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Abstract

Background: The accuracy of genomic prediction is highly dependent on the size of the reference population. For
small populations, including information from other populations could improve this accuracy. The usual strategy is
to pool data from different populations; however, this has not proven as successful as hoped for with distantly
related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The
approach allows information to be captured even where the phase of SNP alleles and casuative mutation alleles are
reversed across populations, or the actual casuative mutation is different between the populations but affects the
same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome
are derived from one population and set as location specific prior proportions of distributions of SNP effects for the
target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey
bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk
yield. Genotypic data was lllumina 777K SNPs, real or imputed.

Results: Results showed an increase in accuracy of up to 3.5% for the Jersey population when using BayesRS with a
prior derived from Australian Holstein compared to a model without location specific priors. The increase in
accuracy was however lower than was achieved when reference populations were combined to estimate SNP
effects, except in the case of fat yield. The small size of the Jersey validation set meant that these improvements in
accuracy were not significant using a Hotelling-Williams t-test at the 5% level. An increase in accuracy of 1-2% for
all traits was observed in the Australian Holstein population when using a prior derived from the Nordic Holstein
population compared to using no prior information. These improvements were significant (P<0.05) using the
Hotelling Williams t-test for protein- and fat yield.

Conclusion: For some traits the method might be advantageous compared to pooling of reference data for
distantly related populations, but further investigation is needed to confirm the results. For closely related
populations the method does not perform better than pooling reference data. However, it does give an increased
accuracy compared to analysis based on only one reference population, without an increased computational
burden. The approach described here provides a general setup for inclusion of location specific priors: the
approach could be used to include biological information in genomic predictions.
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Background

Genomic predictions are now widely used in dairy cattle
breeding, and have been proposed for breeding of crops
and prediction of disease risk in humans [1,2]. The accur-
acy of genomic estimated breeding values, depends on a
number of factors, of which the size of the reference
population used to estimate the marker effects is critical
[3]. In dairy cattle, the reference population usually con-
sists of progeny-tested bulls. In small populations, such
as Australian Jersey, the number of progeny-tested bulls
available for the reference is limited. For genetically
related populations such as the European Holstein pop-
ulations and Nordic Red Cattle populations previous
studies show large benefits from pooling reference popu-
lations [4,5], but for more distantly related populations
(e.g., Holstein and Jersey) this approach does not increase
the accuracy to the same extent [6,7]. Previous studies
based on Single Nucleotide Polymorphism (SNP) mar-
kers from the Illumina 50K SNP chip [8] have reported
that distances between markers would be too large for
high persistence of linkage disequilibrium (LD) phase
across breeds, and accuracies of across breed predic-
tion were zero [9,10]. With the new Illumina 777K chip,
it is expected that distances between markers are small
enough for successful genomic prediction using com-
bined reference data from different dairy cattle popula-
tions, as the Quantitative Trait Loci (QTL)-SNP phase in
such high density markers would be well preserved
across breeds [3]. However, a recent study demonstrated
only limited support for this hypothesis, with relatively
small gains resulting from pooling Australian Holstein
and Jersey data to improve the accuracy of Jersey gen-
omic predictions [11]. This suggests that there are still
differences in the patterns of LD between single markers
and actual QTL across breeds, and thus pooling the
data might dilute associations of markers with pheno-
typic traits.

In this study, we explore an alternative approach to
pooling data across breeds. Previous studies have shown
that some parts of the genome explain more variation
than others. Assuming that the same causative mu-
tations, or even the same gene regions but different
causative mutations, act on traits of interest in different
populations, it is expected that effects of chromosome
regions on a trait could be consistent among popula-
tions, though the LD patterns between individual SNPs
and QTLs could differ from one population to the other.
At the extreme it was demonstrated that there was con-
siderable overlap in gene regions affecting stature in
humans and cattle [12]. The aim of this study was to
first map the variation explained by small segments of
the bovine genome for production traits in three dairy
cattle populations, and compare this variation across
the populations. In particular, we explored the effect of
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segment size on the correlation of the variances across
populations. Subsequently this information was used as
genomic location specific priors in a new method for
predicting genomic estimated breeding values. Devel-
oping a model with location specific prior information
will also allow for differentiation between e.g. coding
and non-coding regions of the genome, or other kinds
of biological information.

Methods

Data

The datasets used in the present study included 540
Australian Jersey bulls (JER-AUS), 2297 Australian
Holstein bulls (HOL-AUS) and5214 Nordic (Danish,
Swedish or Finnish) Holstein bulls (HOL-NOR) (Table 1).
Phenotypic data was daughter trait deviations (DTD)
for the Australian bulls and deregressed proofs (DRP)
for the Nordic bulls. DTDs were given in kilograms,
whereas the DRPs are standardized indices. The traits
selected for the study were: protein yield, fat yield and
milk yield, as these traits have the most data in the
populations.

Genotypic data was a mixture of true and imputed
SNP markers from the Ilumina 777K SNP chip. For
HOL-AUS there were 843 Holstein heifers genotyped on
the 777K SNP chip as well as 93 key ancestor bulls. For
JER-AUS 93 key ancestor bulls were genotyped for the
777K SNP chip. Quality control steps included removing
SNPs with very low minor allele frequencies, ambiguous
or undefined map positions, and no heterozygote geno-
types. For full details see [11]. These animals were used
as reference to impute the high density genotypes for
the remaining 2204 Holstein and 447 Jersey bulls which
were genotyped with the 50k chip.

For HOL-NOR 557 bulls from the EuroGenomics pro-
ject [4] were genotyped using the 777K chip and these
bulls were used as reference to impute the 777K markers
for the bulls genotyped with the Illumina 50K SNP chip.
After imputation LD of each marker with the previous
one in the assembly was inspected. If two adjacent mar-
kers were in complete LD one of the markers was de-
leted, so that r” of any pair of adjacent markers was less

Table 1 Data overview

Breed Nref Nval N total N markers Phenotype
JER-AUS 454 86 540 465542 DTD
HOL-AUS 1897 360 2197 465542 DTD
HOL-NOR 3047 2167 5214 465542 DRP

The populations used for the analysis, the number of animals in the reference
(N ref) and in the validation set (N val), total number of animals (N total),
number of markers (N markers) and type of response variable (Phenotype)
used in the prediction models. The sets of animals used for estimation of
segment variances are highlighted in bold.
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than one. The marker data was further edited by deleting
markers with a minor allele frequency less than 0.01.

Imputation was done using Beagle [13] in all three
populations. Since the purpose was to compare seg-
ments across populations and use this information for
genomic prediction, the SNP datasets were further edi-
ted to only keep the markers that were in common
across the populations. After data editing 465,542 mar-
kers remained for analysis.

Each of the datasets was split into a reference and val-
idation set (Table 1) to allow for cross validation of the
accuracy of DGV. In HOL-NOR the bulls were sepa-
rated by birth date before or after 2001-10-01, and in
JER-AUS and HOL-AUS the bulls were split by onset of
progeny test before or after 2007. In both cases the
younger animals were assigned to the validation set. This
cross validation strategy was chosen as the resulting ac-
curacy is the most meaningful in the context in which
the genomic predictions will be used: in the dairy indus-
try. Here reference sets of older bulls are used to predict
the DGV for young bulls which are then selected for use
based on these DGV. In the Australian data all of the
available data was used to estimate segment variances to
maximize the data. In the Nordic dataset only the refer-
ence set was used to estimate segment variances.

All genotypic and phenotypic data was obtained from
pre-existing routine genetic evaluation data for the dairy
cattle populations and required no ethical approval.

Estimation of genetic variances explained by different
segments

Genetic variance attributed to each segment was esti-
mated from effects of the SNPs in the segment. Predic-
tion of single SNP marker effects was carried out using
BayesR [11]. The statistical model was:

y=ul+Wg+a+te

Where vy is the vector of DTD or DRP, y is the mean,
a is the vector of residual polygenic effects, e is the vec-
tor of the residual errors, W is the incidence matrix of
SNP genotype coefficients, and g is the vector of SNP al-
lele substitution effects. Let X be a genotype matrix
coded as 0/1/2, for respectively homozygote first allele,
heterozygote and homozygote second allele, and let p; be
the frequency of the second allele at locus j. Assuming
Hardy-Weinberg equilibrium, entries of W are then ob-
tained by centering and standardizing entries of X to:

Xij — 2}91

Wij =
20i(1 - p))
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Prior distributions for the parameters are given as:

gj|a/2~N (0, af)

0 a; with probability o
0.0001 o, with probability m,
a 0.001 o, with probability 1z,

0.01 0} with probability 3
aé = ry2>k Var(y)
ni~Dirichlet(1,1,1,1)
e~N (0, Iag)
a~N (0, Ad?)
2 2

0,,0,,

pocl

Where A is the additive relationship matrix, o> is the
variance of residual polygenic effects, and rﬁ is the reliabil-
ity of DRP/DTD. The four-distribution mixture chosen for
the SNP effects, does not reflect any biological hypothesis,
but was chosen to allow for easier mixing between SNPs
with no effect and SNPs with effects of different sizes. The
Dirichlet prior on the proportions of different SNP var-
iances with all parameters set to one, is actually a uniform
prior, but specifying it in this manner reflects the fact that
the posterior distribution on the proportions follows a
Dirichlet distribution with a pseudo count of 1 from each
of the four distributions. The prior is not uninformative in
any statistical sense since it states that all distributions have
equal probabilities, but it adds very little information com-
pared to the posterior, as the data gives information on al-
most half a million counts, and the prior only adds 4, see
[11] for more detail.

To estimate the variance explained by each small
chromosomal region, the entire set of SNPs was divided
into segments of a fixed length (e.g. 100 markers each).
The variance explained by segment s was calculated as

Var(W,g,|data)

Where W is the sub-matrix of W corresponding to the
SNPs in segment s, and g is the vector of estimated SNP
marker effects for the same segment, ie. the segment vari-
ance is the variance across individuals of the partial direct
genetic values (DGVs, marker only estimated breeding
values) belonging to segment s. Variances of the partial
DGVs for all segments were calculated at each iteration in
the Gibbs sampler, and the estimated segment variances
were obtained as the posterior means. Segment variances
were estimated for segment sizes of 10, 25, 50, 100, 250,
500, 1000, 2000 or 3000 SNPs and for entire chromo-
somes. The approach is similar to [14] where sliding win-
dows of five consecutive SNPs are used to estimate the
genetic variance of chromosomal regions. In our approach
the windows are however not overlapping.
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Posterior means of the parameters were obtained using a
Gibbs sampler run for 20,000 iterations with a burn-in of
10,000 in the Holstein populations. For the Jersey popula-
tion results were not consistent with only 20,000 iterations,
so a chain length of 100,000 with a burn-in of 50,000 was
used instead. The relatively poor mixing properties of the
Gibbs sampler for the Jersey data could be due to the small
size of the reference population. Lengths of the chains were
based on preliminary runs and comparisons of the obtained
segment variances. With 20.000 iterations the Holsteins
showed a mean pairwise correlation between segment var-
iances from 10 consecutive runs of 0.95, whereas the Jerseys
showed a mean correlation between segment variances
from 10 consecutive runs of 0.80. Increasing the number of
iterations for the Jerseys to 100.0000 increased the mean
correlation of segment variances between consecutive runs
to .96.

Prediction using location specific prior information

The purpose here is to build a Bayesian prediction
model that allows for a larger proportion of variation to
be explained by certain segments, based on knowledge
from previous experiments. One way to do this is to
allow different segments to have different prior proba-
bilities assigned to the four SNP effect distributions. Let-
ting § denote the set of segments, the model used here
is:

y=ul+) Wg +a+e

gs,»|aszj~N (0, afj)
0% 0; with probability mrsg
2 ) 0.0001% o withprobability 1,
s 0.001 % 0g2 with probability s,
0.01%a; withprobability s
0; = rﬁ* Var(y)
1t~Dirichlet(a;)
e~N (O, Iag)
a~N (0, Ad?)

o2, o’

e’ al

pocl

Here 7, is the probability vector for the four SNP effect
distributions in segment s, and oy is the vector of prior
parameters for the Dirichlet distribution in segment s. The
model is similar to the original BayesR model, with the
modification that the probability to sample SNPs from the
four different distributions now depends on the segment.
By setting the location specific information via the Dirich-
let prior, instead of using constant proportions, the model
estimates the proportions using both the data and the prior
information. As this is a BayesR by segment approach, the
model will be referred to as BayesRS.
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To test the BayesRS model, posterior means of the num-
ber of times in which the indicator variable fell in compo-
nent i of the mixture were estimated in each segment in
one population using BayesR, and subsequently used as the
o, parameters in the target population in BayesRS. This was
done for segment sizes of 100, 250, 500, 1000, 2000 or 3000
SNPs. Since the sum of counts in the alpha parameters in
this setup is equal to the number of markers, this means
that the prior on the proportions in the mixture, unlike in
the regular BayesR, now has as much weight as the data
(much higher weight than in BayesR). To test the impact of
the weight of the prior, different scaling factors were tried, i.
e. the o, parameters were multiplied by 0.2, 0.4, .0.6, 0.8, 1.0,
125 or 15. The model was tested in three different
scenarios:

1. JER-AUS with prior information from HOL-AUS.

2. HOL-AUS with prior information from HOL-NOR.

3.HOL-AUS (random) with prior information from
HOL-NOR.

HOL-AUS (random) is a random subset of 500 animals
from the HOL-AUS reference population, which was gener-
ated to test the hypothesis that the advantage of the
BayesRS model would be greater in smaller populations.
The second and third setups were tested using the same
validation animals.

Validation of DGV accuracy
DGVs for the validation populations were predicted as

DGVy = ji + wig + ax

Where w' is the row of W belonging to animal k. Accur-
acies of the DGV were calculated as r(DGV, DTD) and vali-
dated in HOL-AUS and JER-AUS. Differences in accuracy
between BayesR and BayesRS were tested for significance
using a Hotelling-Williams t-test, which takes account of
the number of individuals in the validation set [15].

Results and discussion

The posterior means of the number of times the indicator
variable fell in each of the four distributions in BayesR for
all three breeds and all three traits are shown in Table 2.
Results are in line with [11] where it was also found that
only a small percentage of the markers have an effect. The
markers with the highest posterior probability of being in
the largest effect distributions are unevenly distributed
across the segments, and as the table also shows large pro-
portions of the marker variance is expected to be explained
by a small number of markers, which suggest that the loca-
tion specific priors add extra information.

Segment variances
Table 3 shows the top 10 segments for all three traits
and all three populations for a segment size of 100 SNPs.
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Table 2 Distribution of SNP effects and proportion of expected total marker variance for each class
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JER-AUS HOL-AUS HOL-NOR
Distribution Protein Fat Milk Protein Fat Milk Protein Fat Milk
0 462816 (0%) 461458 (0%) 461173 (0%) 462734 (0%) 461215 (0%) 462715 (0%) 460980 (0%) 461134 (0%) 460155 (0%)
0.0001 2413 (35%) 3752 (45%) 1(49%) 2623 (52%) 4223 (70%) 2487 (38%) 4387 (67%) 4270 (64%) 5205 (65%)
0.001 299 (44%) 318 (38%) 239 (2 179 (36%) 5 (16%) 332 (50%) 170 (26%) 127 (19%) 1 (21%)
0.01 4 (21%) 14 (17%) 19 (23%) 6 (12%) 9 (15%) 8 (12%) 5 (8%) 11 (17%) 1 (14%)

Posterior means of the number of times the indicator variable fell in each of the four distributions in the mixture for protein yield, fat yield and milk-yield in
Australian Jersey (JER-AUS), Australian Holstein (HOL-AUS) and Nordic Holstein (HOL-NOR). Expected proportion of marker variance in each class was calculated as
the number of markers in the class times the proportion of genetic variance assigned to each marker (0, 0.0001, 0.001 or 0.01) divided by the sum of marker

variance in all classes.

Table 3 Top 10 segments ranked by proportion of variance

Protein yield Fat yield Milk yield
Prop Var CHR Start End Prop Var CHR Start End Prop Var CHR Start End
JER-AUS
2.51 14 1324152 2524432 2.63 14 1324152 2524432 9.23 14 1324152 2524432
094 8 53145498 53823453 053 6 32804873 33205790 1.03 23 33488986 34003600
049 29 32616370 33148216 05 16 34988324 35436695 0.88 20 17220850 17690967
046 13 63320438 64620664 0.26 9 47503904 48177473 0.75 16 35920 804371
0.38 23 36309465 36929103 021 27 35936818 36385854 045 23 39769575 40258674
0.34 3 89581663 89898693 02 1 127226200 127917611 033 10 30761581 31494927
0.31 17 69563223 70374082 0.18 22 60504152 60873210 0.24 8 73117701 73898467
031 29 33157623 33719571 0.17 12 34663468 35292842 0.22 5 93922247 94302255
03 29 34401183 34817726 0.15 13 27805120 28346480 02 20 28252035 28774228
025 9 48742490 49474068 0.15 5 120908187 121179132 0.17 20 34452105 35077755
HOL-AUS
10.38 14 1324152 2524432 17.97 14 1324152 2524432 16.05 14 1324152 2524432
1.27 6 88537190 88996262 2.71 5 93922247 94302255 0.7 6 88537190 88996262
0.58 7 82862759 83380203 034 5 93301390 93920010 0.66 20 31054019 31704692
052 18 58283983 59602905 031 2 107799001 108408740 0.63 5 93301390 93920010
048 3 117198648 117541474 0.28 26 20643699 21338653 046 18 33639529 33910770
044 6 89469872 90304531 025 4 106613116 107060437 042 7 82862759 83380203
031 28 18048845 18758510 0.18 25 8073067 8481205 037 14 69793328 70364164
03 11 38575857 38932630 0.16 11 102944335 103540503 0.33 20 34452105 35077755
02 1 136016808 136624372 0.12 20 36176136 36613401 0.31 25 14686647 15151658
02 18 57084113 57818432 011 16 56014214 56706854 0.28 " 46783081 47198727
HOL-NOR
4.85 14 1324152 2524432 24.35 14 1324152 2524432 13.49 14 1324152 2524432
0.39 19 26550090 27153052 2.65 5 93922247 94302255 237 20 29983162 31051302
0.31 7 23881292 24505374 0.76 19 20077363 20545023 09 5 92171816 92734379
0.31 5 20094983 20608440 0.64 5 20094983 20608440 0.89 5 92736297 93292054
0.28 6 86786552 87331055 05 15 44850860 45134081 063 5 20094983 20608440
0.25 11 102944335 103540503 0.26 20 63502967 63925075 0.46 5 93922247 94302255
023 22 42655109 43216893 025 19 26550090 27153052 0.38 15 52804974 53411913
0.18 23 11564383 12095383 023 2 127612583 128084951 033 24 59281770 59735242
0.16 24 59281770 59735242 0.21 26 20043160 20630551 033 6 88023038 88527916
0.16 20 69275055 69727331 0.19 13 10469479 11785572 0.23 " 101054186 101516564

Proportion of variance (Prop Var) explained for Jersey (JER-AUS), Australian Holstein (HOL-AUS) and Nordic Holstein (HOL-NOR) populations. Segment size is 100
SNPs. Start and end points of the segments are given as base positions of the first and last SNP in the segment. Segments that appear in more than one breed
are highlighted in bold.
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For all traits and populations there is one segment with
very large effect, located on chromosome 14. This seg-
ment is located around the DGATI gene which has a
well-documented effect on the traits in question [16].
Furthermore for fat percentage in the Holsteins there is
a segment with large effect on chromosome 5. This seg-
ment has previously been seen in GWAS studies in Aus-
tralian Holsteins and validated in Australian Jerseys [17].
The segment, however, does not appear in the top 10 for
the Jersey population. In the Nordic Holstein population
a segment having large effect on milk yield is found on
chromosome 20, but the same segment is not found in
the top 10 for either JER-AUS or HOL-AUS although
other segments on chromosome 20 are present. A previ-
ous study found a growth hormone receptor gene on
chromosome 20 which was highly associated with milk
yield [18]. However, the same gene could not be vali-
dated in the Australian Holstein population [19], and
the segments on chromosome 20 found in the top 10 in
this study do not coincide with the gene in question.
Correlations of segment variances between popula-
tions are large if the DGAT1 segment is included since
the proportion of variance explained for this QTL is very
large compared to all others, as seen from Table 3 and
Figure 1. Hence SNPs associated with the DGATI muta-
tion have been removed from all plots in Figure 2 for
clarity. For fat yield the QTL on chromosome 5 with
large effect has been removed as well. Figure 2 shows
a plot of segment size versus correlations of segment
variances between the three populations for the three
traits. With the large effect segments removed, the pat-
terns of correlations generally follow expectations based
on knowledge of genetic relationship between popula-
tions. Highest correlations are found between HOL-AUS
and HOL-NOR, and second and third place are respect-
ively HOL-AUS versus JER-AUS and HOL-NOR versus
JER-AUS. In Australia some crossbreeding has taken
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place between the Holstein and Jersey populations and,
accordingly, correlations of variance explained by the
segments are higher for these two populations than be-
tween HOL-NOR and JER-AUS. Genotype by environ-
ment interactions could also influence these correlations.

Correlations for small segment sizes are close to zero.
A possible explanation for this is that differences in LD
patterns and SNP allele frequencies across breeds cause
the SNPs with the highest associations to actual QTL to
be placed in different segments when these are very
small. The rapid increase in correlation of segment var-
iances with segment size for HOL-AUS vs. HOL-NOR
suggests that these population share QTL in similar
locations, as would be expected given they are gene-
tically closely related. For this pair of populations, even
reasonably small segments would convey information
between the populations. When taking an entire chro-
mosome as a segment, correlations of segment variances
ranging from 0.6 between JER-AUS and HOL-NOR up
to 0.8 between the HOL-AUS and HOL-NOR were
found. A connection between chromosome size and
variance explained has previously been reported by e.g.
[20]. As seen from Figure 3 a similar pattern can be
found in our populations, provided the effect of DGATI
is removed from the analysis.

BayesRS
The accuracies of DGV, measured as r(DGV,DTD) in
the validation population, are shown in Figure 4 and 5.
In the figures, a horizontal line depicts the accuracy
using BayesR. For JER-AUS a second (higher) horizontal
line shows the accuracies obtained from BayesR when
simply pooling JER-AUS with HOL-AUS. For the HOL-
AUS with HOL-NOR information scenario this accuracy
was not available due to data sharing policies.

For JER-AUS no gain in accuracy was observed for
milk yield when using prior information from HOL-

With DGAT1 segment, cor=0.96

Segment variance HOL-NOR

1k o

T T T T T
0 2 4 6 8
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Figure 1 Comparison of segment variances between Australian Holstein (HOL-AUS) and Nordic Holsteins (HOL-NOR) with and without
the effect of DGAT1, shown here for protein yield and a segment size of 100 SNPs.
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Figure 2 Correlation of segment variances for Protein-, Fat- and Milk yield between JER-AUS and HOL-AUS (red), JER-AUS and

HOL-NOR (blue) and HOL-AUS and HOL-NOR (black). The segment containing DGAT! has been removed for all traits, as has the large effect

on chromosome 5 for fat yield.

AUS, for protein yield a small gain of around 1% is seen
for the smallest segment size, and for fat yield gains in
accuracy of up to 3.5% are seen when using the genomic
location specific prior information compared to using
BayesR. Compared with accuracies obtained with a sim-

leads to an extra gain of up to 1.5% for fat yield, but not
for the other two traits. Although differences in accuracy
were seen, none of the differences were significant at a
5% level, reflecting the small size of validation population.

For HOL-AUS the largest gain in accuracy is found for
protein yield with gains of up to 2%. For milk and fat

ple pooling of reference data, the BayesRS approach

Chr length vs variance HOL-AUS / Fat yield

Chr length vs variance JER-AUS / Fat yield

Chr length vs variance HOL-NOR / Fat yield

Chr Length (Mb)

Chr Length (Mb)

©
o4 ©
o
° © ©
g 8 g
5o 5 5o
S S« s
— A —
© T T T T OV T T < _I T T T oI T T N T T T 0‘ T T
40 60 80 100 120 140 160 40 60 80 100 120 140 160 40 60 80 100 120 140 160
Chr Length (Mb) Chr Length (Mb) Chr Length (Mb)
Chr length vs variance HOL-AUS / Protein yield Chr length vs variance JER-AUS / Protein yield Chr length vs variance HOL-NOR / Protein yield
© B B © B
© 0
s~ 8 8 ~
S 3 g™
Sa s Sa
© T T T T O‘ T T e _I T T T o| T T i T T T O‘ T T
40 60 80 100 120 140 160 40 60 80 100 120 140 160 40 60 80 100 120 140 160
Chr Length (Mb) Chr Length (Mb) Chr Length (Mb)
o Chrlength vs variance HOL-AUS / Milk yield Chr length vs variance JER-AUS / Milk yield Chr length vs variance HOL-NOR / Milk yield
] 0 8 0 s
@ 3
o n
g1 .
o © ° ° 08 @
s ° 28 g
884 ° °l 8¢ &
So s e o0 S g
o 9 & o o
S -
3V 4
© A T T T T O‘ T T < —I T T T O| T T e T T T 0‘ T T
40 60 80 100 120 140 160 40 60 80 100 120 140 160 40 60 80 100 120 140 160

Chr Length (Mb)

Figure 3 Variance explained versus chromosome length for protein-, fat- and milk yield in the Jersey (JER-AUS), Australian Holstein
(HOL-AUS) and Nordic Holstein (HOL-NOR) populations. Chromosome 14 is not included in the plot.




Brgndum et al. BMC Genomics 2012, 13:543
http://www.biomedcentral.com/1471-2164/13/543

Page 8 of 11

JER-AUS / HOL-AUS prior / Protein . JER-AUS / HOL-AUS prior / Fat
. g
<
e 2 ] , B ——
o S 7§>/—\
<
3 o & o | )
S S g
§ ° %
© o
@ |
e ©
=
© o
@ |
° 0
< 4
T T T T T T T o T T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4
weight weight
o JER-AUS / HOL-AUS prior / Milk o JER-AUS / HOL-AUS prior / Mean
2 27
oo} ©
< <
o o
© - E ©
5 \)«4/ \ 5 — ——— _ -
g 3 g 3l = -
o o
o o
< 4 <
o o
o o
= 4 <
o T T T T T T T o T T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 14 0.2 0.4 0.6 0.8 1.0 1.2 1.4
weight weight
Figure 4 Accuracy of DGV for Australian Jersey (JER-AUS) with prior Information from Australian Holstein (HOL-AUS). Priors were tested
for a segment sizes of 100 (red), 250 (orange), 500 (green), 1000 (blue), 2000 (purple) or 3000 (cyan) SNPs. X axis shows different weights on the
prior information relative to the information from the data. Horizontal black lines are accuracies obtained using BayesR, where the higher lines
gives the accuracy using pooled reference data from Jersey and Australian Holstein. No significant differences between accuracies obtained using
BayesR with either a single or combined reference population and BayesRS were detected.

yield smaller gains are seen, and these are not signifi-
cantly different for milk yield. Using the prior informa-
tion derived from HOL-NOR, however, seems consistently
better than the model without location specific priors.
Results from the HOL-AUS (random) setup are shown in
Figure 6. The gain in accuracy is here slightly higher for
protein and fat yield, whereas the gain for milk yield
seems unchanged. Results were significant for protein
and fat but not for milk yield. Looking at the accuracies
of DGV from the regular BayesR model (no prior infor-
mation from other populations) the mean accuracy is
now on the same level as in JER-AUS due to the same
size of the reference population (though the traits vary
considerably).

In all three scenarios the highest gains in accuracy are
found for a segment size of 100 markers, implying that
using smaller segments gives a stronger advantage from
the location specific priors. Furthermore, significant
results are only found in two cases: the largest and
smallest segments. For the largest segment size of 3000
markers, it is surprising that the increase in accuracy is
significant although larger gains in accuracy are seen for

smaller segments. However, this could be an artifact of
the test chosen for the significance. With a large
segment size the added information becomes very un-
specific which could lead to results more similar to those
obtained from the regular BayesR method. With a high
correlation between DGVs from the two methods, the
Hotelling Williams t-test would cause even small differ-
ences in accuracy to be significant.

The different scaling factors (weights) applied to the
parameters in the Dirichlet priors, seems to make little
or no difference on the accuracy of the BayesRS model,
which suggests that the accuracies obtained from
BayesRS could be random fluctuations. This is in many,
but not all cases, supported by the lack of significance of
the results.

To summarize, BayesRS gave accuracies comparable
to, but not always higher than or significantly different
from, a simple pooling of the data. For closely related
populations pooling is expected to be superior. So a sim-
ple pooled multi-breed or multi-population reference
could be a better approach in some cases, but not neces-
sarily for all traits. For example, the BayesRS approach
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Figure 5 Accuracy of DGV for Australian Holstein (HOL-AUS) with prior Information from Nordic Holstein (HOL-NOR). Priors were tested
for a segment sizes of 100 (red), 250 (orange), 500 (green), 1000 (blue), 2000 (purple) or 3000 (cyan) SNPs. X axis shows different weights on the
prior information relative to the information from the data. Horizontal black lines are accuracies obtained using BayesR. BayesRS accuracies
showing significant difference from the accuracy obtained using BayesR at a 5% significance level are marked with *. The test was only applied
for single traits, and not for the mean.

gave higher accuracies than a pooled reference for fat
yield in JER-AUS. Further studies are needed to confirm
the validity of the results in a larger validation population.

One advantage of the method presented here is a
large reduction in computational demand. Since the
BayesRS model only uses very condensed information
from the other population, the increase in memory de-
mand is negligible, and the extra complexity of the
model only slightly increases the CPU run time. For
JER-AUS running the BayesR model for 100.000 itera-
tions required 33 hours, whereas the BayesRS model
could be run for the same number of iterations in 39
hours. When using BayesR with the combined JER-
AUS HOL-AUS reference data, 100,000 iterations takes
about 150 hours, and more than quadruples the
memory requirements.

Although the accuracies obtained using BayesRS in
most cases cannot compete with pooling of the data, the
results seem consistently better than when using only
data from the target population and a non-informative
prior, for example only the JER-AUS data. In some cases
where the extra data itself is not available, the BayesRS

model or a similar approach could improve the accuracy
of genomic predictions using only summary statistics.
This might be in cases when intellectual property issues
prevents sharing of the raw data, but allows use of sum-
mary statistics as in this study. The approach could also
be useful for meta-analysis of many data sets from differ-
ent sources.

The model presented here would also allow the use of
other prior information such as known QTL or expres-
sion pathways, by assigning a higher prior probability to
sample large effects in the involved genomic regions. In
this study segments were chosen arbitrarily with a fixed
length, but another approach could be to define coding
and non-coding regions of the genome as different
segments and set different Dirichlet priors. A challenge
here would, however, be how to choose the counts in
the Dirichlet prior without sampling them from a diffe-
rent population. Previous results show that SNPs near
genes found in both human and bovine genomes are
significantly associated with stature [12]. By considering
evolutionary conserved regions as segments the method
using external information sources presented in this
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Figure 6 Accuracy of DGV for a random subset of 500 Australian Holstein (HOL-AUS) bulls with prior Information from Nordic Holstein
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study could be used for genomic prediction across
species for traits of common interest such as growth in
meat-production animals or production traits in dairy
species.

Conclusion

Our results suggest that genomic location specific priors
in BayesRS improve the accuracy of genomic prediction,
when the priors are derived from another population.
However, the higher accuracies were only found to be
significantly better than a competing alternative without
location specific priors in a few cases. This might be a
result of the limited number of animals used in the val-
idation sets, so further investigation is needed to confirm
the validity of the method.

Results also show that some highly variable segments
coincide with known genes and QTLs, suggesting that
using actual biological information could be beneficial
for the accuracy of genomic predictions. Finally the
BayesRS setup might offer a possibility for higher accur-
acies of genomic predictions in cases with limited com-
puter resources or issues with data sharing.
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