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Abstract

Background: The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal
pathogen causing life-threatening infections in immuno-compromised patients. Recently developed
high-throughput transcriptome and proteome technologies, such as microarrays, RNA deep-sequencing, and
LC-MS/MS of peptide mixtures, are of enormous value for systematically investigating pathogenic organisms. In the
field of infection biology, one of the priorities is to collect and standardise data, in order to generate datasets that
can be used to investigate and compare pathways and gene responses involved in pathogenicity. The “omics” era
provides a multitude of inputs that need to be integrated and assessed. We therefore evaluated the potential of
paired-end mRNA-Seq for investigating the regulatory role of the central mitogen activated protein kinase (MpkA).
This kinase is involved in the cell wall integrity signalling pathway of A. fumigatus and essential for maintaining an
intact cell wall in response to stress.

Results: The comparison of the transcriptome and proteome of an A. fumigatus wild-type strain with an mpkA null
mutant strain revealed that 70.4% of the genome was found to be expressed and that MpkA plays a significant role
in the regulation of many genes involved in cell wall remodelling, oxidative stress and iron starvation response, and
secondary metabolite biosynthesis. Moreover, absence of the mpkA gene also strongly affects the expression of
genes involved in primary metabolism. The data were further processed to evaluate the potential of the mRNA-Seq
technique. We comprehensively matched up our data to published transcriptome studies and were able to show
an improved data comparability of mRNA-Seq experiments independently of the technique used. Analysis of
transcriptome and proteome data revealed only a weak correlation between mRNA and protein abundance.

Conclusions: High-throughput analysis of MpkA-dependent gene expression confirmed many previous findings
that this kinase is important for regulating many genes involved in metabolic pathways. Our analysis showed more
than 2000 differentially regulated genes. RNA deep-sequencing is less error-prone than established
microarray-based technologies. It also provides additional information in A. fumigatus studies and as a result is more
suitable for the creation of extensive datasets.
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Background
The development of new transcriptome techniques,
coupled with the ability of creating and analysing huge
databases, has paved the way for system biology’s
“Golden Age”. The generation and processing of high-
throughput data makes possible the investigation of the
genome, transcriptome, proteome and metabolome of
living organisms in an overall context. This is particu-
larly useful for gaining a deeper understanding of patho-
genic microorganisms [1].
The above holds also true for Aspergillus fumigatus,

which can be regarded as the most important air-
borne fungal pathogen. This fungus can cause a life-
threatening disease, invasive aspergillosis (IA), in
immuno-compromised patients. Patients that suffer
from IA still have a low life expectancy. This is due
to the lack of reliable diagnostic tools and of efficient
antifungal therapies [2,3].
Transcriptome analysis has just recently been applied

to A. fumigatus. The first genome-sequencing project,
applied to the isolate Af293 and coupled with the first
transcriptome data available, has been published [4] and
a second genome, from the A. fumigatus strain A1163, is
now available [5]. In the last few years, various micro-
array platforms have been designed for global transcrip-
tome analyses of A. fumigatus. These platforms have all
been developed independently of each other using
defined sets of primers and probes. However, developing
microarray platforms for A. fumigatus has already been
made outdated by the advent of new technologies based
on cDNA sequencing.
To show the potential possibilities of mRNA-Seq to

accelerate Aspergillus research and to deepen our
knowledge about the regulatory function of MpkA, we
analysed A. fumigatus wild-type and the corresponding
mutant lacking the mpkA gene by cDNA sequencing
and 2D gel-based proteomics. The gene mpkA codes
for the mitogen activated protein kinase MpkA which
acts on the A. fumigatus cell wall integrity (CWI) sig-
nalling pathway [6,7]. The ΔmpkA mutant strain is
sensitive to cell-wall active compounds, oxidative
stress and heat shock. The function of this gene is
also related to polyamine metabolism and to the iron
depletion response [8]. Moreover, it affects the expres-
sion of several secondary metabolite gene clusters.
The ΔmpkA mutant strain produces less gliotoxin
than the wild type and this is a potent immunosup-
pressant belonging to the epipolythiodioxopiperazine
class of fungal toxins [8,9]. Our transcriptomic and
proteomics data also allowed us to compare different
omics-techniques. Analysis of the mRNA sequences
obtained revealed unexpected novelties in the A. fumigatus
genome. We also found that 30% of the transcriptionally
active A. fumigatus genome has not been annotated in the
canonical genome databases (e.g. CADRE, Broad, and
AspGD) [10,11].
In addition, we addressed the question of how the data

obtained with these new technologies differ from publi-
cally available microarray data. To do this we compared
published transcriptome studies carried out by using ei-
ther microarrays or by applying mRNA-Seq with the
mRNA-Seq dataset we generated. This comparison
demonstrated that the data varies more among the dif-
ferent microarray platforms than between mRNA-Seq
experiments. Additionally, all the collected transcrip-
tome data were compared with proteome data. Although
the data obtained by mRNA-Seq was better correlated
with the A. fumigatus proteome, there was still a rela-
tively low correlation between the two different datasets.

Results
mRNA-Seq data set summary
To gain a deeper insight into the regulatory circuits of
the MAP-kinase MpkA in A. fumigatus we extracted
RNA from a null mpkA mutant and from the corre-
sponding wild-type strain. We sequenced a total of six li-
braries, three biological replicates for the ΔmpkA strain
and three for the wild-type strain. We obtained about
263 million paired end reads. Of these, 193 million
(74%) were uniquely mapped against the A. fumigatus
A1163 genome. Using a stringent RPKM cut-off of 10
reads per gene, 8172 genes (80% of the total annotated
genes) were found to be transcribed in the wild-type
strain we used. The coverage obtained was similar to
that analysed in the dataset published by Gibbons et al.
[12] for A. fumigatus (72% of the genes having an RPKM
greater than 10). It was also similar to an mRNA-Seq
study in A. oryzae [13], where the majority (83.4%) of
the genome was covered by at least one read. Requiring
coverage of at least 10 overlapping paired-end reads per
base-pair, 70.4% (~20 million base pairs) of the genome
was found to be expressed. This is remarkable, consider-
ing the fact that according to the A. fumigatus CADRE
genome database, only ~50% of the genome is potentially
transcribable. These findings indicated that the A. fumigatus
transcriptome has been greatly underestimated.
UTRs prediction and annotation of new genes
So far, most studies have used mRNA-Seq data to iden-
tify transcriptional islands, which are consecutive areas
of overlapping reads [13]. We additionally checked these
Transcript Active Regions (TARs) for open reading
frames. Since this approach is error prone, we employed
ab initio gene prediction combined with mRNA-Seq
data to improve the quality of gene prediction (Figure 1).
This evidence-based gene prediction has the advantage
over the classic ab initio prediction of finding gene



Figure 1 Workflow for evidence-driven gene prediction. The evidence is obtained by deep-sequencing which provides valuable hints like
splice junctions or expressed regions.
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structures by making use of the mRNA-Seq expression
profiles. This combination incorporates intron-junction
information derived from intron-spanning reads and
allows the prediction of not translated regions (UTR) in
a systematic manner.
Gene prediction still requires manual work to find ap-

propriate adjustments for integrating data within a clas-
sic gene-predicting framework. By using mRNA-Seq
data, we identified 185 new transcripts coding for puta-
tive proteins (Additional file 1: Table S1 and Table S2).
However, we could not exclude the possibility that the
new transcripts are part of untranslated regions (UTRs)
or even part of genes that need to be re-annotated.
Among all the identified new transcripts, 44 of them
have unknown functions, while 141 have orthologs in
the genomes of other fungi.
Incorporating mRNA-Seq data into gene prediction

also allowed the identification of UTRs (Additional file 1:
Table S2). However, UTR prediction remains a difficult
task as only expressed regions provide evidence for UTR
length. The method can therefore result in vague length
predictions, especially for genes with low expression, due
to insufficient coverage. Nevertheless, the identification
of 5'UTR can help to find upstream open reading
frames (uORFs) and led in our case to the identification
of one potential uORF among the newly identified
genes (Additional file 1: Table S2). However, knowledge
of UTR sequences in A. fumigatus remains poor. This
is mainly due to the lack of available expressed se-
quence tag (EST) libraries. Our analysis highlighted the
fact that some genes can have multiple or alternative
transcriptional starting points. We found an average
median length for 5'UTR of 308 and for 3'UTR of 97
nucleotides based on 9912 UTR sequences for each
gene considered (Additional file 2: Figure S1).

Comparison of transcriptome technologies
To better evaluate the performance of microarrays and
mRNA-Seq, differentially expressed transcripts were
investigated. We compared transcript levels in both the
wild-type strain and the ΔmpkA mutant strain by repeat-
ing the experiment performed by Jain et al. [8].
Transcriptome data obtained by mRNA-Seq identified

2046 differentially regulated genes (log2 fold change >2
and likelihood >0.99). For comparison, using the Febit
microarray platform, 653 differentially expressed genes
were identified (fold change >1.5) (see Additional file 1:
Table S3, Table S4, and Table S5). KEGG analysis
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showed that common gene categories were enriched by
the differentially expressed genes identified in the two
datasets (Figure 2 and Additional file 1: Table S6, Table
S7, and Table S8). The main difference between data sets
was that mRNA-Seq gave a more detailed picture. The
number of enriched genes for a specific category was
substantially higher showing, for example, complete sec-
ondary metabolite gene clusters to be differentially regu-
lated (e.g. the gene cluster bordered by genes
AFUB_000840 and AFUB_000750). It is noteworthy that
genes enriched in the KEGG category 0.1.1., i.e. genes
involved in metabolic pathways, were differentially regu-
lated in the mRNA-Seq data, but in contrast, were not
enriched in the data set obtained using microarrays. The
majority of these genes, in particular genes putatively
involved in fatty acid metabolism, were down-regulated
in the ΔmpkA mutant. This suggests that the RNA deep
sequencing technique is more sensitive in finding differ-
entially expressed genes than the microarray technique.
This might be explained by the greater dynamic range
covered by the RNA technique [14,15].
For a more detailed analysis, we computed log fold

changes for the ΔmpkA mutant vs the wild-type of the
differentially expressed genes based on both microarray
and mRNA-Seq data, including two biological replicates
for each (Figure 3). Correlation of log fold changes of
Figure 2 Comparison of KEGG-enriched categories. Enriched categories
performed by mRNA-Seq (dark grey) and microarray (light grey), both perfo
compared to a ΔmpkA mutant strain.
expressed genes was highest within the same technology.
Correlation within mRNA-Seq replicates (Pearson’s cor-
relation coefficient r = 0.96) was higher than that be-
tween the two microarray replicates (r = 0.53). This low
correlation was mainly due to genes that only slightly
changed their expression between conditions and are
therefore more affected by the technological noise
resulting from the technology used. A possible explan-
ation is the low sensitivity of microarrays for low
expressed genes that results in a smaller dynamic range
compared to sequence data [15].
When comparing the global transcript fold changes

between mRNA-Seq and microarrays the correlation
amounted to 0.14-0.19 considering all expressed genes
(Figure 3). This was not surprising because most genes
are not expected to be differentially expressed, which
consequently reduces the correlation. Since these genes
are usually not of interest, we selected genes having the
highest absolute fold change in both studies (10% quan-
tiles of the total number of genes, intersection from
mRNA-Seq and microarrays). The correlation value for
this subset resulted in a large increase of both the
within-array correlation (from 0.53 to 0.83) and the
cross-technology correlation (between mRNA-Seq and
microarrays, from 0.19 to 0.41). However, the 0.41 cor-
relation is still lower than those found in other studies
were obtained by analysing two different transcriptome analyses
rmed to investigate genes expressed differently in a wild type



Figure 3 Comparison of log2 fold changes. Analysis of wt vs ΔmpkA mutant among and across both technologies (microarrays and
mRNA-Seq). Genes are coloured blue if they were up-regulated (being in the 10% quantile of the genes with the highest fold-change) in both
technologies (181 DEGs), red if down-regulated in both technologies (141), green if down-regulated on the arrays and up-regulated for sequence
platform (70) and cyan for the opposite case (141).
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(e.g. Marioni et al. [16] found a correlation of 0.73 by
comparing log fold changes between Affymetrix arrays
and Illumina sequencing in experiments performed on
human samples).
With the purpose of having additional values for

evaluating the transcriptome data from the two technical
platforms, qRT-PCR was performed in order to quantify
transcript levels of genes that showed different expres-
sion levels in both studies (Figure 4, Additional file 1:
Table S9 and Additional file 3: Figure S2). Among the 15
transcripts investigated, 10 confirmed the direction of
expression change detected by both transcriptome ana-
lysis techniques (with higher significance for mRNA-Seq
data). Surprisingly, qRT-PCR did not reveal significant
changes in some genes that showed opposite regulation
in the analyses of the two techniques. For instance, qRT-
PCR confirmed the mRNA-Seq results for the sidD gene,
coding for a non-ribosomal peptide synthetase involved



Figure 4 Differentially expressed gene and protein abundances. A) qRT-PCR used to check genes that showed differential expression
between wt and ΔmpkA strains during microarray, mRNA-Seq and 2D proteome analysis. The relative amount of transcripts was normalised by
setting the value for each wt gene to 1; B) table listing the genes investigated with their respective fold change (ΔmpkA vs wt strains) during
microarray, mRNA-Seq and 2D proteome analysis.
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in siderophore production (AFUA_3G03420). Micro-
array data showed that genes expressed during low iron
stress response were down-regulated in the ΔmpkA mu-
tant strain. Previous experiments reversed microarray
results, demonstrating that MpkA negatively regulates
genes involved in siderophore production, indicating
that many genes involved in iron depletion response are
up-regulated in the ΔmpkA mutant strain (e.g. sidA or
sidD) [8]. Current mRNA-Seq data confirmed our ex-
perimental hypothesis, by showing that genes involved
in the iron starvation response are, in fact, up-regulated.
In order to study absolute transcript abundance rela-

tionships within and across various microarray and
mRNA-Seq platforms, we performed a comprehensive
comparison. Analysis of transcriptome techniques
included five microarray studies (three different plat-
forms) and two different experiments performed using
mRNA-Seq analysis (created in different labs) (Table 1).
In this comparison, we included one representative sam-
ple corresponding to wild type for each experiment. For
the study of Jain et al. [8] we also included two inde-
pendent probe measurements in addition to the stand-
ard one (i.e., combined) to assess within-platform
expression.
In total, the dataset compiled consists of seven wild-

type measurements that were compared in a pair-wise



Table 1 Arrays analysed

No Technique Platform Used strains Growth conditions Study References Accession Technology

1 Microarray TIGR
(30 k v1)

Af293 5 × 106 conidia per ml,
inoculated in complete
media, for 17 hours,
at 30–37°C, 160 rpm

Temperature shifts
(30 to 37°C and
30 to 48°C)

[4] ArrayExpress:
E-MEXP-332

DNA amplicon
microarray

2 Microarray Custom
(Roche)

Af293 108 conidia per ml,
inoculated in potato
dextrose media, for
24 hours, at 28°C,
160 rpm

Effects on growth
in the presence of TSA

[18] GEO: GSE19682 60mer
oligonucleotide

3 Microarray Febit CEA17 106 conidia per ml,
inoculated in minimal
media, for 16 hours,
at 37°C, 200 rpm

Comparison among
wild type, ΔgprC, and
ΔgprD mutant

[25] Omnifung in situ
oligonucleotide

4 Microarray TIGR (22 K v3) ATTC 46645 107 conidia per ml,
inoculated in Brian’s
media, for 14 hours,
at 37°C, 150 rpm

Comparison between
planktonic and
biofilm growth

[17] GEO: GSE19430 in situ
oligonucleotide

5 Microarray Febit CEA17 106 conidia per ml,
inoculated in minimal
media, for 16 hours,
at 37°C, 200 rpm

Comparison between
wild type and ΔmpkA
mutant

[8] Omnifung in situ
oligonucleotide

6 mRNA-Seq Illumina ATTC 46645
Af293 CEA10*

107 conidia per ml,
inoculated in Brian’s
media, for 14 hours,
at 37°C, 150 rpm

Comparison between
planktonic and
biofilm growth

[12] On enquiry GAIIx

7 mRNA-Seq Illumina CEA17 106 conidia per ml,
inoculated in minimal
media, for 16 hours,
at 37°C, 200 rpm

Comparison between
wild type and
ΔmpkA mutant

This study ArrayExpress:
E-MTAB-1236

GAIIx

8 Proteomic 2D-DIGE ATTC 46645 106 conidia per ml,
inoculated in minimal
media, for 16 hours,
at 37°C, 200 rpm

Design the A. fumigatus
mycelial and
mitochondrial proteome
map

[21] Omnifung MALDI-TOF/TOF

9 Proteomic 2D-DIGE CEA17 106 conidia per ml,
inoculated in minimal
media, for 16 hours,
at 37°C, 200 rpm

Comparison between
wild type and ΔmpkA
mutant

This study On enquiry MALDI-TOF/TOF

GEO: gene expression omnibus (www.ncbi.nlm.nih.gov/geo); Omnifung (www.omnifung.hki-jena.de); ArrayExpress (http://www.ebi.ac.uk/arrayexpress/). *CEA17
strain is the uracile auxotroph derived from the CEA10 strain.
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manner. A pair wise scatter plot was realised by comput-
ing the Pearson and Spearman correlations for all pairs
(Figure 5 and Additional file 1: Table S10 and Table
S11). Spearman is a rank correlation technique that can
capture some non-linear relationships and is less prone
to outliers produced by highly abundant genes. As for
Marioni et al. [16] and Feng et al. [14] the correlation
between replicates for the same experiment ranged from
0.93 for the dataset of Bruns et al. [17] to 0.99 for the
both mRNA-Seq studies, indicating high platform-
reproducibility for microarrays as well as for sequencing
data (data not shown). Therefore, it was sufficient to in-
clude only one representative replicate for each platform
to obtain concise comparisons.
The transcriptome data reported showed that expres-

sion values measured for transcripts were strongly scat-
tered. Cross platform correlation was quite low, ranging
from 0.12 ([17] vs [18]) to 0.52 ([4] vs [18]). Correlation
between the independent measurements (probes A and
B) as calculated for the dataset of Jain et al. [8] was only
0.64, although all probes were exposed to the same sam-
ples. This indicates a strong technological bias of micro-
array data due to variation in hybridisation. At the same
time, the correlation between the two Febit datasets for
the combined probe measurements was quite high (0.89)
pointing to a high conservation of technological bias in
microarray platforms. In order to perform a general
comparison between technologies, i.e., microarrays vs
mRNA-Seq, the correlation of data within the same
technology was used as a reference for the correlations
between technologies. The highest correlation (0.68)
among comparisons of mRNA-Seq data to microarray
data was higher than the highest correlation between
arrays (0.52, Roche vs. TIGR v1). This points to the fact

http://www.ncbi.nlm.nih.gov/geo
http://www.omnifung.hki-jena.de
http://www.ebi.ac.uk/arrayexpress/


Figure 5 Pair-wise scatterplot of transcriptome datasets. Pair-wise scatterplot of the absolute RNA expression values measured by several
microarray platforms as well as mRNA-Seq: upper triangle, the pair-wise scatterplots; lower triangle, the corresponding Pearson correlation r
(Spearman correlation coefficient rs in brackets) for each pair. A high correlation (with the maximum being one) indicates great agreement of
expression between the datasets compared. The green (red) coloured dots correspond to genes that are highly (little) expressed in the
mRNA-Seq data and little (highly) expressed in the microarray study of Jain el al. (2011) to check for bias due to the different technologies.
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that RNA sequencing data are less affected by techno-
logical bias, which is confirmed by the scatter plot com-
paring both mRNA-Seq datasets (Figure 5).

Comparison between A. fumigatus transcriptome and
proteome
In order to analyse a possible correlation between tran-
scripts and protein abundances as well as fold-changes,
mRNA-Seq data, microarray data and the proteome data
of the A. fumigatus wild-type and ΔmpkA mutant strain
were compared. Looking at differential expression, 48
different proteins were identified by 2D-gel electro-
phoresis and subsequent MALDI-TOF / TOF, which
showed a significant fold change in abundance (employing
DIGE) in the ΔmpkA mutant compared to wild type.
Gene enrichment and pathway analysis revealed that
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abundance of many proteins involved in metabolic pro-
cesses and in oxidation/reduction processes is affected
by MpkA (Additional file 1: Table S12 and Additional
file 4: Figure S4).
The regulation of protein levels was also compared

with transcriptome data obtained from microarrays
developed by Febit and used in the study of Jain et al.
[8] and our mRNA-Seq data. As in earlier results
(Figure 3, based on 9800 genes rather than 48) the
fold change correlation between microarrays and
mRNA-Seq was low (r = 0.14, Additional file 5: Figure
S3). The measurements for transcriptome fold change
often display low reproducibility because of difficulties
in capturing the “true” fold change. For this reason, a
low correlation between proteome and transcriptome
technologies was assumed. However, the correlation
between data obtained by microarrays and the prote-
ome data was significantly higher (r = 0.28) than the
correlation between mRNA-Seq data vs proteome
(r = 0.19). As in the comparative analysis of the tran-
scriptome data, the low correlation applies to all
genes with a low fold change resulting in a higher
relative impact of technological noise. Furthermore, it
has already been shown by studies on human and
mouse [19,20] that the relationship between transcrip-
tome and proteome data is quite complex and pro-
tein levels are greatly influenced by post-translational
processing and inherent variations in stability. These
factors result in low correlations.
In order to study absolute protein abundances, we rea-

nalysed the A. fumigatus 2D proteome map generated by
Vödisch et al. [21], resulting in the identification of 312
unique proteins. These proteins were also present in
the different transcriptome data mentioned above
(Additional file 1: Table S13 and Table S14). In A. fumigatus,
the relative abundances of the proteome map correlated
surprisingly well with mRNA-Seq expression levels
(r = 0.36 for our data, and r = 0.5 for data from [12],
Figure 5) as well as with most microarrays, in particular
the Febit arrays (r = 0.47–0.49). It is also noteworthy
that the genes on the scatter plots (Figure 6) are more
equally distributed for mRNA-Seq vs proteome com-
parison (left bottom corner) whereas, in particular for
Febit arrays, a bias was observed towards genes that are
highly expressed on the arrays but with low expression
on the proteome-map. This is most probably due to
cross-hybridisation. By contrast, this sort of bias was
not observed in the NGS data.
To check for genes that are potentially subject to post-

transcriptional regulation, we selected genes that were
very abundant in the mRNA-Seq data and rare in the
proteome-map (coloured green in Figure 6) or the in-
verse (coloured red). FunCat-analysis using FungiFun
tools [22] indicated that the “green” genes (i.e. those
genes that are highly expressed according to mRNA-Seq
but little expressed according to proteome data) were
not significantly enriched within a functional category
(even after multiple correction), whereas the red ones (i.e.
those genes that are little expressed according to mRNA-
Seq but highly expressed according to microarray data)
were over-represented within the tricarboxylic-acid path-
way and amino acid metabolism. These processes con-
stantly require large amounts of proteins that are
therefore less subjected to transcriptional regulation.
Discussion
Over recent years, it has become evident that the
eukaryotic regulatory machinery linking cause (for in-
stance, stress) to effect (stress response) is very complex.
It usually involves the interplay of several regulatory
layers such as transcriptome, epigenome, and proteome
that might be subject to independent regulatory
mechanisms. To understand these interactions as a
whole, integrated studies are required.
We found that about 30% of the A. fumigatus genome

expressed is located in assigned intergenic and intronic
regions. This is most likely due to the presence of un-
translated regions (UTRs) and transcripts that have not
been classified so far. We investigated the potential of
RNA deep-sequencing data to identify these genes by
combining gene prediction (using the Augustus plat-
form) and paired-end reads. This pioneer methodology
helped us find almost 200 new transcripts with coding
potential. Blast analysis revealed that more than half of
these new transcripts harbour at least one ortholog in
other Aspergillus species. This indicates the great poten-
tial of this methodology to find new genes and to im-
prove gene annotations.
We tested RNA deep-sequencing to further investigate

the role of MpkA in A. fumigatus. Previous studies
demonstrated that this kinase is decisive for cell wall in-
tegrity signalling pathway regulation ([7]; 2010). Further
studies revealed that MpkA is also involved in the regu-
lation of the oxidative stress response, secondary metab-
olite production and siderophore biosynthesis during
iron starvation [8]. Concerning the role of MpkA in A.
fumigatus, mRNA-Seq data confirmed previous findings.
Additionally, many genes involved in primary and sec-
ondary metabolism were affected by MpkA. In particu-
lar, genes putatively involved in amino acid biosynthesis
were differentially expressed in the ΔmpkA mutant
strain. This finding explained the strong difference found
in the soluble amino acid pool composition for this
strain [8]. Moreover, almost 10% of genes differentially
expressed in the ΔmpkA mutant are putatively involved
in primary metabolism (e.g. fatty acid metabolism and
amino acid metabolism). These results confirmed that



Figure 6 Pair-wise comparison of all three technologies (microarrays, mRNA-Seq and 2D proteomics). The last column / row contain the
comparison of the proteome-quantities of the proteome map [34] to RNA quantities measured by various microarray as well as mRNA-Seq
platforms.
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one of the functions carried out by MpkA is to fine-tune
the balance between stress response and energy consum-
ing cellular processes. Considering the genes involved in
the iron-deficiency stress response, it was found that dif-
ferent techniques gave opposite results. It was previously
reported that MpkA is important for regulating sidero-
phore production by measuring an increased amount of
siderophores in the ΔmpkA mutant strain during iron
starvation [8]. This illustrates that mRNA-Seq is more
reliable than other transcriptome techniques. However,
the differences found between mRNA-Seq and qRT-PCR
showed that it would be good practice if results obtained
by sequencing were confirmed by applying ad hoc
experiments.
Microarray data showed that genes belonging to sev-

eral A. fumigatus secondary metabolite biosynthesis gene
clusters were differentially expressed in the ΔmpkA mu-
tant (e.g. gliotoxin and pseurotin A). Secondary metabol-
ite biosynthesis gene clusters are normally characterised
by the presence of polyketide synthases (PKSs) or non-
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ribosomal peptide synthetases (NRPSs). Analysis of the
A. fumigatus A1163 genome revealed the presence of 17
NRPSs, 13 PKSs and three hybrid NRPS/PKS enzymes
[23].
Among them, 11 gene clusters have been found to be

differentially regulated in the ΔmpkA mutant. Further-
more, in comparison with the microarray studies, the
higher sensitivity of the mRNA-Seq technique led to the
identification of almost all genes of a cluster to be differ-
entially regulated. The mRNA-Seq approach is therefore
superior to microarrays for studies on the global regula-
tion of secondary metabolite biosynthesis.
The second question that we addressed concerned the

comparability of mRNA-Seq data with published tran-
scriptome data. We compared different technologies to
investigate the A. fumigatus transcriptome (microarrays,
mRNA-Seq and qRT-PCR). Information obtained by
analysing these technologies were compared with a com-
prehensive set of proteome data obtained by 2D DIGE
analysis followed by MALDI-TOF-MS / MS-based pro-
tein detection. The comprehensive dataset compiled in
this study constitutes a basis for future studies with the
aim of shedding light on the relationship between prote-
ome and transcriptome data, in order, for example, to
understand better post-transcriptional regulation on a
global scale.
With regard to A. fumigatus, the results of whole gen-

ome transcriptome analyses based on microarrays were
highly dependent on the platform used. Low consistency
of microarray gene expression data can have multiple
reasons, such as platform effects [24], different media,
RNA extraction protocols, or biological variability. How-
ever, hybridisation seems to have the most significant
impact. Hybridisation strongly depends on the probes,
which were used to develop the microarrays. In the case
of A. fumigatus, they have been designed independently
from each other for the different platforms. The hybrid-
isation bias seems to be highly conserved within the
same platform, as shown by the high level of agreement
between the studies of Jain et al. [8] and Gehrke et al.
[25]. When considering the comparison between Jain
et al. [8] microarray data with the mRNA-Seq data
produced in this study, the correlation is relatively low
(r = 0.35). Moreover, comparing the two datasets
obtained with the same experimental proceeding by
Bruns et al. [17] using microarrays and by Gibbons et al.
[12] using mRNA-Seq, once again showed quite a low
correlation (r = 0.22). The global comparison demon-
strated that a higher correlation was found between the
two mRNA-Seq datasets. This finding demonstrates that
mRNA-Seq gives the highest level of comparability in
terms of gene expression levels in A. fumigatus.
Comparative analysis of the A. fumigatus intracellular

2D proteome map from Vödisch et al. [21] revealed that
protein abundances correlated well with transcriptome
abundances measured with both microarray (r = 0.34-
0.50) and mRNA-Seq techniques (r = 0.36-0.50). These
values were higher than the ones observed by Albrecht
et al. [26], who compared changes in A. fumigatus
microarray and proteome data after heat shock induc-
tion. Previously, Foss et al. [27] calculated a correlation
between proteome and transcriptome of r = 0.186 in
Saccharomyces cerevisiae based on 278 proteins detected
by LC-MS / MS analysis. Another study performed by
Ghazalpour et al. [19] using LC-MS / MS-based quanti-
fications of 486 mouse proteins, resulted in an average
correlation of r = 0.27 (using Affymetrix microarray).
However, although the results showed a better correl-
ation between A. fumigatus proteome and transcriptome
data, there was still a relatively low correlation between
the two different datasets. This is most likely caused by
a combination of several biases based on technological
and biological effects.

Conclusions
The potential of next generation sequencing to investi-
gate the regulation of the A. fumigatus transcriptome
was demonstrated. We found that the transcriptional po-
tential of A. fumigatus was underestimated. Almost 70%
of the genome was found to be actively transcribed. Se-
quence information obtained by mRNA-Seq was also
used for gene prediction. We showed that the incorpor-
ation of transcriptome-based assembly can be very help-
ful for improving or confirming gene annotation. This
methodology allowed us to identify 185 new transcripts
never reported in the A. fumigatus A1163 strain. Com-
pared to microarray data, we identified three times more
differentially regulated genes in the ΔmpkA mutant strain
compared with the wild type. Comparative transcriptome
and proteome studies pointed out that MpkA plays an
important role not only in maintaining the cell wall
structure under stress condition but also in affecting
genes involved in primary and secondary metabolism.
We compared data obtained by mRNA-Seq with those

obtained by established microarray-based technologies
for expression profiling. mRNA-Seq was found to be less
error-prone and more suitable for the realisation of ex-
tensive datasets that can be potentially created by differ-
ent groups under different lab conditions. Consequently,
data produced so far using different microarray plat-
forms, can only be considered by focusing on the highly
differentially expressed genes.

Methods
cDNA library construction and sequencing
The A. fumigatus strain CEA17KU80 strain was used for
all experiments. The CEA17KU80 strain was derived from
the CEA17 wild-type strain [28].



Müller et al. BMC Genomics 2012, 13:519 Page 12 of 14
http://www.biomedcentral.com/1471-2164/13/519
Total RNA was isolated from wild-type and ΔmpkA
strains cultured in Aspergillus minimal medium (AMM)
for 16 h at 37°C [8], using the Qiagen RNeasy Plant Mini
kit (Qiagen, Germany), according to the manufacturer’s
instruction. Three biological replicates for each strain
were collected. Total RNA was used for Illumina next-
generation sequencing [29]. For library preparation 5 μg
of total RNA per sample were processed using Illumina
mRNA-Seq sample prep kit (RS-100-0801) following the
manufacturer’s instruction. The cDNA libraries were
sequenced using a Genome Analyser (GAIIx) in a
paired-end approach with 2 × 36 cycles resulting in
paired reads with a length of 36 nucleotides per read.
Each library was sequenced on a single lane and ended
up with around 30–40 million reads per sample. Se-
quence data were extracted in FastQ format and used
for further analysis.

Mapping and normalising of transcriptome reads
All reads were mapped using TopHat 1.2.0 [30] against
the A. fumigatus A1163 genome (which is a derivative of
the A. fumigatus CEA17 strain) retrieved from Ensemble
release 9. Parameters were set according to preliminary
investigations, using a minimum intron length of 30 and
a maximum of 4000. In agreement with the protocol
used, from preliminary mapping a mean inner distance
between mate pairs of 307 was found with a standard
deviation of 110. To avoid multiple hits for a single read,
the maximum multi-hit option was set to one.
Transcript expression levels were normalised by

counting the number of reads per kilobase of exon re-
gion per million mapped reads (RPKM) [31].
To detect genes differentially expressed in the wild

type and the ΔmpkA mutant, we applied the R package
baySeq [32] which takes advantage of the three bio-
logical replicates for each condition. RPKM and differen-
tially expressed genes were determined using the A.
fumigatus A1163 genome annotated by CADRE as a
reference.
Differentially expressed genes were categorised using

GO enrichment, KEGG enrichment, and FunCat analysis
using the FungiFun platform [22].

UTRs prediction
With the purpose of identifying putative new transcripts,
we performed new gene annotation employing Augustus
ab initio prediction [33] combined with hints generated
from the mRNA-Seq reads. We present a new annota-
tion including UTRs for A. fumigatus A1163. These
hints consisted of intron junctions that were identified
by TopHat as well as exon-parts revealed with the
IRanges package which is part of the Bioconductor col-
lection. The workflow for new gene annotation is
reported in Figure 1.
Microarray data
The transcriptome and proteome data analysed are
summarised in Table 1. The datasets were obtained in a
pre-processed state i.e. background-corrected and nor-
malised. Since the different microarray platforms and
even the different A. fumigatus genomes have used dif-
ferent Gene-IDs (e.g. accession numbers starting with
AFUB for the A1163 strain, and accession numbers
starting with AFUA for the Af293 strain), all data were
mapped according to the AFUA annotation, using en-
semble mapping, to achieve comparability. The data
were imported and analysed in the R / Bioconductor
software environment employing the packages biomaRt
and Biostrings.

Real-Time PCR
The qRT-PCR experiments to determine the amounts of
selected putatively differently expressed genes were per-
formed with StepOnePlus Real-Time PCR System (Ap-
plied Biosystems), using myTaq HS Mix 2x (Bioline) and
Evagreen (Biotium). For each transcript analysed more
primers were tested in tandem, in order to obtain primer
efficiency close to 100% in all cases. To validate primers,
efficiency standard curves were realised considering
seven serial dilutions of genomic DNA of A. fumigatus
in three replicates. All the primers selected for the qRT-
PCR analysis are shown in Additional file 1: Table S15.
The A. fumigatus actin1 gene (AFUA_6G04740) was
chosen as the normalising gene. The cDNA was gener-
ated using RevertAid Premium (Fermentas). As negative
controls, a vial was prepared without reverse transcript-
ase, and another one was prepared without cDNA.

Assessing differential expression
To correlate the mRNA-Seq data with the corresponding
presence of proteins, the mRNA-Seq data set was com-
pared with the proteome data published by Vödisch
et al. [21]. For our study, the normalised protein spot
abundances on the 2D gels were reanalysed using the
most recent version of the software Delta 2D 4.3
(Decodon, Germany).
The DIGE (difference in-gel electrophoresis) technique

was used to analyse protein samples of wild type and
ΔmpkA mutant mycelium cultivated in AMM for 16 h
at 37°C. Twelve samples (three independent biological
replicates and two technical replicates for each strain as
well as one mixed internal standard), were labelled with
CyDye minimal dyes according to the manufacturer’s
protocol with slight modifications (GE Healthcare Bio-
Sciences, Munich Germany). We then labelled 50 μg
total protein of each sample with 300pmol of CyDye
DIGE fluorophores (dissolved in dimethyl formamide).
Samples obtained from the wild-type and from the
ΔmpkA mutant strain were labelled with either Cy3 or
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Cy5. A pool of all six samples (3 ×wt and 3 ×ΔmpkA)
was prepared, labelled with Cy2, and used as a global in-
ternal standard. We carried out 2D gel processing, spot
screening and MALDI-TOF / TOF analysis with an
ultrafleXtreme mass spectrometer (Bruker Daltonics,
Germany), as previously described [34] with slight
modifications. FlexControl 3.3 software was used for
data collection and flexAnalysis 3.3 for spectra analysis
and peak list generation (Bruker Daltonics, Germany).
Peptide mass fingerprint (PMF) and peptide fragmenta-
tion fingerprint (PFF) spectra were submitted to the
MASCOT 2.3 server (Matrix Science, U.K.) searching
the recent version of the NCPInr database but restricted
to the fungi. Mascot search parameters were the following:
fixed modification of cysteine thiols to S-carbamidomethyl
derivatives, variable methionine oxidation, up to one
missed cleavage and a peptide mass tolerance of 100 ppm.

Accession number
The RNA-Seq data were deposited in ArrayExpress
(ArrayExpress accession: E-MTAB-1236).

Additional files

Additional file 1: Tables.xls (Excel file which includes all the cited
supplementary tables).

Additional file 2: Figure S1. Length distribution of untranslated regions
(UTRs). The analysis was based on 9912 3' and 5' UTR sequences. The red
vertical lines indicate the average median length of the 5'UTRs (308) and
the 3'UTRs.

Additional file 3: Figure S2. Comparison of delta_delta_Ct values
obtained by qRT-PCR analysis (see also Additional file 1: Table S9). Values
obtained by qRT-PCR analysis where compared to log2 fold changes (wt
vs ΔmpkA) obtained by microarrays and mRNA-Seq based on 14 genes.
Both technologies seem to agree with the qRT-PCR-data with an average
Pearson correlation of r = 0.75 for microarrays and 0.55 for mRNA-Seq
(Spearman correlation coefficient rs in brackets).

Additional file 4: Figure S4. 2D gel electrophoresis of protein extracts.
Total proteins were extracted from A. fumigatus wild type (Cy5, green)
and ΔmpkA mutant strain (Cy3, purple). Proteins were stained with the
difference in gel electrophoresis (DIGE) labelling technique. Total proteins
were separated in a pH gradient of 3–11 (nonlinear).

Additional file 5: Figure S3. Pair-wise scatterplot of all three
technologies. Comparison of three different technologies that is
2D-DIGE proteomic, mRNA-Seq and microarray, to detect differentially
expressed genes and proteins between the Δmpka strain and wild-type
strain, based on log fold changes of 94 entries. The overall correlation
was found to be low, especially between mRNA-Seq and proteomic,
whereas the correlation between proteomic and microarray was higher.
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