabilities (p) of relative-rate tests
correspond to the comparisons between the different groups (shown in parentheses). Statistically significant results (p < 0.05; or p < 0.05/3 = 0.0167 to correct for

multiple testing) are in bold italics and marked with an asterisk. Abbreviations of mt genes follow [44]; see main text for full names of nuclear genes.

nucleotide data set; Table 1) gave significantly higher
rates for neobatrachians than for non-neobatrachians.
Additional RRTs based on the same nucleotide data sets
mentioned above were performed to discriminate among
three alternative hypotheses regarding the origin of the
higher mt rates of neobatrachians: (i) mt substitution rates
became accelerated in the origin of the clade and were
maintained higher ever since; (ii) the higher substitution
rates are specific to species-poor neobatrachian lineages;
and (i) the higher substitution rates are specific to species-
rich neobatrachian lineages. In the second and third hy-
potheses, rate acceleration would be either punctual at
the base of Neobatrachia (and thus, not present in

species-rich lineages), or it would be a specific feature of
the species-rich Ranoides and Nobleobatrachia (as sug-
gested by [25]), respectively. The comparison of species-
rich (Ranoides, Nobleobatrachia) and species-poor
(Heleophryne, Calyptocephallela, Lechriodus, Sooglossus)
neobatrachian groups against non-neobatrachian rela-
tives (K4 versus K1, and K3 versus K1, respectively;
Table 1) showed that both groups had consistently
higher mt substitution rates, which were significant
after Bonferroni correction for multiple comparisons
(p < 0.05/ 3 = 0.0167). No significant differences in mt
substitution rates were observed between species-rich
and species-poor neobatrachians (K3 versus K4; Table 1).
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However, for the concatenation of all mt genes (mt nu-
cleotide data set), species-poor neobatrachian lineages
showed overall significantly higher rates compared to
species-rich neobatrachians. In the case of the different
nuclear genes, the separate comparison of species-rich and
species-poor neobatrachians against non-neobatrachians
gave similar results: the rag2 gene had consistently higher
mean rates for both neobatrachian groups, but the higher
neobatrachian rates found for the slc8al gene failed to be
significant due to the lower significance threshold. No dif-
ferences in nuclear substitution rates were observed among
neobatrachians (K3 versus K4; Table 1). The concatenation
of all nuclear genes (nuclear nucleotide data set) rendered
non-significant comparisons (Table 1). All previously men-
tioned RRTs were also performed with protein-coding
genes translated into amino acids, and produced consis-
tent results with those obtained based on nucleotides (see
Additional file 3).

In order to disentangle the contribution of the differ-
ent codon positions to evolutionary rate acceleration in
neobratrachians, we performed additional RRTs based
on the mt (lacking first and third codon positions) and
nuclear (lacking third codon positions) portions of
the combined nucleotide data set, respectively (see
Additional file 3). As expected, exclusion of most vari-
able positions from the analyses produced lower mean
weighted substitution rates in both mt and nuclear
genes. This would in part explain the better performance
of the combined nucleotide data set in resolving anuran
phylogeny. Nevertheless, RRT results showed that con-
served codon positions also contribute significantly to
neobatrachian-specific rate acceleration, displaying simi-
lar trends to those experienced by more variable codon
positions (see Additional file 3).

In order to compare the branch-specific rate bias of
mt versus nuclear genes and quantify the acceleration of
mt rates in Neobatrachia, we calculated the ratio of the
lengths of each branch in the mt- and nuclear-based
trees (both at the nucleotide and amino acid levels). For
the ANOVAs, the ratios were log-transformed to meet
the assumptions of normality (Shapiro-Wilk’s test on
residuals p > 0.05) and homogeneity of variance
(Levene’s test p > 0.05). A first set of ANOVAs sup-
ported a significant difference of the ratios of all neoba-
trachian versus all non-neobatrachian branches (p =
0.012 and 0.001 for nucleotide- and amino acid-based
trees, respectively). The higher mt / nuclear ratios of neo-
batrachians (mean + standard deviation for nucleotide-
and amino acid-based trees, respectively: 3.90 + 2.38 and
390 + 3.67) compared to those of non-neobatrachians
(2.66 + 2,66 and 1.67 + 1.27), showed that relative to the
nuclear genome, the mt genome is approximately 46 and
130% more accelerated in Neobatrachia at the nucleotide
and amino acid levels, respectively. The striking difference
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in percentage estimates between nucleotide and amino
acid levels could be explained by saturation of more vari-
able codon positions in the former. A second set of ANO-
VAs found significant differences in branch length ratios
between species-poor neobatrachians, species-rich neoba-
trachians, and non-neobatrachians (p = 0.039 and 0.002
for nucleotide and amino acids, respectively). Further or-
thogonal contrasts found significant differences when
non-neobatrachians were compared against species-
poor (p = 0.027 and 0.001; nucleotide and amino acid
levels, respectively) and species-rich (p = 0.049 and
0.011) neobatrachians. However, no significant differ-
ences were found between neobatrachian groups (p =
0.650 and 0.291).

Estimation of branch length ratios based on the mt
(lacking first and third codon positions) and nuclear
(lacking third codon positions) portions of the combined
nucleotide data set rendered the same patterns of rate
heterogeneity as derived from comparative analyses
based on all codon positions and amino acids. Interest-
ingly, however, when considering only conserved codon
positions, we inferred that the mt genome is approxi-
mately 88% more accelerated in Neobatrachia relative to
the nuclear genome. This percentage is closer to that
obtained based on amino acid data, and further supports
that the one based on all positions may be underesti-
mated due to saturation.

Overall, RRTs support a statistically significant acceler-
ation of the mt substitution rate at the origin of neoba-
trachians, which is shared by both species-poor and
species-rich lineages. This result not only corroborates
previous studies that suggested an unequal distribution
of mt substitution rates between non-neobatrachian and
neobatrachian frogs [25-28,33], but also characterizes
the evolutionary dynamics of the shift in rates within
neobatrachians. The inferred evolutionary pattern is fur-
ther corroborated by ANOVA results indicating that
neobatrachian mt lineages are evolving 88 to 130% faster
than non-neobatrachian mt lineages with respect to nu-
clear rates. Nuclear genes also exhibited an overall sig-
nificant substitution rate acceleration, although much
lower in absolute terms than the one experienced by the
mt genome. In fact, the nuclear pattern was not as evi-
dent as that of the mt genes, since neobatrachian-specific
higher substitution rates were found to be significant in
only two out of nine nuclear genes. This might be the re-
sult of the different properties of mt and nuclear gen-
omes, such as the recombination rate (very limited in mt
DNA; [18]) or the different effective population size
(smaller in mt DNA; [18]), which can influence the ef-
fectiveness of selection upon these two genetic systems
[107]. An alternative explanation is that although substi-
tution rate acceleration is general for both mt and nuclear
genomes, our results are biased by the use of particular
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nuclear genes, which cannot represent the complexity of
the entire nuclear genome, with genes obviously subjected
to very disparate selective regimes [108].

Changes in selective pressure and molecular
synapomorphies

The assumption of a single selective coefficient () for
the frog tree (Figure 1) (null model) rendered w values
well below 1 for all different mt and nuclear genes
(0.005-0.16) (Table 2), indicating the action of purifying
selection to maintain gene function [14]. To understand
whether observed acceleration of the mt substitution
rate in neobatrachians could be due to changes in select-
ive pressure, and to compare the strength of selection
acting on the mt and nuclear genomes, we tested for pu-
tative changes in the selective regime under four differ-
ent scenarios for the Neobatrachia. All outcomes are
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available in the Additional file 3, and main results are
here highlighted.

For all mt genes, the independent w values inferred for
the stem branch of Neobatrachia were always higher than
those estimated when a single o was assumed for the
frog tree (null model) (Table 2). These differences were
only significant (LRT p < 0.05) for the genes cob, coxl,
cox3, and nadl, as well as for the combination of all mt
genes (Table 2). The independent w estimates of mt
genes under alternative models for “all Neobatrachia”,
“all Ranoides” and “all Nobleobatrachia” branches were
generally higher than those of the null model, but unlike
the model of the stem branch Neobatrachia, @ was not
higher for every mt gene, and fewer individual genes gave
significant results (3, 1, and none for the three alternative
models, respectively; see Table 2). These outcomes sug-
gest that purifying selection acting on mt proteins could
have been relaxed in neobatrachians.

Table 2 Results from branch models that assume branch-specific changes in the selection coefficient (w) in
Neobatrachia, based on nucleotide single-gene alignments and mt and nuclear nucleotide data sets

models null model "Neob-stem" "All Neob" "All Nobleob" "All Ranoides"
gene Backgr Backgr Branch Backgr Branch Backgr Branch Backgr Branch
atpb 0.03086 0.03076 0.03585 0.03045 0.03126 0.03086 1.1225 0.03082 0.04203
atp8 0.1481 0.14592 1.50841 0.13361 0.16694 0.14838 0.13614 0.14683 035429
cob 0.03357 0.03313 0.06875 0.03302 0.0342 0.03347 0.04419 0.03353 0.0431
coxl 0.01129 0.011 0.03737 0.00783 0.0144 0.01122 0.02381 0.01115 0.03898
cox2 0.02236 002224 0.02642 0.02186 0.02271 0.02234 0.0236 0.02227 0.03366
cox3 0.02741 0.02704 0.08793 0.02482 0.03046 0.02727 0.03895 0.02733 0.05843
nadl 0.03005 0.02977 0.05077 0.02823 0.03211 0.03001 0.03416 0.02996 0.04253
nad? 0.02817 0.02813 0.03252 0.02803 0.02835 0.02818 0.02814 0.02814 0.03007
nad3 0.06499 0.06457 0.14425 0.06435 0.06582 0.06467 0.10545 0.06499 093185
nad4 0.03632 0.03622 0.0392 0.0358 0.03675 0.03626 0.04061 0.0363 0.03703
nad4L 0.04471 0.04458 0.04792 0.04662 0.04311 0.04474 0.04294 0.04468 0.04637
nads 0.03516 0.03503 0.03793 0.03459 0.03571 0.0351 0.03749 0.03511 0.03836
nadé 0.02901 0.02895 0.03107 0.02753 0.03081 0.02897 0.03286 0.02895 0.03359
all mt genes 0.04693 0.04632 0.08313 0.04483 0.04914 0.04673 0.06435 0.04667 0.07065
bdnf 0.04595 0.04723 0.01186 0.04393 0.04979 0.04577 0.05385 0.04545 0.11214
cxcrd 0.06461 0.06454 0.06745 0.06028 0.07344 0.06588 0.03076 0.06441 0.0748
h3a 0.00476 0.00483 0.0001 0.00599 0.00283 0.005 0.0001 0.00488 0.0001
pomc 0.08214 0.0808 0.23558 0.09098 0.07043 0.08298 0.05716 0.08548 0.02649
ragl 0.05736 0.05778 0.03692 0.05249 0.06532 0.05772 0.0438 0.05802 0.01704
rag2 0.16003 0.15849 0.24864 0.16786 0.1515 0.16003 0.0001 0.1612 0.04584
rho 0.0903 0.092 0.02424 0.07483 0.11389 0.09175 0.02681 0.09226 0.04981
slc8al 0.03996 0.04067 0.0001 0.03588 0.04702 0.0402 0.03164 0.04055 0.01522
slc8a3 0.02649 0.02684 0.0144 0.02623 0.02707 0.02664 0.0199% 0.0268 0.01046
all nuc genes 0.06908 0.06922 0.06195 0.06426 0.07719 0.06976 0.04153 0.06984 0.03298

The table shows w values estimated for the whole frog tree (null model) and values estimated for specific (Branch) and remaining background (Backgr.) branches
under the four alternative models tested. Bold italics highlight results that are significantly different to the null model (LRT p < 0.05). See Additional file 3 for full

details.



Irisarri et al. BMC Genomics 2012, 13:626
http://www.biomedcentral.com/1471-2164/13/626

In order to understand the relative support of the first
four models tested (within Neobatrachia), and to further
investigate the relevance of the obtained results, we
compared all 10 models using the AIC. For the combin-
ation of all mt genes, the model of relaxed selection in
the stem branch of Neobatrachia was clearly better than
the remaining models (Table 3). All other models
showed a difference of AIC values (AAIC) higher than
10: AAIC=48 for the second best model (independent w
for Pipoidea), AAIC=56 for the third (independent
shared by all neobatrachian branches), AAIC=61 for the
fourth (independent w for Ranoides), etc. (Table 3). A
notable exception to the above pattern was the gene
cox1; despite evidence of relaxed selection in the stem
branch of Neobatrachia, the comparison of all 10 models
for coxI strongly favored the relaxation along all
branches of Neobatrachia (AAIC to the rest of models
was always >10, and up to 44; Table 3).

Page 13 of 19

For nuclear genes, most of the estimated independent
w values in all of the nine alternative models were lower
than those of the null model, showing evidence of stron-
ger purifying selection, although genes did not display a
concordant pattern neither under particular models nor
within specific genes (Table 2). However, there were two
exceptions: (/) under the “all Neobatrachia” alternative
model, relaxation of purifying selection on nuclear genes
was frequently recovered (in six out of nine genes, even
though it was statistically significant only for the genes
ragl, rho, slc8al, and the combination of all nuclear
genes; LRT p<0.05); (ii) under the model of an independ-
ent o for Amphicoela, for which relaxation of selection
was also frequent (all nuclear genes except /434, although
the differences were only statistically significant for the
genes pomc, slc8al, slc8a3, and the combination of all
nuclear genes) (Table 2). Using the concatenation of all
nuclear genes, the comparison of the models assuming a

Table 3 Comparison of all 10 branch models that assume branch-specific changes in the selection coefficient (w)
(including the null model), based on nucleotide single-gene alignments and the mt and nuclear nucleotide data sets

null “Neob-stem” “All Neob” “All Ranoides” “All Nobleob” “All Pipoidea” “Pelob-stem” “All “All “All
model Pelob” Discogl” Amphic”

genes

atpb 0 2 2 2 2 1 2 2 2 2
atp8 5 4 4 6 7 0 7 7 4 5
cob 7 0 9 9 9 7 9 9 3 9
coxl 42 27 0 36 43 " 44 43 27 44
cox2 6 7 8 7 8 8 8 6 0 8
cox3 5 0 2 7 7 1 5 7 5 7
nadl 3 1 1 4 5 0 5 5 5 5
nad?2 0 2 2 2 2 2 2 2 2 2
nad3 0 0 2 2 1 2 2 0 2 1
nad4 0 2 2 2 2 1 2 2 2 2
nad4l 0 2 1 2 2 1 2 2 2 1
nad5 0 1 1 2 2 2 2 1 2 2
nadé 0 2 0 2 2 1 2 2 2 2
all mt genes 78 0 56 61 68 48 77 80 66 79
bdnf 1 0 2 2 3 3 3 2 2 1
cxcrd 10 12 10 12 9 0 4 9 4 "
h3a 1 2 1 2 1 0 2 3 2 2
pomc 7 5 5 0 8 8 8 8 7 5
ragl 8 8 3 4 9 6 4 0 8 5
rag2 7 7 7 7 9 8 8 7 8 0
Rho 3 3 0 3 3 4 4 2 3 1
slc8al 15 10 12 13 16 14 17 16 15 0
slc8a3 15 16 17 15 16 16 16 14 16 0
all nuc genes 32 33 14 18 24 34 28 19 34 0

The table shows the differences in AIC values among all 10 models.
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second independent o for (i) all Neobatrachia and
(ii) Amphicoela favored the latter (AAIC=14; Table 3).

Overall, our results evidence the relaxation of puri-
fying selection acting on mt DNA in Neobatrachia.
Among all tested models, the assumption of relax-
ation at the stem branch leading to Neobatrachia out-
performed the rest, although the very similar results
obtained under the model of a general relaxation
along the entire Neobatrachia indicates that this alter-
native hypothesis cannot be confidently rejected. In
any case, these results suggest that overall relaxation
in selection pressure could be, at least in part, re-
sponsible for the general acceleration of mt substitu-
tion rates at the origin of Neobatrachia, as found by
RRTs and topological measures. Interpreting the
results from nuclear genes was more complex because
inferred relaxed selection along all neobatrachian
branches could only explain the higher substitution
rates found by RRTs for the gene slc8al. Moreover, it
is important to note that results derived from the
comparison of different selection regimes should be
taken with caution, because analyzed sequences are
highly divergent and silent substitutions might be
saturated, thus compromising the correct estimation
of w values [79].

Most identified amino acid synapomorphies corre-
sponded to Neobatrachia in mt proteins (102 versus
49), whereas distribution of synapomorphies in nu-
clear proteins was only slightly higher in neobatra-
chians (24 versus 22). These differences were only
significant (binomial test’s p < 0.05) for genes cox1,
nad5 and rag2 (see Additional file 3). This is in
agreement with the results of the RRTs, which
revealed overall higher substitution rates in neoba-
trachians, and a more pronounced acceleration in
mt genes. Most mt synapomorphies corresponded to
leucine, serine, and alanine in both Neobatrachia
and Pelobatoidea (18, 13, and 11 for Neobatrachia;
and 10, 10, and 7 for Pelobatoidea, respectively). In
the nuclear genes, the most frequent synapo-
morphies for Neobatrachia were serine (4), glutamic
acid (3), and lysine (3), whereas for Pelobatoidea,
they were leucine (6) and aspartic acid (3) (see
Additional file 3). To further understand how pro-
teins of neobatrachians could have accommoda-
ted the corresponding mutations, we investigated
whether synapomorphic amino acids showed any
particular pattern of exposition to solvent, or
whether they were associated with specific domains
of trans-membrane proteins. However, distribution
of neobatrachian synapomorphic changes were not
related apparently to these functional traits, with
mutations being distributed in a more or less uni-
form manner along mt proteins.
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Could substitution rates be associated with life history
traits, rates of diversification or mt gene rearrangements
in frogs?

Our analyses recovered a fully resolved and robust phyl-
ogeny of frogs after new data on key lineages of Neoba-
trachia were added. These new lineages were essential to
understand the origin of the observed higher substitu-
tion rates in neobatrachians. RRTs and branch length
measures demonstrate the presence of a significant ac-
celeration in both mt and nuclear substitution rates in
Neobatrachia, which is shared by both species-rich and
species-poor neobatrachian lineages.

The ultimate causes for among-lineage evolutionary
rate variation are, in general, rather elusive. Several lines
of evidence suggest that particular life-history traits may
be responsible for rate variation [2], and at least, three
main hypotheses have been put forward. (i) According
to the generation time hypothesis, species with shorter
generation times are expected to have higher substitu-
tion rates because their genomes are copied more often
per time unit [109]. However, estimating generation time
is often difficult, and thus, the age at sexual maturity
and the time to first reproduction are used as proxies
[109,110]. In frogs, generation time is generally short,
and small- to medium-sized frogs typically reach sexual
maturity in their first or second year of life [111]. Sexual
maturity one year after egg-laying is common in many
anuran species, including both neobatrachian and non-
neobatrachian frogs (e.g., Bombina, Discoglossus, Hyme-
nochirus or Xenopus). On the other hand, several neoba-
trachians have longer generation times, such as
Heleophryne (larval period of over 2 years; [40]), or Ana-
xyrus canorus (Bufonidae), whose females reach sexual
maturity after 4—6 years [112]. Data on sexual maturity
available from the AnAge database (build 12; [113]) does
not support the existence of significant differences in
age of sexual maturity between neobatrachian and non-
neobatrachian frogs, either for males or females (Stu-
dent’s t p = 0.530 and p = 0.754, respectively). However,
these results should be taken with caution, as the avail-
able number of age estimates of sexual maturity data in
AnAge is still insufficient to draw robust conclusions (N
between 32-34 and 2-3 for neobatrachians and non-
neobatrachian males and females, respectively).

(ii) The longevity hypothesis proposes that long-lived
or late reproducing species will have lower rates of mo-
lecular evolution [114], as they are expected to have
more effective DNA repairing mechanisms [115]. In
most cases, maximum longevity data is derived from
captive specimens, which have higher life expectancy
that in the wild [116]. Available data from the AnAge
database suggests that short- and long-lived species
are present both among neobatrachian and non-
neobatrachian frogs. The comparison of longevity
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between neobatrachians and non-neobatrachians did not
render significant differences (Student’s t p = 0.066; N =
10 and 75 for neobatrachians and non-neobatrachians,
respectively). Inferences derived from this incomplete
data set have to be taken with caution, though.

(iii) The metabolic rate hypothesis holds that rates of
evolution are correlated with the production of free radi-
cals during respiration [117]. Metabolic rate is correlated
with substitution rates in the frog family Dendrobatidae
[4], but comparable data for other anuran groups is cur-
rently unavailable. A suitable proxy for metabolic rate
might be genome size, which has often been shown to
be inversely proportional to metabolic rate [118-120].
However, the comparison of genome sizes among anur-
ans (data from the Animal genome size database; [121])
did not provide indications for consistently larger gen-
ome sizes in non-neobatrachians compared to neobatra-
chian frogs (Student’s t p = 0.770): C-values (mean +
standard deviation, minimum-maximum in parentheses)
were 510 = 3.65 pg (1.29-11.38 pg; N=9) and. 543 +
2.59 pg (1.40-13.40 pg; N=27), respectively.

Some studies found a correlation of high substitution
rates with more events of gene order rearrangements in
the mt genome of some metazoans [122,123]. However,
frogs do not conform to this pattern, because the mt
substitution rate became accelerated in the origin of
Neobatrachia, and this acceleration is not exclusive of
Natatanura, where most mt gene rearrangements are
found in frogs [90,124-127]. Furthermore, Kurabayashi
et al. [90] found evidence for the absence of correlation
between mt rates and number of gene rearrangements
in one intensively studied lineage of neobatrachians
(mantellid frogs from Madagascar).

Many other studies have found substitution rates to be
correlated with species diversification [5-7,128], and
three main hypotheses have been proposed to explain
this correlation [6]. (i) Speciation is often associated with
processes that can potentially increase substitution rates,
such as adaptation to new environments or transient
reductions in population sizes that reduce the efficiency
of purifying natural selection [129,130]. (if) Higher sub-
stitution rates could produce higher net diversification,
both by increasing speciation rate and/ or by reducing
extinction rate [6]. (iii)) A third hypothesis rejects a
causal relationship between substitution and diversifica-
tion rates, and holds that this correlation is due to other
factors that influence both rates simultaneously [131].

In frogs, it has been suggested that observed higher mt
substitution rates of neobatrachians could be the prod-
uct of faster recent speciation events in this clade (in-
cluding more bottleneck events) [25]. In addition,
Dubois [132] hypothesized that direct-developing species
(mostly within Neobatrachia) would tend to have higher
substitution rates, and this would in turn promote
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speciation. Alternatively, it has also been suggested that
higher substitution rates of neobatrachians could be re-
sponsible for higher diversification rates, due to shorter
generation times and/or higher metabolic rates [25].
Both species-rich and species-poor lineages of neobatra-
chians share higher mt substitution rates compared to
non-neobatrachian relatives, but species diversity is
highly unequally distributed among them, with most of
the diversity corresponding to Ranoides and Nobleoba-
trachia [38]. Moreover, neobatrachians do not fit the hy-
pothesis of the different reproductive modes [132]
because, most direct-developers belong to species-rich
clades, whereas species-poor neobatrachian lineages are
mostly indirect-developers [34,132], but both groups
share the presence of higher mt substitution rates.
Therefore, the relationship between higher mt substitu-
tion and diversification rates in frogs remains elusive,
and unless a rampant extinction of neobatrachian
lineages external to currently species-rich clades
(Ranoides and Nobleobatrachia) could account for the
observed huge differences in diversity, it can be consid-
ered that substitution and diversification rates are
decoupled in frogs. Unfortunately, the paucity of the
current fossil record may hinder the answer to this ques-
tion [105,133,134].

Conclusions

Using both complete mt genomes and partial sequences
of nine nuclear loci, we inferred a robust phylogeny of
frogs. RRTs and branch length measures found compel-
ling evidence of higher substitution rates in the mt gen-
ome of neobatrachian frogs, and a subtle (but
significant) trend in nuclear genes. Phylogenetic analyses
suggest that the origin of this rate acceleration began at
the stem branch leading to Neobatrachia, in the Early-
Middle Jurassic period. Because substitution rates are
determined, to a great extent, by the balance between se-
lection and genetic drift [8], we studied the changes in
selective pressure in frogs, and found that purifying se-
lection acting on most mt and some nuclear proteins
might have been relaxed in Neobatrachia. Therefore, we
suggest that this relaxation of purifying selection could
explain, at least in part, the general rate acceleration
observed in this group.

We do not exclude the possibility that our results are
slightly affected by some sort of phylogenetic artifact
[24], but the neobatrachian-specific higher mt substitu-
tion rates are reinforced by compelling evidence of
relaxed purifying selection on mt proteins. Furthermore,
our results show that selection might have been relaxed
also in nuclear genes, and thus justify the higher substi-
tution rates found in the genes rag2 and slc8al in neo-
batrachians. Data from additional nuclear genes, which
are likely to be gathered soon in the context of genome
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sequencing initiatives, hold the key to confirm or reject
a putative general acceleration of evolutionary rates in
neobatrachian frogs. Likewise, the clarification of the
causes that relaxed purifying selection would need fur-
ther, in-depth studies that investigate intrinsic and ex-
trinsic factors that might have modified the fitness
landscape of gene function [135].

With the exception of few particular linages (e.g., [4]),
available data on life history traits for frogs is generally
scarce and not representative for the main lineages
within Anura. Available data suggests that no clear differ-
ences exist between neobatrachian and non-neobatrachian
frogs with respect to generation time, longevity, or meta-
bolic rate, but more data would be necessary to reliably
test if substitution rates could be correlated with particular
life history traits in frogs.
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