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Abstract

of whole-genome assembly in cotton.

paralogous loci in Gossypium.

Background: Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding
cotton genomes will provide the ultimate reference and resource for research and utilization of the species.
Integration of high-density genetic maps with genomic sequence information will largely accelerate the process

Results: In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated
cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new
marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene
information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map
density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average
inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative
sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and
195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243
ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density
genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional
annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously
reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of
these genes. Higher-level sequence conservation between different cotton species and between the A- and
D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and

Conclusion: This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for
cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium.

Background

The genus Gossypium contains many species of great
economic and scientific importance. Cotton produces
the world’s most important natural textile fiber and is
also a significant oilseed crop. The cotton fiber is an out-
standing model in which to study plant cell elongation
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and cell wall and cellulose biosynthesis [1]. Genetic
improvement of fiber production and processing will
ensure that this natural renewable product will be com-
petitive with petroleum-derived synthetic fibers. More-
over, modifying cottonseed for food and feed could
profoundly enhance the nutrition and livelihoods of
millions of people in food-challenged economies [2].
Although cotton genome sequencing has been under-
taken by a scientific consortium, cotton genomics has
failed to keep pace with the accomplishments in genome
sequencing in other angiosperms such as Arabidopsis
thaliana (3], poplar[4], rice [5], and grapevine[6] etc.
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The genus Gossypium includes approximately 50
species, 45 diploid (2n=2x=26) and 5 tetraploids
(2n=2x=52). Diploid cotton species contain eight gen-
ome types, denoted A-G and K [7]. Interestingly, the A
genome diploids and tetraploid species produce spin-
nable fiber and are cultivated on a limited scale, whereas
the D genome species do not [8]. In the A genome,
D genome and AD genome, the genome sizes vary by
approximately 3-fold, from 885 Mb in the D genome to
2,500 Mb in the tetraploid [7,9]. Genome size in cotton
is not only much larger than in Arabidopsis thaliana,
poplar, grapevine and rice, but the cotton genome has
also experienced a higher frequency of genome poly-
ploidization events than any of these species [10,11],
although the grapevine genome appears to be an ancient
hexaploid [6]. Much of the size variation in cotton gen-
omes can be attributed to accumulation of transposable
elements, although some lineages show evidence of
specific mechanisms to remove repetitive DNA [12,13].
Repetitive elements comprise approximately 50% of the
D genome [12]. Because of this, progress in cotton genome
sequencing has lagged behind other flowering plants.

Genomic resources for cotton such as bacterial arti-
ficial chromosomes (BACs), expressed sequence tags
(ESTs), genomic sequences, genetic linkage maps, and
physical maps provide landmarks for sequence analysis
and assembly. Since the first genetic map of cotton was
published in 1994 [14], several high-density genetic maps
composed of more than 2,000 loci have been released
[15-18]. These high-density maps were constructed with
multiple types of DNA markers including restriction
fragment-length polymorphisms (RFLPs) [15], amplified
fragment-length polymorphisms (AFLPs) [16], sequence-
related amplified polymorphisms (SRAPs) [16], single
nucleotide polymorphisms (SNPs) [18], and simple
sequence repeats (SSRs) [16-18]. Genome-wide integra-
tion of genetic and physical maps is a prerequisite for
large-scale genome sequencing, which can in turn provide
initial insights into the structure, function, and evolution
of plant genomes [19-21]. In the development of genomic
resources in cotton, BAC libraries have been constructed
for several cotton species [22-25]. The physical map of
homoeologous chromosomes 12 and 26 in upland cotton
[26], and a draft physical map of a D-genome cotton
species (Gossypium raimondii) [24] have been reported.

At present, a large number of cotton sequences are
publically available via the Genbank database (http://
www.ncbi.nlm.nih.gov/). Of these, approximately 435,354
are expressed sequence tags (EST), including 297,214
ESTs from G. hirsutum, 63,577 from G. raimondii,
41,781 from G. arboreum, 32,535 from G. barbadense,
and 247 from G. herbaceum. Furthermore, genome
sequence information produced by several high-throughput
DNA sequencing platforms, such as the Roche/454 FLX

Page 2 of 17

and the Illumina Genome Analyzer, have been released
for several cotton species. A pilot study by the U.S.
Department of Energy Joint Genome Institute (http://
www.jgi.doe.gov/) to generate a whole-genome scaffold
sequence for G. raimondii was recently completed. How-
ever, draft genome sequences lack sufficient contiguity in
many genomic regions to allow for cross-species com-
parison of genome organization and structure [27,28].
An independent genetic map often facilitates the correct
ordering of DNA segments on chromosomes and can
thus clarify the changes in genome organization revealed
by multiple species comparisons [29,30]. As a result,
structural, functional, and evolutionary studies in Gossy-
pium will largely be accelerated and a whole-genome
sequence will ultimately be realized.

In this paper, we report an update to a high-density
interspecific genetic map in allotetraploid cultivated cot-
ton based on earlier work in our laboratory [16,31-34].
Using the high-density linkage map, we developed the
genome-wide sequences analysis by the integration of
high-density genetic map and publically-available Gossy-
pium DNA sequence. This study will serve as a valuable
genomic resource for tetraploid cotton genome sequen-
cing, assembly and further comparative genomic anal-
yses in Gossypium.

Results

A newly updated tetraploid cotton genetic map
composed of 3,414 loci in 26 linkage groups

We integrated an additional 1,167 polymorphic marker
loci into our previously published linkage map that con-
tained 2,247 loci and spanned 3,540.4 cM [16]. The new
marker loci comprised a variety of marker types, includ-
ing 534 genomic-SSR loci, 285 EST-SSRs, 187 REMAPs,
73 SNPs, 12 InDels, 59 RTs, nine AFLPs, seven SRAPs
and one derived from a BAC-end sequence. Of these,
three new marker types, InDel, SNP and REMAP, were
used to increase the density of the new genetic map
(Figure 1). As a result, we constructed a newly-updated
genetic map composed of 3,414 loci in 26 linkage groups
covering 3,667.62 c¢cM with an average inter-locus dis-
tance of 1.08 cM (Figures 2, 3, 4, 5, 6, 7).

The enhanced linkage groups account for 1,559
loci (1827.6 cM) with 1.17 c¢cM interval distance in the
A-subgenome and 1,855 loci (1850.02 cM) with 1.00 cM
interval distance in the D-subgenome, respectively.
On average, each chromosome has 131 loci, ranging from
a high of 223 loci on D5, to a low of 75 loci on A4. The
longest chromosome in terms of genetic distance was A5
(Chr. 5; 213.7 ¢cM), and the shortest was A2 (Chr. 2;
109.2 ¢cM). Compared with the previously published map
[16], intervals of >10 cM remaining in the tetraploid map
were reduced to 16 - nine in the At subgenome, and
seven in the Dt subgenome, with the largest number of
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Figure 1 Comparison of marker types and loci between the previously published map and the updated genetic linkage map.
Note: The InDel, SNP and REMAP markers are new to the updated map and are not included in the map of Guo et al. 2008.
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gaps on chromosome D8 (4 gaps >10 cM) and the largest
overall gap on chromosome A3 (between two adjacent
loci) 22.2 ¢cM (Additional file 1: Table S1).

Duplication, rearrangement and translocation in
allotetraploid cottons

In this new map, 693 duplicated loci were identified by
326 SSR primer pairs, with 574 duplicated, 111 tripli-
cated, and eight tetraplicated loci (Additional file 2: Table
S2). Of these, 64.07% duplicated loci sufficiently bridged
13 expected homologous At/Dt chromosomes. The
remaining 249 duplicated loci were present on non-
homologous chromosomes, of which 32.13% loci were
found to be located on the same chromosomes, whereas
67.87% loci spanned different chromosomes. This finding
implied that there had been multiple rounds of duplica-
tion and both intrachromosome and interchromosome
genome rearrangements during the process of evolution
(Additional file 2: Table S2). Furthermore, two post-
polyploidization reciprocal translocations of A2/A3 and
A4/A5 in the At subgenome were confirmed to have 27
homologous loci, with eight duplicated loci on the A3
and D2 chromosomes, seven on A2 and D3, nine on A5
and D4 and three on A4 and D5 (Figures 2, 3).

Structure characterization of the newly updated

linkage map

Of the 3,414 loci, 300 loci showed non-mendelian segre-
gation (P <0.05) with 137 loci skewed toward TM-1 and

163 loci skewed toward the heterozygous state (Table 1).
Of these distorted loci, 180 were in the At subgenome
and 120 in the Dt subgenome. These segregation-
distorted loci were unevenly distributed and clustered
in some regions of the 26 genetic linkage groups.
A total of 12 segregation distortion regions (SDRs) were
detected on 11 linkage groups. There were two SDRs in
the D10 linkage group (Figure 5). Among 12 SDRs, six
were on the At subgenome and six on the Dt subge-
nome, with 8 SDRs skewed toward G. hirutum TM-1
and four SDRs skewed toward the heterozygote.
SDR1_2, SDR5_7 and SDR6_16 were the three biggest
SDRs and they all showed distortion toward the hetero-
zygote (Figure 2, 4).

The 3,414 loci were not evenly distributed on the cot-
ton chromosomes, with more loci on the Dt-subgenome
than the At-subgenome. To better understand the locus
distribution on each chromosome, we analyzed the fre-
quency of loci along 10 centiMorgan (cM) bins on the
linkage map (Additional file 3: Figure S1). Most chromo-
somes had a similar marker density distribution, with
the highest peak located near the center of linkage
groups; furthermore, the A9, D5, and D9 linkage group
each had two main peaks. The regions of high marker
density in each chromosome indicated the presence of
recombination suppression in these regions, which
might be related to the heterochromatic regions [35,36];
the main peaks on the each chromosome should cover
the centromeric areas.
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(See figure on previous page.)

Figure 2 The newly-updated genetic map for A1/D1, A2/D2 and A3/D3 homoeologous pairs. Note: Genetic map was constructed using a
BC; population obtained from the interspecific cross: G. hirsutum L. acc. TM-1 X G. barbadense L. cv. Hai7124. Recombination distance is given in
centimorgans (cM). Chromosomes and linkage groups are arranged by homoeologous pairs and their corresponding conventional chromosome
numbers denoted in bracket. REMAP markers are shown in bold. Segregation distorted loci are underlined and italicized; loci skewed toward the
heterozygote only are underlined, loci skewed toward TM-1 are both italicized and underlined. Segregation distortion regions (SDRs) are named
as ‘No. SDR + linkage group’, for example, SDR1_2 refers to the first SDR (out of all SDRs) and is located on Chr. 2 linkage group.

Clusters of loci were also observed in 26 linkage
groups, of which 86 clusters involved in 617 loci (=5
loci/cM) that were discovered in 25 linkage groups
besides A1l (Chr. 1). Of these, 31 clusters contained
229 loci from the At subgenome, and 55 clusters con-
tained 388 loci from the Dt subgenome. Nineteen can-
didate gene islands (=5 EST-SSR loci/cM) and one
retrotransposon-rich region were discovered by cluster
distribution of marker loci. For example, the cluster that
spanned from 106.83 cM to 107.40 cM on A5 (Chr. 5)
contained six EST-SSR markers that should have been a
gene-rich region. The cluster composed of 15 loci (8 loci
from REMAP makers) on D3 (Chr. 17) may be a
retrotransposon-rich region (Additional file 4: Table S3).

Of 3,414 loci, with the exception of AFLP and SRAP,
3,324 (97.36%) were from informative sequence-based
markers. These highly informative sequence-based mar-
kers will be suitable for aligning the sequence informa-
tion to linkage groups and finishing the integration
between the DNA sequences and the high-density gen-
etic map in cotton.

Integrating the genetic map with cotton DNA

sequence resources

A total of 413,113 ESTs and 195 BACs from four major
cotton species were extracted from the NCBI GenBank
database as a sequence reference pool, and 3,324
sequence-based markers were used as probes to anchor
and cluster these physical EST and BAC sequences by a
highly specific in silico PCR-based method. As a result,
2,111 primer pairs (63.5%) successfully amplified DNA
fragments from 14,243 ESTs and 63 BACs (Additional
file 5: Table S4). At the same time, the chromosomal
locations of 63 BACs were further confirmed by combin-
ing PCR-based in silico anchor results with PCR experi-
mental amplification analysis according to the criteria
described in the previous study [16,37]. The remaining
1,213 primer pairs (36.5%) did not amplify any DNA
products from the reference pool.

Based on PCR in silico anchor results, we found that
11 BACs were anchored on both A- and D-genome
homoelogous chromosomes; 2,111 primer pairs ampli-
fied in silico DNA sequences from four cotton species,
with 762 primer pairs directing amplification of same-
sized DNA fragments, and 1,349 primer pairs giving
PCR products with different predicted sizes. These

results showed higher-level sequence conservation and
molecular size differences in orthologous and paralogous
loci in the natural evolutionary process of different Gos-
Ssypium species.

To identify the genes corresponding to 14,243 ESTs
and 63 BACs, 2,111 clusters were grouped and each EST
cluster was assembled into the longest possible unigene.
For 63 BACs anchored to corresponding subgenome
chromosomes, all genes in each BAC were predicted
based on ab initio method using the Fgenesh program
for further functional analysis. In total, 2,748 candidate
genes were mined for subsequent bioinformatics analysis
(Additional file 5: Table S4).

Functional annotation based on Gene Ontology

All candidate unigenes were subjected to homology
analysis against NCBI the RefSeq plant protein database
to obtain putative functional annotations using Blastx
with a cut-off E value set to 10°. Of 2,748 unigenes,
2,258 sequences (82.17%) had homology to protein
sequences. Among these, 1,901 were matched known
proteins, and 357 were unknown or hypothetical pro-
teins (Additional file 6: Figure S2). The remaining 490
sequences had no homologs in the plant Refseq database
and could be either 3" or 5’ untranslated regions (UTRs)
of genes with very short coding regions, or they could
represent novel genes [38].

The E value distribution of the top-hits in the RefSeq
database showed that 88.81% of the mapped sequences
had high homology (<le-20), whereas 11.19% ranged
from le-07 to le-20 (Additional file 7: Figure S3A). Like-
wise, the similarity distribution showed that 92.82% of
the sequences had a similarity higher than 50%, while
7.18% of the hits had a similarity ranging from 35.9%
to 50% (Additional file 7: Figure S3B). Through top-hit
species distribution statistics, the majority of sequences
were matched to the Ricinus communis genome
(26.57%), followed by Populus trichocarpa (25.24%), Vitis
vinifera (23.03%) and Glycine max (12.18%), which
showed that a closer genetic relationship existed
between them (Additional file 7: Figure S3C).

Functional classification and pathway analysis

Of 2,748 unigenes, 1,890 (68.78%) were mapped to the
GO hierarchy with characterized biochemical and
physiological functions involving biological processes,
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Figure 3 The newly-updated genetic map for A4/D4, A5/D5 and A6/D6 homoeologous pairs. All legends are same as described for Figure 2.
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Figure 4 The newly-updated genetic map for A7/D7 and A8/D8 homoeologous pairs. All legends are same as described for Figure 2.
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Figure 5 The newly-updated genetic map for A9/D9 and A10/D10 homoeologous pairs. All legends are same as described for Figure 2.
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Figure 6 The newly-updated genetic map for A11/D11 and A12/D12 homoeologous pairs. All legends are same as described for Figure 2.
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Integrating ESTs/genes with previously reported
quantitative trait loci (QTL) related to fiber quality

Of 2,748 candidate genes, 2,111 were mainly from the
ESTs of developing fibers in Gossypium. To further con-
firm the potential function of these genes in the fiber
development process, integration analysis was performed
between the ESTs/genes and previously reported cotton
fiber quality quantitative trait loci (QTL) [39-53]. As a
result, 337 ESTs/genes related to fiber quality traits were
integrated with 132 previously reported cotton fiber
QTL. All integrated fiber quality QTL intervals had at
least one EST/gene, and some had several (Table 2),

Table 2 Integration analysis of ESTs/genes with
previously reported quantitative trait loci (QTL) related
to fiber quality*

Chromosome qFE qFL qFF gFS gFU QTL Total ESTs/
genes

A1(Chr.1) 1 0 1 0 1 3 4
A2(Chr.2) 0 1 0 0 0 1 2
A3(Chr3) 0 1 0 0 0 1 1

A4(Chr4) 0 0 0 0 0 0 0
A5(Chr.5) 0 0 0 0 1 1 2
A6(Chr.6) 1 0 1 0 1 3 3
A7(Chr.7) 0 0 0 0 0 0 0
A8(Chr.8) 3 0 3 3 1 10 40
A9(Chr.9) 0 4 1 2 1 8 1

A10(Chr.10) 0 0 0 0 0 0 0
A11(Chr.11) 3 1 0 0 1 5 26
A12(Chr.12) 0 0 0 0 1 1 6
A13(Chr.13) 1 1 0 0 0 2 5

D1(Chr.15) 0 0 0 0 1 1 6
D2(Chr.14) 1 1 0 0 0 2 20
D3(Chr.17) 0 1 2 0 1 4 28
DA4(Chr.22) 1 0 0 0 0 1 2
D5(Chr.19) 0 1 0 0 0 1 15

D6(Chr.25) 3 0 2 0 0 5 11

D7(Chr.16) 1 0 3 4 0 8 34
D8(Chr.24) 10 13 9 13 3 48 60
D9(Chr.23) 1 3 1 1 3 9 12
D10(Chr.20) 1 0 1 1 1 4 Il

D11(Chr.21) 1 0 1 3 1 6 8
D12(Chr.26) 0 1 1 1 0 3 10
D13(Chr.18) 1 1 3 0 0 5 21

At 9 8 6 5 7 35 100
Dt 20 21 23 23 10 97 237
Total 29 29 29 28 17 132 337

* The fiber quality traits mainly included fiber length (FL), fiber strength (FS),
fiber fineness (FF), fiber elongation (FE), and fiber uniformity (FU). QTL related
to fiber quality traits were reported previously from references [39-53].
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which indicated the important roles in fiber quality of
these genes. Overall, 132 QTL were not randomly dis-
tributed across chromosomes, with 35 on the At subge-
nome involving 100 fiber quality-related ESTs/genes and
97 on the Dt subgenome involving 237 fiber quality-
related ESTs/genes. This indicated important ESTs/genes
related to fiber quality existed in the Dt subgenome in
tetraploid cotton. On the D8 chromosome, 48 QTL
associated with elite fiber quality were clustered in the
chromosome region within a 40-cM interval; meanwhile,
60 fiber quality-related ESTs/genes were also detected
in this region. A meta-analysis was further performed
using BioMercator software, both two QTL clusters sim-
ultaneously related to several fiber quality traits and the
corresponding ESTs/genes involved in these QTL clus-
ters were detected. Some important genes, responsible
for cotton fiber quality traits reported previously [54],
were found in the two QTL clusters region. For
example, genes encoding cellulose synthase catalytic
subunit and vacuolar h + —translocating inorganic pyro-
phosphatase were found in the first QTL cluster region,
and genes encoding fasciclin-like arabinogalactan protein,
sucrose synthase, and pectin acetyl esterase family protein
were located in the second QTL cluster (Additional
file 12: Table S7). This result indicated that these enriched
ESTs/genes in these regions were important for improving
cotton fiber quality, and should be studied in depth
regarding their molecular function.

Discussion

A high-density genetic map is an important tool in cotton
genomics research

High-density genetic maps have become an indispen-
sible resource for elucidating genome structure, func-
tion and evolution, and are particularly important in
polyploidy crops such as potato, cotton and wheat
[7,10,55,56]. As the field of cotton structural genomics
develops, the high-density genetic map will provide many
important opportunities for mining information from
important genes and QTL, implementing the integration
of the genetic map with the physical map, and further
building a solid foundation for cotton genome assembly
and utilization.

In the present study, a high-density genetic map com-
prising 3,414 loci was constructed. Compared to our
previously published map of 2,247 loci [16], this map
increased by 1,167 loci, with 541 new loci on the At sub-
genome and 626 new loci on the Dt subgenome. Previ-
ously, four genetic maps composed of more than two
thousand loci in cotton have been reported [15-18].
Compared to these four earlier high-density maps, our
newly updated map has the most loci (3,414 loci), the
shortest distance between adjacent marker loci (average
distance between loci is 1.08 cM), and the fewest number
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of gaps (a total of 16). In addition, ours is a gene-rich
linkage map with 1,726 functional marker loci; 19 candi-
date genes islands, nine from the At subgenome and 10
from Dt subgenome, were also discovered. Considering
the total map length, the updated map (3,667.62 cM) is
shorter than two previously published maps from Rong
et al. (2004) (4,447.9 cM) [15] and Yu et al. (2012)
(4,418.9 cM) [18], and it is slightly longer compared that
the map of Yu et al. (2011) (3,380 cM) [17].

The development of new markers was very important
for construction of the new high-density genetic map.
Retrotransposon-microsatellite amplified polymorphism
(REMAP) markers have been described in some plants
[57,58]; however, few reports have been published for
cotton. Retrotransposons are very prevalent in the cot-
ton genome [16]. Due to the accumulation of LTR retro-
transposons, Gossypium genome size has undergone a
threefold increase over the 5-10 Mya since its origin
[12]. Thus, developing new markers related to retrotran-
sposons will be important to define some regions of
reduced recombination (cold-spot regions) of cotton
chromosomes. Here, 188 polymorphic loci from 187 RE-
MAP markers were anchored on the new genetic map,
and a retrotranposon-rich region was found to be clus-
tered with eight REMAP loci on D3 (Chr. 17). In the
future, REMAP markers could be largely used to further
enhance the saturation of cotton reference genetic maps
in chromosomal heterochromatic regions.

Segregation distortion regions are related to cotton
evolution

Segregation distortion is increasingly being recognized
as a potentially powerful evolutionary force [59] that
may result from competition among gametes or from
abortion of the gamete or zygote [60,61]. Of the 243 loci
on the new map that showed distorted segregation, 152
(62.6%) were on the At subgenome, and only 93 loci
(37.4%) on the Dt subgenome, even though more loci
were tagged on the Dt subgenome (1,718 loci) than on
the At subgenome (1,429 loci) in the newly constructed
high-density genetic map. Thus, we speculate that
the higher rate of polymorphism and the lower ratios
of segregation in the Dt subgenome of tetraploid cot-
ton may be a result of nucleocytoplasmic interactions
[62]. Although more distorted loci were skewed toward
the heterozygous allelic state than the homozygous
state (129 vs. 114), the number of SDRs showing skewed
transmission of G. hirsutum alleles exceeded the hete-
rozygotes two-fold (8 vs. 4). One possible explanation
was that G. hirsutum was the recurrent parent in our
mapping population, and the pattern of transmission
generally favored the elimination of the donor geno-
type, thus preserving the integrity of the recurrent
genotype [62].
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Integrating genetic and cytogenetic maps will accelerate
elucidation of chromosome structure in cotton

From the genetic map, we observed that DNA marker
loci are distributed unevenly on the cotton chromo-
somes. Heterochromatic regions in chromosomes are
well known to inhibit crossover formation [63]. The
clustering of a great number of markers corresponding
to the centromeric regions was recognized and physic-
ally verified in maize [64] and rice [65]. In cotton, the
centromeres of Chr. 12 and Chr. 26 have been located
on the cytogenetic map [37]. The marker loci BNL3816,
NAU1237, and NAU2096 from Chr. 12 and BNL3816,
NAU3006, NAU2356, and BNL840 from Chr. 26 are
near the centromeric regions of these two chromosomes,
respectively. In the newly updated genetic map, these
markers that are linked to the centromeric region are
distributed in the main peaks, indicating that the main
peaks encompass the centromeric regions of the two
chromosomes. Furthermore, in the newly updated gen-
etic map, linkage groups A9, D5, and D9 had two main
peaks, implying that there are two crossover suppression
regions in each of these three chromosomes. Wang et al.
(2008) distinguished the individual A-genome chromo-
somes by the BAC-FISH, and 45S rDNA and 5S rDNA
probes gave hybridization signals on linkage groups A5,
A7 and A9 [66]. The relationships between the rDNA
regions and the two main peaks on these chromosomes
needs to be further examined.

Toward assembling the allotetraploid cotton genome

Tetraploid cotton (n=2x=26, AD) was derived from
two diploids with A and D genomes that diverged from
a common ancestor. The genus Gossypium consists of at
least 45 diploid and five allotetraploid species [67]. The
evolution of cotton species has been significantly
affected by polyploidization events [7]. During evolution,
all diploid cotton species originated from a common an-
cestor 5—15 million years ago, and all tetraploid cotton
species originated 1-2 million years ago. As a conse-
quence of polyploidization, when genes are duplicated
they may continue to evolve at the same rate as they
did in their diploid ancestors, or they may be subject
to selection pressures that lead to differential rates
of sequence change [68]. Ultimately, these duplicated
sequences and their functions are maintained intact or
undergo long-term evolutionary changes via sequence
elimination [69,70], sequence rearrangement [71], gene
silencing [72], or acquisition of new function [73]. There-
fore, many paralogous loci, usually two homoeologous
paralogous loci, one from the A-subgenome and another
from the D-subgenome, occur as a result of polyploidiza-
tion, with other paralogous loci arising from tandem
duplications. Significant polyploidization may complicate
the assembly of cotton genome sequences, especially if
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they are accompanied by frequent illegitimate recombin-
ation events that render 'islands' of paralogous DNA se-
quence (such as genes) homogeneous [74,75].

The high-density map described herein, and integra-
tion of cotton genomic data with genetically-mapped
markers provides an excellent bridge to assemble cotton
genome sequences accurately, fine map tagged QTL,
and accomplish the confirmation of genes structure
and function [76,77]. In this study, loci duplication,
rearrangement and translocation were all detected by
the analysis of duplicated loci. Nevertheless, using a
PCR-based computational method, a large number of
cotton EST and BAC sequences were anchored to the
cotton genetic map based on the available marker pri-
mer probes. In the bioinformatics analysis, we found that
a tolerance of three mismatches in the alignments
achieved a good balance between performance and ac-
curacy. Therefore, locus applicability could be greatly
enhanced by identifying the corresponding gene func-
tions. As a result, 337 ESTs/genes related to fiber quality
traits were integrated with 132 previously reported cot-
ton fiber quality QTL, with more on the D-subgenome
than on the A-subgenome. This finding indicated that
the D-subgenome from a non-fiber-production ancestor
plays a large role in the genetic control of fiber growth
and development in polyploid cotton. The ESTs/genes
from the D-subgenome were important for improving
cotton fiber quality, and these could be studied in depth
to elucidate the relationship between ESTs/genes and
QTL related to important fiber traits, further for the
improvement of fiber quality in breeding purposes. The
importance of the D-subgenome in lint fiber develop-
ment has also been previously studied by a meta-analysis
of polyploid cotton fiber QTL [78] and a joint analysis of
multiple backcross generations [79].

The 2,111 previously-mapped independent markers
were successfully matched to EST sequences and BAC
clones from different cotton species or the two subge-
nomes in tetraploid cotton species. Furthermore, we
detected higher-level evolutionary sequence conserva-
tion in the different Gossypium species, as well as
sequence size differences of paralogous and orthologous
loci in the natural evolutionary process of genus Gossy-
pium. The integrated physical sequences and the genetic
map provide us with valuable resources for comparative
genomics of different cotton species, for distinguishing
the two different subgenomes from one another, and for
ultimately elucidating the genomic determinants of
phenotypic diversity between cotton species that evolved
within the last 5-15 Mya.

Conclusion
In conclusion, the construction of a high-density linkage
map provides an essential resource to facilitate the
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correct ordering of DNA segments on chromosomes
for the comprehensive and accurate assembly of the
allotetraploid cotton genome, and will enable further
clarification of genome organization changes revealed
by multiple species comparisons. The future availability
of whole-genome sequences from cotton species will
provide us with an unprecedented opportunity to
analyze features of genome organization at the DNA
sequence level, to study differences between organisms
by comparing whole genomic sequences, and to enhance
our understanding of the functional and agronomic
significance of polyploidy and genome size variation
in Gossypium.

Methods

Sources of primers

To refine our previously-constructed genetic linkage
map of tetraploid cotton, we screened more than 2000
primer pairs. In detail, 1,000 new SSR primer pairs with
prefixes GH from Texas A&M University, CER, CGR,
COT, DC, DPL, and SHIN from Monsanto and HAU
from Huazhong Agricultural University (http://www.cot-
tonmarker.org/) were chosen. In addition, 726 new eSSR
primers pairs, designated ‘NAU’ for Nanjing Agricultural
University, were developed using non-redundant EST
sequences from G. barbadense cv. Hai7124 and G. rai-
mondii; The other primers, including RT (PCR amplifi-
cation of cDNA sequences), CAPs (cleaved amplified
polymorphisms), BAC-end (BAC end sequences) and
SNP (single nucleotide polymorphisms) are designed ‘Y’
or have the gene name itself as the primer prefix; these
were developed based on known gene or BAC end
sequences. Polymorphic InDel loci, where InDel primers
were developed based on known EST sequences, were dir-
ectly tagged on the linkage maps with the prefix ‘InDel’.
We also developed retrotransposon-microsatellite ampli-
fied polymorphism (REMAP) markers in cotton by ran-
domly combining long terminal repeat (LTR)-specific
primers with simple sequence repeat (SSR) primers.

Plant material, DNA extraction, PCR amplification, and
electrophoresis

The mapping population was composed of 138 BC; indi-
viduals that were generated from the cross [(TM-1 x
Hai7124) x TM-1] [34]. TM-1 is a genetic standard line
of Upland cotton and Hai7124 is a commercial Sea
island Verticillium-resistant cultivar. Cotton genomic
DNA was isolated from the two parents and each
BC; individual as described by Paterson et al. [80]. SSR-
PCR amplifications were performed using a Peltier
Thermal Cycler-225 (M] Research) and electrophoresis
of the products was performed as described by Zhang
et al. [81,82].
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Construction of the genetic linkage map
All primer pairs were first used to screen the parental
lines TM-1 and Hai7124 for polymorphisms. Poly-
morphic markers were then used to survey 138 indivi-
duals of the BC; mapping population. The maternal
(TM-1) genotype and the heterozygous (F;) genotype
were scored as 1 and 3 in the BC; population, respect-
ively. Missing data were noted as “-”. The x> test for
goodness of fit was used to assess the Mendelian 1:1
inheritance expected in the BC; segregating population.
JoinMap 3.0 [83] was used to calculate the genetic
linkage map. The Kosambi mapping function [84] was
used to convert recombination frequencies to genetic map
distances (centimorgan, cM). All linkage groups were
determined at log-of-odds (LOD) scores >6. Linkage
groups were assigned to chromosomes on the basis of our
backbone linkage maps [16,31-33] and the results of BAC—
FISH [fluorescence in situ hybridization (FISH) using bac-
terial artificial chromosome (BAC) clones as probes] [85].
Chromosome nomenclature was referenced to our previ-
ously published chromosome naming system [85].

Gossypium ESTs and genomic sequence resources

In the present study, a total of 413,113 available ESTs
and 195 BACs in the NCBI GenBank database (http://
www.ncbi.nlm.nih.gov) were extracted and organized.
The ESTs were mainly from four major cotton species
(Gossypium hirsutum, G. barbadense, G. raimondii, and
G. arboreum). All physical sequences were trimmed to
remove vector, adapter and low complexity regions based
on the UniVec (http://www.ncbinlm.nih.gov/Univec)
and RepBase databases [86] using stringent cutoff para-
meters. Approximately 410,102 cleaned ESTs and 195
BACs were used for the further integration analysis.

Integration of genetic markers and genomic DNA
sequence information

To align the markers with the EST and BAC sequences
onto the genetic map, 3,244 informative sequence-based
molecular markers were used. A PCR-based in silico
screening procedure was carried out with stringent cut-
off parameters: mismatch <3, and FR (Forward-Reverse
primer pair sequences) match pattern to ensure the spe-
cificity using Perl script program. This query sequence
was also searched against the BAC sequence database
using a hashing algorithm to identify high-scoring
segment matches with a paired-end match pattern. High
scoring hits were then extended in each direction until
the sequence similarity score fell below a threshold or
one of the separation characters was encountered.

Putative gene ontology and metabolic pathway analysis
The represented unigenes were subjected to a homology
analysis against the NCBI RefSeq plant protein database

Page 14 of 17

(http://www.ncbinlm.nih.gov/RefSeq/, release 53, May
10, 2012) using the Blastx alignment program [87].
Blastx searches were performed at an E value of 1e-05 to
filter out nonspecific high-scoring segment pairs. Differ-
ent descriptive statistics charts for the results of the Blast
alignments were then assigned for alignment evaluation.

The set of unigenes was submitted for GO (gene
ontology) annotation using the Blast2GO program with
the default parameters [88,89]. The program extracted
the GO terms associated with homologies identified with
BLAST and returned a list of GO annotations repre-
sented as hierarchical categories of increasing specificity.

Unigenes were assigned to metabolic pathways with
the tools supplied by the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [90]. The unigenes were pro-
cessed using the bi-directional “best hit” method (for-
ward and reverse reads) to assign orthologs. KAAS
(KEGG Automatic Annotation Server, http://www.gen-
ome.jp/kegg/kaas/) provided a functional annotation of
putative genes by Blast comparisons against the KEGG
GENES database. The output included KO (KEGG
Orthology) assignments and automatically generated
KEGG pathways.

Integrating ESTs/genes with previously reported QTL
related to fiber quality

Fiber quality QTL previously reported in our lab [39-53]
were chosen for the analysis of these QTL chromosome
distribution characteristics and to reveal the relationship
between these QTL and ESTs/genes related to fiber
development. Integration was performed according to
the marker interval and QTL peak location information.
Only the QTL region flanking markers within 20 cM
were selected to mine the ESTs/genes in the region. The
fiber quality traits mainly included fiber length (FL),
fiber strength (FS), fiber fineness (FF), fiber elongation
(FE) and fiber uniformity (FU). To cluster QTL from dif-
ferent populations, the meta-analysis was carried out
using the “Meta-Analysis” function in the BioMercator
v 2.1 software program [91].
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