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Abstract

Background: Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been
considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite
advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis.
Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins
encoded in the Kluyveromyces lactis genome.

Results: In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the
Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions,
and the development of a methodology supported by merlin (software developed in-house). The new annotation
includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter
proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes),
transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation
produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with
KEGG's annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new
gene annotations. Moreover, there are 32 genes with annotations different from KEGG.

Conclusions: The methodology developed throughout this work can be used to re-annotate any yeast or, with a
little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation
provided by this study offers basic knowledge which might be useful for the scientific community working on this
model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served
as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis,

which is currently being finished.
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Background

The yeast Kluyveromyces lactis (K. lactis) has long been
considered a model organism for studies in genetics and
physiology [1]. As pointed out by Fukuhara in 2006 [2],
interest in this organism began in academia, mainly due
to its ability to metabolize the beta-glycoside lactose and
other properties such as its GRAS (generally regarded as
safe) status. Biotechnological applications started to be
investigated later and, as depicted on the report by van
Ooyen et al. in 2006 [3], recombinant protein expression
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has probably been the most widely explored application
with K. lactis. There are reports that at least two of these
proteins, namely prochymosin and lactase (or beta-
galactosidase), reached industrial production [3,4].

A common approach used by the scientific community
active on K. lactis is to either literally work in parallel to
or at least in comparison with Saccharomyces cerevisiae
(S. cerevisiae). The Baker’s yeast is not only the best
described Eukaryote (it was the first Eukaryote ever to
have its genome completely sequenced [5]), but it is also
the most employed organism in industry, at least in
terms of production volumes.

Energy metabolism is the physiological aspect that
mostly distinguishes both species. While the Crabtree-
positive yeast S. cerevisiae has a strong tendency to
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ferment, even under aerobic conditions, K. lactis is con-
sidered Crabtree-negative and preferably uses respiration
for energy generation, unless oxygen becomes limiting
[6,7]. Another crucial difference between the two yeasts
is that K. lactis, in contrast to S. cerevisiae, is not capable
of growing under complete anaerobiosis [8].

Research on K. lactis (ak.a. milk yeast) is quite
advanced and includes aspects such as the glucose sens-
ing and repression cascade [9,10], the molecular basis
for the Crabtree-negative characteristic of this yeast [11],
the improvement of secretory pathways for heterologous
protein expression [12,13], the engineering of post-
translational modifications with the aim of avoiding
hypermannosilation of heterologous proteins [14], the
oxidative stress response [15,16], the molecular basis for
the incapacity of growing anaerobically [8,17], the de-
scription of its transcriptional regulators [18], and an ex-
haustive study of its cell wall [19]. Remarkably, many of
the physiological differences between K. lactis and S. cer-
evisiae seem related to the whole-genome duplication
event [20], which affected S. cerevisiae, but not K. lactis.

One of the key aspects of research on K. lactis is the
fact that most of the work performed in the past decades
has been based on a single strain, namely CBS 2359
(a.k.a. NRRL Y-1140). This has facilitated enormously the
interpretation of results and the interaction among
laboratories throughout the world [2]. Another import-
ant factor is that, in spite of all historical changes in
terms of taxonomic methods, mainly the recent adoption
of criteria purely based on gene sequences, K. lactis
remains K. lactis, even after a recent redefinition of the
Kluyveromyces and related genera [21,22].

K lactis is one of the few yeast species with which it is
possible to perform formal genetic analysis [2]. Add-
itionally, due to some recent advances [19,23,24], mo-
lecular tools have been developed, facilitating the
generation of mutants [1], a task which can now be con-
sidered as simple to perform with this yeast as it is with
S. cerevisiae. Also, its full genome sequence was made
available some years ago [25], allowing for the improve-
ment of our understanding on eukaryotic genome evolu-
tion by comparing the genomes of different yeast
species. Within this context, a number of works have
been published on particular aspects of yeast genomes
[26-33].

(Re-)Annotation

There are several reasons to re-annotate a genome, such
as: new genes or protein functions being discovered, a re-
search group trying to determine the reproducibility of
an existing annotation, or just because the information
associated to a specific organism is known to be out-
dated. Thus, the re-annotation of a genome, especially
for genes classified as hypothetical proteins, is very
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important for assuring an up-to-date gene annotation
and not compromising future similarity alignments for
newly sequenced genes.

Functional annotation can be defined as the inference
and assignment of functions to genes or proteins. Such
information is often obtained by similarity to formerly
characterized sequences, found in several online or local
databases [34]. Likewise, the re-annotation process can
be depicted as the annotation of a previously annotated
gene or full genome [34,35].

Though being uncommon, there are some examples of
genome wide re-annotations, such as Campylobacter
jejuni NCTC11168 [35] Mycobacterium tuberculosis
H37Rv [36], and Arabidopsis thaliana [37]. All of the
above annotations assigned new functions to genes that
had been previously identified as “hypothetical proteins”
and corrected some of the previous annotations.

A genome-wide metabolic functional annotation is a
thorough effort which has the objective of trying to de-
termine and label the genes involved in the metabolism
of the organism of interest, skipping the regulatory and
other genes annotation. Therefore, only the genes that
encode enzymes or transporter proteins will be assigned
with a function and included in this re-annotation.

Kluyveromyces lactis genome does not have an offi-
cial genome-wide functional metabolic or other anno-
tation in the GenBank [38] and Reference Sequences
(RefSeq) [39] databases (http://www.ncbi.nlm.nih.gov/
sites/entrez?Db=genome&Cmd=ShowDetailView&Term
ToSearch=17850). The annotation available in Gen-
Bank files (ftp://ftp.ncbi.nih.gov/genbank/genomes/Fungi/
Kluyveromyces_lactis NRRL_Y-1140_uid12377 any *.gbk)
in the GenBank database only characterizes the gene
products by applying the same code used for the gene
identification, followed by a “p” instead of a “g”; for
instance, /locus_tag="KLLAOA00132g” was assigned with
/product = "KLLAOA00132p". On the other hand, RefSeq
(ftp://ftp.ncbi.nih.gov/genomes/Fungi/Kluyveromyces_
lactis NRRL_Y-1140_uid12377/ any *.gbk) database assigns
all proteins as hypothetical proteins. Nevertheless, all
genes have descriptions in the GenBank “\notes” field.
For example, the KLLAOA08492g gene is described
as encoding a "conserved hypothetical protein”, the
KLLAOAO08536g gene has "some similarities with uni-
prot|P25587 Saccharomyces cerevisiae YCLOO5W" and
the KLLAOA08624g gene is "highly similar to uniprot]|
Q75ET0 Ashbya gossypii AAL0O02W AAL002Wp and
similar to YCLOO1W uniprot|P25560 Saccharomyces
cerevisiae YCLOO1W RER1 Protein...”. Other genes have
more explicit annotations, for instance gene KLLAOA00891g
is described as "uniprot|P53768 Kiuyveromyces lactis
KLLAOA00891g HAP2 Transcriptional activator HAP2",
KLLAOF13530g is a "uniprot|P49385 Kluyveromyces
lactis ADH4 Alcohol dehydrogenase IV, mitochondrial
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precursor” and KLLAODO00231g is described as "uniprot|
Q9Y844 Kluyveromyces lactis mal22 Maltase" (in agree-
ment with the new annotation). However, these descrip-
tions are not considered annotations, because relevant
information, such as the gene product and, when avail-
able, the Enzyme Commission (EC) number [40], is not
provided in most cases. Furthermore, when available,
such information should be delivered in the correct
GenBank field (“/product” and “/EC number” instead of
the “/notes” field) for easier manipulation using bioinfor-
matics tools and user appraisal. Other databases such as
KEGG (http://www.genome.jp/kegg/kegg2.html) [41] per-
form metabolic annotations, with fairly acceptable results,
though failing in some annotations and missing several
genes with metabolic functions. (Universal Protein Re-
source) UniProt (http://www.ebi.ac.uk/UniProt/), on its
hand, is composed by two databases, Swiss-Prot and
TrEMBL, which are curated and non-curated, respect-
ively [42]. The curated database provides information
that was manually annotated and reviewed, even if it was
obtained electronically. Such database contains some in-
formation about the microorganism studied during this
work, though somewhat scarce.

Hence, in this work we propose a genome-wide meta-
bolic (re-)annotation of the proteins encoded in the
Kluyveromyces lactis complete sequenced genome, iden-
tifying the genes involved in metabolites conversion and
carriage throughout the cell, which is imperative for the
reconstruction of a robust genome-scale metabolic
model.

Genome-scale reconstructed metabolic models

Full genome sequences have been used, among many
other applications, to reconstruct metabolic networks of
different microorganisms such as Escherichia coli [43] or
Saccharomyces cerevisiae [44]. This allows for the estab-
lishment of the so-called genome-scale metabolic models,
which are developed bottom-up from the genome up to
the reactions catalysed by the enzymes encoded in such
set of genes. It is an iterative process that culminates in a
reaction set that is used to simulate in silico the pheno-
type of the studied organism, under several environmen-
tal or genetic conditions [45]. The use of such models has
resulted in insight gaining and hypothesis testing, such as
the enhancement of sesquiterpene production in Sacchar-
omyces cerevisiae [46], the improvement of the produc-
tion of succinic acid in Escherichia coli [47] or finding
new targets in drug research [48].

For the reconstruction of a robust genome-scale
model, it is mandatory to have a proper annotation of
the genome. For a metabolic model, all genes with meta-
bolic roles, such as enzymes and transporters, have to be
identified. The reconstruction of a metabolic model is a
laborious and extensive process that has been described
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by Thiele and Palsson in 2010 [49] as a 96 steps proto-
col, which takes a long time to be completed, depending
on data availability. Such work also describes the first
step “1| Obtain genome annotation” as a critical step,
thus the importance of a robust annotation for the re-
construction process.

Although the genome of K. lactis has been publicly
available for some years, a complete functional annota-
tion was not made available to the public yet. In 2009,
Souciet et al. [33] re-annotated the genome of K. lactis,
together with the sequencing and annotation of other
yeast genomes, with the aim of performing comparative
genomics. However, such annotation did not propose a
functional annotation for each K. lactis gene. Here we
present a work which identifies genes with metabolic
functions and assigns functions to those genes, such as
EC numbers, Transporter Classification Superfamily
(TCS) numbers and Transporter Classification (TC)
numbers [50]. Whenever a complete EC number
(‘class’’subclass’.’sub-subclass’’enzyme serial number’)
was not available, a partial EC number was assigned to
such enzymes (‘class’’subclass’.’sub-subclass.-, ‘class’.’sub-
class’.-.- and ‘class’.-.-.-).

The re-annotation of the proteins encoded in the K.
lactis CBS 2359 metabolic genome was performed in a
semi-automatic manner by combining the use of the
software merlin [51], developed in-house and available
for download (at http://www.merlin-sysbio.org) and
manual inspection. The annotated genome of this organ-
ism brings some new insights on its capabilities and
allowed the reconstruction of the Kluyveromyces lactis
genome-scale metabolic model (currently being fina-
lized). merlin’s dynamic annotation tool was used to per-
form first an automatic re-annotation of the complete
genome followed by a manual curation of the enzymatic
annotation. merlin’s transporter annotation tool was
used to identify genes that encode transporter proteins,
as well as the metabolites transported by such systems.
In the end, a new, re-annotated, GenBank file was cre-
ated by merlin for each K. lactis chromosome.

We believe that this re-annotation not only served as
the basis for the assembly of a genome-scale metabolic
model for K. lactis, but also provides relevant biological
information for the scientific community dealing with
this organism and yeasts in general.

Methods

Online databases

Several online databases were used throughout this
work. A brief description of each one is available bellow:

o The first Basic Local Alignment Search Tool
(BLAST) [52] similarity search performed with
merlin used All non-redundant sequences (including
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GenBank coding sequences translations, RefSeq
Proteins, Brookhaven Protein Data Bank (PDB),
SwissProt, Protein Information Resource (PIR),
Protein Research Foundation (PRF) databases)
(nrDB) available in the National Center for
Biotechnology Information (NCBI) databases [39] to
find any protein sequence similar to translated

K lactis genes.

e A second BLAST search used NCBI’s yeast database
(yeastDB) [39], which is a single curated set of
Saccharomyces cerevisiae protein sequences available
at the NCBI's RefSeq database.

e The Entrez Protein (http://www.ncbi.nlm.nih.gov/
sites/entrez?db=protein) database is a collection of
sequences from several sources, including GenBank
CDS translations, RefSeq Proteins, SwissProt, PIR,
PRE, and PDB [39]. Entrez Protein provided all
information that merlin retrieved for each
Kluyveromyces lactis homologue gene.

e The UniProtKB/Swiss-Prot (http://www.UniProt.
org/) database is a manually curated protein
sequences database which provides annotations with
minimal redundancy and high level of integration
with other databases [42]. Thus, UniProtKB/Swiss-
Prot was selected as a reference resource during the
Kluyveromyces lactis genomic re-annotation.

e The Saccharomyces Genome Database (SGD —
http://www.yeastgenome.org/) project collects
information and maintains a database of the
molecular biology of the yeast Saccharomyces
cerevisiae [53]. This database includes a variety of
genomic and biological information and is
maintained and updated by curators. The SGD was
selected as the second reference database for this
project.

e The Comprehensive Enzyme Information System
BRaunschweig ENzyme DAtabase (BRENDA —
http://www.brenda-enzymes.info/) provides enzyme
functional data obtained directly from literature by
professional curators [54]. This database was used to
confirm the information gathered in the previous
two databases, thus being the third reference
database selected for this work.

e The Transporter Classification Database (TCDB —
http://www.tcdb.org/) details a comprehensive
classification system, approved by the International
Union of Biochemistry and Molecular Biology
(IUBMB), for membrane transporter proteins known
as the Transporter Classification (TC) system. The
TC system is analogous to the Enzyme Commission
system for classification of enzymes, except that it
incorporates both functional and phylogenetic
information [55]. This database was selected to
annotate transporter proteins.
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MEtabolic models reconstruction using genome-scalLe
INformation (merlin)

merlin [51] is a software tool, in continuous develop-
ment, created to assist on the process of reconstructing
a genome-scale metabolic model. The reconstruction
process cannot begin without a functionally annotated
genome; thus, merlin performs automatic genome-wide
functional (re)annotations, by comparing biological
sequences from the organism being studied with all of
the NCBI’s databases. merlin provides a numeric confi-
dence score for each automatic assignment, taking into
account the frequency and the taxonomy within the
annotations of all sequences that are similar to the gene
under investigation[51], according to equation (1):

SCOT€apnotation = a'scorefrequency + (1 - 0()~SCOI‘em,mm,my
(1)

In which the frequency score is related with the num-
ber of times a given function (EC number) appears in
the set of homologues and the taxonomy score is related
with the taxonomic proximity between the studied or-
ganism and those in which those functions had been
identified. The user can choose to give more relevance
to the frequency score or to the taxonomy score, just by
altering the alpha value in merlin’s interface (see Add-
itional file 1: Figure S1 of the supplemental material). If
the user considers the frequency more relevant than the
taxonomy of the homologue genes the alpha value
should be set between 0.5 and 1. If taxonomy is pre-
ferred over frequency the value should be between 0 and
0.5. In this work, the o value was set to 0.2, so that the
yeasts’ annotations could be given more relevance than
other organisms’ annotations.

However, in this work merlin's automatic annotation
was fully reviewed to maximize the re-annotation
confidence.

Moreover, merlin’s interface was used throughout the
(re)annotation process to assign functions and protein
names to each metabolic gene. merlin’s interface is par-
ticularly user friendly, providing “drop down boxes” (see
Additional file 1: Figure S1 of the supplemental material)
for the annotation of each gene. merlin allows exporting
the annotation as an Excel file or in the GenBank for-
mat, during or after the end of the annotation process.

Identification of genes that encode enzymes

To retrieve enzymatic information, merlin performs re-
mote BLAST similarity searches to the NCBI databases.
When the purpose of performing BLAST similarity
searches is to retrieve metabolic information for a gen-
ome re-annotation, the output of a BLAST similarity
search can be too minimalistic and very confusing. Any-
one that has tried one of the many BLAST search tools
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available in the internet (such as http://blast.ncbi.nlm.nih.
gov/Blast.cgi or http://www.UniProt.org/blast/) knows
that the output of a BLAST search is not much helpful
for the collection of metabolic data (see Additional file 1:
Figure S2 of the supplemental material), because the user
has to follow several links to retrieve the data: to retrieve
metabolic data, the user has to go over all identified
homologue genes, retrieve enzymatic information and
compile such information for all genes of the studied gen-
ome. To avoid such massive effort, merlin was used to
implement the remote similarity alignments between the
user set of genes (or full genome as was the case) and the
previously selected remote NCBI database, as well as re-
trieve and classify each homologue’s annotation, providing
comprehensible information.

The path from genome sequence information to en-
zymatic data retrieved from homology is described in
Figure 1. Initially, merlin received the K. lactis genome
in the amino acid fasta format, downloaded from the
GenBank repository at ftp://ftp.ncbi.nih.gov/genomes/
Fungi/Kluyveromyces_lactis_ NRRL_Y-1140_uid12377/.

Then merlin performed the remote BLAST similarities
search, configuring the algorithm with the parameters
also depicted in the first step of the figure. At the time
of the similarity search (January 2010) the nrDB was a
collection of 10,140,583 sequences and the yeastDB
encompassed 6298 sequences.

The program used to perform the remote blast search
was the blastp (version 2.2.22+ at the time of the
BLAST). The e-value is used to create a significance
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threshold for returning results. A lower e-value will re-
sult in a shorter list with more quality homologues, thus
the maximum e-value threshold was set to 1E-30.

The matrices referred in Figure 1, are parameters of
the BLAST algorithm, and are used to evaluate the
quality of a pairwise sequence alignment by assigning
scores for the alignment of any possible pair of residues.
BLOSUM 62 was used as the default matrix for the simi-
larity search algorithm configuration and was changed to
PAM30 for the shorter sequences that could not be
aligned with the first matrix merlin takes approximately
24 h to automatically assign a functional annotation to
every protein encoded in a given genome, depending on
the NCBI servers’ availability and the genome size.

For each Kluyveromyces lactis gene, the top 100 most
similar homologues were retrieved and the information
displayed in Figure 1 — Step 2 was collected. If less than
100 homologues were available, only those were pro-
cessed. Afterwards, merlin accessed the Entrez Protein
webservice to download and save several data for each
homologue acquired in the previous step. Such data is
listed in Figure 1 — Step 3.

Using internal heuristics, described in [51] and briefly
represented above in equation 1, merlin automatically
selected a candidate annotation for each protein encod-
ing gene of the studied genome based on confidence
scores. The similarity result (gene product, EC number)
with the highest confidence score was selected by merlin
to automatically annotate each protein encoding gene of
the studied genome. Moreover, merlin reduced the

o STEP B:saving | STEP C:retrieving
STEP A:findingbest homologues homology information
homologues information
Program: For every For each
“blastp gene save: =~ homologue
Database: retrieve
fasta aa *All non- *Query
o redundant sequence * Taxonomy
LES ; GenBankCDS «Locus *Organelle
£ Maximume-Value: . o
18 - identifiers -Iéc();:us T?)g
- *EC number
Matrix: *e-Values * Product
*BLOSUM62 | *Scores «Molecular
*PAM30 *Organisms weight
Number of hits:
*100

EC numbers or taxonomy in STEP C.

Figure 1 merlin’s path from organism genome to enzymatic homology data. The BLAST search (configured with the parameters presented
above) was performed in the first stage of the homology data inference (STEP A). Specific information for each gene homologues, such as
identifiers or scores, is parsed and saved in STEP B. Finally, the Entrez protein web services are used to retrieve the metabolic information, such as
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curation efforts, as it allows the user to browse through
all similarity search results and change the automatic
annotations provided by the software.

When the first automatic annotation results were ana-
lysed, a pattern emerged. The homologues’ taxonomic dis-
tribution was, as it will be shown in the Results section,
biased. Indeed, whenever a Saccharomyces cerevisiae
homologue was available, merlin would consistently select
the baker’s yeast gene annotation to annotate the Kluyver-
omyces lactis gene. Thus, the baker’s yeast was selected as
a reference organism for the EC numbers annotation be-
cause the two microorganisms share the phylogenetic
lineage all the way to the taxonomic family level and S.
cerevisiae is the best studied, annotated and curated Fun-
gus. Hence, two projects were initiated with merlin, allow-
ing the software tool to use all data available in the NCBI
database (nrDB) to annotate the Kluyveromyces lactis gen-
ome in the first project, while for the later project only
data from the NCBI's yeastDB were used. Each K. lactis
gene assigned by merlin with enzymatic functions on ei-
ther the first or the second similarity search was labelled
as an enzyme encoding gene candidate (EEGC).

The developed approach originated two parallel anno-
tations, as depicted in Figure 2, which allowed compar-
ing the functional assignments for each gene. From this
line up, four sets of genes were assembled. The EEGC'’s
assigned with the same enzyme by both projects were la-
belled as matches. Such genes’ annotation was generally
accepted (although reviewed according to Figure 3), ex-
cept for partial EC numbers (which were revised on be-
half of the existence of complete EC numbers) and
deprecated EC numbers (which were updated).

The second set encompassed those genes which were
identified as EEGC’s on the first BLAST search (nrDB
assigned) but not on the second similarity alignment.
Such set presented a high number of genes that, al-
though being automatically annotated with metabolic
functions, were later discarded by the annotation pipe-
line depicted in Figure 3 (false positives).

The third set of genes was the most troublesome. It
was the group of genes assigned with different enzymes
on each merlin project (distinct). Such collection was
carefully reviewed, with the purpose of selecting the cor-
rect gene function without reservations.

The last set (yeastDB assigned) encompassed milk
yeast EEGC’s which were not automatically annotated as
enzymes by merlin in the first alignment, but when the
search was performed against NCBI's yeastDB, at least
one Saccharomyces cerevisiae metabolic homologue was
identified for each K. lactis gene. merlin did not assign
any annotation on the first similarity search probably be-
cause each of those K. lactis EEGC had more than 100
homologues in organisms other than S. cerevisiae on
such alignment.

Page 6 of 20

K. lactis |I

genome

nrDB BLAST yeastDB

annotation annotation

yeastDB
assigned

matches distinct

annotation
pipeline

2
annotated | |
genome
L
Figure 2 Enzymes annotation scheme. BLAST searches were
performed to a pair of distinct databases (nrDB and yeastDB),
originating two parallel annotations. Four sets of genes were
assembled from the comparison of such annotations: the group of
genes with the same assignments in both annotation projects

(matches), the genes with different assignments in each project
(distinct) and two groups with the genes only annotated in either

the nrDB or in the yeastDB.

The EEGC’s were manually verified by following sev-
eral confirmation steps as depicted in the functional an-
notation pipeline (Figure 3). The described methodology
can be recurrently executed, re-annotating a given gen-
ome whenever the user wants to, taking advantage of
the up to date information available in NCBI remote
BLAST databases.

Annotation pipeline

Despite using merlin, all of the Kluyveromyces lactis
functional EEGC’s automatic assignments were reviewed
according to the schema depicted in Figure 3, so that
the minimum number of false positives would be
included in this annotation. For that purpose, the main
criteria were, in first priority, the existence of informa-
tion in curated databases for the K. lactis genes and, in
second priority, the existence of curated S. cerevisiae
homologues. Only when none of the previous informa-
tion was available the search was extended to curated
homologues of other organisms.
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Figure 3 Annotation pipeline for the assignment of enzymatic functions to K. lactis genes. Each EEGC locus tag was firstly queried on
UniProt and, if present, the assignment was accepted and the gene was annotated. If not, then a S. cerevisiae gene was sought in the BLAST hits
kept by merlin for such gene (STEP B). If a baker's yeast homologue (STEP B1) was available, its identifier (YXX####x) was searched in both UniProt
and SGD databases. When both databases records were identical, the gene was annotated; else, the records would be examined and the SGD
entries would be favoured. For the EEGC's that did not have any S. cerevisiae homologue (STEP B2), a new specific similarity search was
performed in NCBI BLAST, restraining the possible outcomes to Swiss-Prot reviewed records and the organism to S. cerevisiae, with the acceptable
e-value decreased to e < 1E-10. If there was an entry that complied with those conditions, the gene was annotated; else, the BLAST similarity
search was unrestricted, organism wise. Again, if there was an entry that complied with the previous conditions, the gene was annotated as
homologue of the first hit, else it was discarded. The previously annotated information was revised in BRENDA to verify the function about to be
annotated to such gene (STEP C). Finally, the information collected in the previous steps is assigned to the EEGC (STEP D), rendering the EEGC a
metabolic gene or discarding such gene as metabolic.
J

Initially, for each EEGC, a query was performed in Uni-
Prot, using the gene locus identifier (locus tag), to assess
the existence of a reviewed annotated record for such
gene. If UniProt had already identified such gene’s prod-
uct on a reviewed record, or any literature was available

and confirmed the proposed gene annotation, the assign-
ment was accepted and the gene was annotated (after EC
number confirmation in BRENDA - Figure 3-C).

On the other hand, if UniProt had no reviewed match
for such gene, then a S. cerevisiae gene was sought in
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the BLAST hits (Figure 3-B) kept by merlin for such
gene. So, if a baker’s yeast homologue was available, its
identifier (YXX####x) was searched in both UniProt and
SGD databases. After the analysis of the UniProtKB/
Swiss-Prot and the SGD entries two situations could
arise (Figure 3-B1): the records could be either identical
or distinct. When identical, the gene was annotated; else,
the records would be thoroughly examined and the SGD
entries would be always favoured. As explained above,
both UniProtKB/Swiss-Prot and SGD are manually
curated databases, thus both results are reliable. Neverthe-
less, the SGD is favoured when a conflict arises between
both databases because it is specific for Saccharomyces
cerevisiae, and consequently the curators of this database
are specialized in the analysis of the baker’s yeast genome.
Hence, if the similarity between the K. lactis and the
S. cerevisiae gene sequences is acceptable (e- value <
1E-30) the K. lactis gene is considered homologous to
the baker’s yeast one and the first is assigned with the
same function as the latter.

For the EEGC’s that did not have any S. cerevisiae
homologue (Figure 3-B2), a specific similarity search was
performed in the NCBI BLAST web interface, restraining
the possible outcomes to Swiss-Prot reviewed records
and the organism to the 4932 taxID (Saccharomyces cere-
visiae). This step was performed because merlin’s scorer
was configured to calculate the function scores using the
first 100 homologues retrieved from the BLAST similar-
ity search. However, the S. cerevisiae homologue could
have a cardinality of more than 100. When performing
this specific homology search, the number of hits is con-
siderably reduced, thus the acceptable e-value is also
decreased to e < 1E-10. If there was an entry that com-
plied with the previous conditions, the gene was anno-
tated; else, the BLAST similarity search was unrestricted,
organism wise. Again, if there was an entry that complied
with the previous conditions, the gene was annotated as
homologue of the first hit, else it was discarded.

Whatever was the source of the candidate enzyme
assigned to a given gene, such information was revised in
BRENDA to verify the function about to be annotated to
such gene (Figure 3-C). Some of the enzymes encoded in
the genome were assigned with partial EC numbers by the
studied databases. BRENDA was also used to try to iden-
tify complete EC numbers for such genes, by searching for
the names of those gene products in that database.

Finally, the information collected in the previous steps
is assigned to the EEGC, as depicted in Figure 3-D, ren-
dering the EEGC a metabolic gene or discarding such
gene as metabolic.

Classification of manual curation results
When using the annotation pipeline to analyse the
EEGCs, a limited number of logical jumps were detected.
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Therefore, an alpha-numeric cross classification system
was developed to log and identify the gene classification
patterns, encompassing the origin of the entry chosen in
the final annotation (nrDB or yeastDB) and the database
(s) that provided the information that motivated the
choice made. A detailed description of such classification
is available in Additional file 2 of the supplemental
material.

Identification of genes that encode transporter proteins
Only four Kluyveromyces lactis’ genes are available in
TCDB as transporter protein encoding genes (see Add-
itional file 3: Table S1 of the supplemental material).
Therefore, it was necessary to implement a methodology
to further identify transporter proteins using homology
analysis.

Although merlin uses remote BLAST similarity
searches to classify gene products, the transporter in-
formation is obtained by performing local smith-
waterman (SW) similarity alignments [56] with the
TCDB, to identify the TCS (Transporter Classification
Superfamily) number of the genes that encode trans-
porter proteins. This methodology was also developed
in-house and will be included in merlin’s 2.0 version.
An article with the detailed description of this meth-
odology (Genome-wide semi-automated annotation of
transporter systems, Dias et al, 2012) has been re-
cently submitted.

Unlike enzymes, transporter proteins cannot be dir-
ectly classified from homology. Enzymes are repre-
sented by EC numbers that classify the catalysed
reactions and a gene can be annotated with several EC
numbers. TC numbers are associated to proteins that
transport a specific range of substrates and are often
associated to a single gene. For example, a gene that
encodes a carrier that is able to transport a range of
substrates is assigned with a single TC number and
not a range of TC numbers, as is the case with EC
numbers. TC numbers are grouped in TC families. For
example, the 2.A.1.1 — The Sugar Porter (SP) Family
encompasses transport proteins that transport sugars.
Likewise, TC families are grouped in TCS. For ex-
ample, the 2.A.1-The Major Facilitator Superfamily
(MES) includes the 2.A.1.1. The Sugar Porter (SP)
Family, the 2.A.1.2 — The Drug:H + Antiporter Family
and several other families. Therefore, for the classifica-
tion of the genes that encode transporter proteins, the
approach was somewhat different and is concisely
described next.

The process of performing genome-wide similarity
searches using the SW algorithm, despite being more ac-
curate than BLAST, can be very time—consuming, as
such alignments are very demanding. Therefore, the
number of K. lactis genes aligned against TCDB was
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reduced via the TransMembrane prediction using Hidden
Markov Models (TMHMM) [57] software. TMHMM is a
prediction algorithm that identifies the number of trans-
membrane helices in a protein using hidden Markov
models.

Thus, all genes that had one or more transmem-
brane helices were considered transporter protein en-
coding gene candidates (TPGC) and were aligned to
the TCDB. The similarity threshold, when performing
the SW similarity searches, was of 10%, because the
transporter database was very small (6100 records at
the time of the alignment — September 2011). More-
over, merlin uses internal heuristics to lower the
threshold, inversely to the number of transmembrane
helices of the gene.

A TPGC can have similarities to different families
and super-families of the same TC class that can
nevertheless have similar functions. Thus, the TC fam-
ily numbers, as well as the metabolites, of the TCDB
genes similar to each TPGC were classified with the
same algorithm used by merlin to classify the EC
numbers of each EEGC. Such algorithm classified the
TC family numbers and metabolites associated to each
TPGC, using the taxonomy of each of the TCDB
homologue genes and the frequency of the TC family
numbers or metabolites, within all similar genes. In
the end of this process, each gene identified as a
TPGC was either discarded (not considered a trans-
porter protein) or effectively annotated as a transporter
protein encoding gene. In the latter case, a TCS num-
ber, as well as the metabolites transported by such
protein, were assigned to each transporter protein en-
coding gene. Since it was considered that the trans-
porter family number could be too restrictive, it was
decided to go up a level and the TCS number was
chosen instead.
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Results and discussion

Genes annotation

The proteins encoded in the Kluyveromyces lactis
complete metabolic genome were annotated, systematic-
ally, throughout this work. Figure 4 discretises the main
outcomes of this process. Out of the 5085 genes available
on the GenBank fasta files provided to merlin, 2000 genes
were revised.

The annotation pipeline for genes that encode
enzymes (described on Figure 3 of the Methods sec-
tion) reviewed a total of 1699 EEGC’s and the trans-
porter annotation function within merlin provided 349
genes. However, 48 genes identified as transporter sys-
tems encoding genes were also annotated by the an-
notation pipeline with EC numbers. Hence, such
genes were annotated with both transport (TCS or
TC numbers) and reaction facilitation (EC numbers)
activities.

The annotation pipeline ruled out 241 K. lactis EEGC’s
as non-metabolic genes because the implemented rou-
tine suggested that such EEGC’s homologues were either
wrongly assigned as similar to K lactis or incorrectly
annotated. The other 1458 genes were confirmed and
annotated as metabolic genes.

As depicted in Figure 4, most of those 1458 genes
were annotated with at least one EC number and 301
were annotated as exclusively transporters, being
assigned with TCS or TC numbers. Summing up, 1759
genes were classified as metabolic genes, of which 1410
are exclusively enzymatic, 301 exclusively transporter
proteins and 48 have both functions.

The final annotation of each EEGC is available in Add-
itional file 3: Table S2 of the supplemental material.

The Kluyveromyces lactis genome had been sequenced
by the Génolevures consortium; however, the genes
identified by the consortium were not assigned with EC

metabolic
1759 genes
87.95 %

2000 genes
100 %

non-
metabolic

241 genes
12.05 %

EC numbers
1458 genes
72.90 %

EC nUmbers only
'Al -‘ll'f/‘i‘

TC(S) numbers
only

301
15.05 %

EC&TC(S)

L g

Figure 4 Annotation statistics. The level of detail increases downwards.
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or TC numbers. Also, despite holding the genome se-
quencing data, GenBank does not provide any functional
annotation. Thus, the new annotation provided by this
work was compared with the data available in KEGG,
UniProt and to a lesser extent with BRENDA and
TCDB.

The new annotation produced by this work largely
surpassed the Kluyveromyces lactis currently available
annotations, as demonstrated in Table 1.

Comparison with KEGG

The comparison between the new annotation and
KEGG’s annotation is depicted in Additional file 3: Table
S3 of the supplemental material. The new annotation
matched 844 (~90%) of genes annotated by KEGG, add-
ing 850 new gene annotations. Moreover, there are 32
genes with annotations different from KEGG.

Also, 19 genes were assigned with more enzymes on
the present annotation than on the KEGG annotation.
For instance, KEGG annotates the KLLAOB02717g gene
with the EC number 2.3.1.86. However, our new annota-
tion assigns 6 EC numbers (2.3.1.86, 4.2.1.61, 1.3.1.9,
2.3.1.38, 2.3.1.39, 3.1.2.14) to such gene; thus, KEGG’s
annotation is not incorrect but it is a subset of the
present study’s annotation. On the other hand, there
were 9 genes that were assigned with more enzymes on
KEGG than on the present annotation. Finally, the anno-
tation pipeline ruled out 29 genes annotated as metabolic
on KEGG, due to several reasons. For instance, KEGG
assigns the EC number 2.7.7.7 to KLLA0C11341g, and
the new annotation identified such gene as an “Accessory
subunit of DNA polymerase zeta” with no catalytic activ-
ity KEGG assigns the EC number 6.3.2.19 to
KLLAOCO08041g. However, the new annotation identified
that gene as a general negative regulator of transcription.
These two, along with 27 other ruled out genes are
described in Additional file 3: Table S4 of the supplemen-
tal material.

Table 2 contains all genes for which KEGG assigns
more enzymes than the new annotation. The 1° and the
2" genes in the table were assigned with one EC num-
ber on the new amnotation because the S. cerevisiae
homologue only encodes one EC number. The other EC
number assigned by KEGG is for a different protein
(asparaginyl-tRNA synthase), thus being excluded by the
annotation pipeline. The 3™ to the 8™ genes in Table 2
were also annotated with only one EC number given the
baker’s yeast homologue annotations, verified on SGD and
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UniProt. Finally, according to KEGG, KLLAOE19625g is
associated both with Glutamate synthase [NADH], and
Glutamate synthase [NADPH], because UniProt and
SGD disagree, the annotation pipeline was followed and
only the second EC number was chosen.

Since KEGG’s annotation does not provide any trans-
porter information, whenever a gene encoded a protein
with both EC and TC(S) numbers, the transport system
was ignored in the assessment, which helped to raise the
number of matches between both annotations.

The functions only provided by the new annotation,
when compared to KEGG, are distributed as described
in Table 3. The new annotation provides 850 genes of
which 524 are enzyme encoding genes not available in
KEGG and 326 are associated with transport reactions.

Comparison with UniProt

All 354 genes annotated with enzymatic functions by
UniProt were included in the present annotation by the
annotation pipeline, as described in Additional file 3:
Table S5 of the supplemental material. For some (48) of
those genes more information was collected, either by
adding more enzymatic functions (e.g. KLLAOE01959g
was annotated with 2.5.1.9 by UniProt and with 2.5.1.9
and 2.5.1.78 in the new annotation) or just by providing
a complete EC number to a partial UniProt annotation
(e.g. KLLAOBO01265g is annotated with 3.2.2.- in UniProt
and with 3.2.2.27 in the new annotation).

Comparison with BRENDA

BRENDA’s annotation assessment was somewhat differ-
ent from the other annotations evaluation, as BRENDA
does not provide gene information. Hence, the EC num-
bers provided by BRENDA were sought in the new an-
notation to confirm if there was at least one gene that
encoded such enzyme. The new annotation included all
34 EC numbers assigned by BRENDA to K. lactis, as
depicted in Additional file 3: Table S6 of the supplemen-
tal material. However, there were 4 other EC numbers
associated to K. lactis on BRENDA that were not found
in the mnew annotation. One of those EC numbers
(1.4.1.15) was associated to K. lactis because it has an
annotation declaring that there is “no activity in Kluyver-
omyces lactis”. Another one of those EC numbers was
from a plasmid [58] and the other two were from vec-
tors inserted in a K lactis strain to test the viability of
the organism as a recombinant protein producer [59].

Table 1 Comparison of the results reached in this work and previous annotations available

KEGG annotation UniProt annotation

TCDB annotation BRENDA EC # New annotation

# of genes 938 354

4 34% (38 )** 1759

Number of K. lactis genes annotated in each database and the new annotation. *BRENDA provides the number of enzymes associated to K. lactis.
**In brackets the total number of EC numbers, including four EC numbers incorrectly associated to K. lactis on BRENDA.
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Table 2 New annotation versus KEGG annotation
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Gene KEGG New annotation S. cerevisiae homologue Protein
KLLAOAQ9845g 6.3.5.6,635.7 6.3.5.7 YMR293C glutamyl-tRNA(GIn) amidotransferase
KLLAOE20659g 6.3.5.6,635.7 6.3.5.7 YBLOSOC glutamyl-tRNA(GIn) amidotransferase
KLLAOBO7513g 2.7.1.105,3.1346 31346 YJL155C fructose-2,6-bisphosphatase
KLLAOEO7173g 4.2.151,54995 42151 YNL316C prephenate dehydratase
KLLAOE10143g 3.13.12,24.1.15 31302 YDRO74W trehalose-phosphatase
KLLAOF20548g 26.1.19,26.1.22 26.1.19 YGRO19W 4-aminobutyrate aminotransferase
KLLAOE17997g 3.13.16,3.1.348 31348 YIR026C tyrosine-protein phosphatase
KLLAOC099669 281.1,2812 281.1 YOR251C thiosulfate sulfurtransferase
KLLAOE19625g 14.1.14,14.1.13 14.1.14 YDL171C glutamate synthase [NADH]

Cases in which KEGG assigns more EC numbers than the new annotation.

Homologues taxonomic distribution

Translated genomes of different organisms were used as
reference when performing the homology-based gen-
omic annotation. Thus, an analysis of the phylogenetic
distribution of those genes was performed. The ap-
proach developed for the transport systems annotation
does not allow this analysis to be performed because the
database was small and thus the available organisms
span was reduced, rendering such analysis too biased.

As a Fungus, Kluyveromyces lactis is expected to have a
genome similar to other fungal genomes. Indeed, the
homology taxonomic distribution was in accordance to
the expected, because the well annotated Saccharomyces
cerevisiae yeast was favoured by the annotation pipeline.
Hence, the analysis of the taxonomic dispersion of the
final annotation determined that approximately 82% of
the genes identified as metabolic were S. cerevisiae homo-
logues. As shown in Table 4, 1442 K. lactis genes were
found to be homologues to a set of 1376 distinct baker’s
yeast genes. There is clearly a no one-to-one relationship
since, for instance, KLLA0C19338g and KLLA0D00258g
were identified as homologues of the YBR093c S. cerevi-
siae gene, and annotated with the EC number 3.1.3.2. Sev-
eral other S. cerevisiae genes were used as reference for
the annotation of two or more K. lactis genes.

Kluyveromyces lactis, unlike S. cerevisiae, did not
undergo whole genome duplication [60]; nevertheless, it
is likely that at least part of the 66 genes with repeated

Table 3 Summary of genes not available on KEGG's
annotation but annotated in this work

Genes not annotated in KEGG Number of genes

EC numbers 318
complete EC numbers + TC(S) numbers 3

EC numbers 206
partial EC numbers + TC(S) numbers 2
TC + TCS 301

Complete EC numbers are assigned when all classes are identified (e.g. 1.1.1.1).
Partial EC numbers are assigned when at least one subclass is unknown
(e.g. 1.1.--or 1.1.1.-).

metabolic functions in K. lactis are a result of other gene
duplication events.

The 4 genes (see Additional file 3: Table S1 of the sup-
plemental material) reported in the transporter classifi-
cation database (TCDB) were not inferred from another
organism, thus not being included in the other organ-
ism’s annotation.

An example of homologues of organisms other than
S. cerevisiae is the LAC4 gene (KLLAOB14883g), which
encodes the P-galactosidase protein (see Additional file
3: Table S7 of the supplemental material; Escherichia
coli - 3.2.1.21) which affords K. lactis with the ability
of converting lactose into galactose and glucose, hence
being able to use lactose as sole carbon source.

The genes annotated by homology to organisms other
than S. cerevisiae constitute less than 3% (43 genes) of
the K. lactis genome annotated with metabolic functions.
Additional file 3: Table S7 of the supplemental material
lists the 25 organisms (other than S. cerevisiae) used for
the new annotation of those 43 K. lactis genes, as well as
the distinct EC numbers encoded on such genes. 5 of
the 25 aforementioned organisms were of the Bacteria
superkingdom. Although K. lactis is included in the
Eukaryota superkingdom, along with the remaining 20
organisms, previous works have demonstrated the rele-
vance of horizontal gene transfer from prokaryotic to
fungal genomes [61,62].

Table 5 contains 29 genes (out of the 43 genes anno-
tated by homology to organisms other than S. cerevisiae)
associated with enzymes not encoded by the S. cerevisiae
genome (according to UniProt). There were 7 other
genes annotated with functions inferred from non-
Saccharomyces cerevisiae homologue genes but whose
corresponding enzymes are available in the S. cerevisiae
genome. However, the genes that encoded such func-
tions in the baker’s yeast did not have any homologue
gene in the milk’s yeast genome. The remaining 7
non-Saccharomyces cerevisiae homologue genes were
assigned with enzymes with partial EC numbers (e.g.
KLLAOC14993g:  1.13.-.-/O74741/Schizosaccharomyces
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Table 4 Percentage of K. lactis genes annotated as S. cerevisiae or other organisms homologues

Unique Total %
K. lactis genes with S. cerevisiae metabolic homologues 1442 81.98%
K. lactis genes with other homologue organisms 43 2.44%
TCS families annotation 270 15.35%
K. lactis TC annotation 4 0.23%

The TCS families’ annotation quantifies the number of genes annotated as transporter protein encoding genes. The four TC numbers in the last row of the table
were annotated by the TCDB, hence not being annotated by homology. The number of unique genes represents the number of distinct homologue genes.

pombe/Eukaryota); thus, it was not possible to assess
whether such functions were available on the baker’s
yeast or not.

As shown in Table 5 the Schizosaccharomyces pombe
homologue genes lead the group of functions not avail-
able in S. cerevisae, with five enzymes. Those enzymes
were D-amino-acids oxidase (1.4.3.3), pseudouridine
membrane dipeptidase

kinase

(2.7.1.83),

hydroxyisourate hydrolase (3.5.2.17) and agmatinase
(3.5.3.11) which hydrolyses agmatine to putrescine and

urea. Also, Kluyveromyces marxianus provides the -

(3.4.13.19),

glucosidase (3.2.1.21) enzyme encoding gene homologue,
which releases B-D-glucose from polysaccharides con-
taining glucose. Mortierella isabellina genome has a gene
that encodes the §-12 fatty acid desaturase (1.14.19.6)
that catalyses the desaturation of oleic acid to linoleic

Table 5 K. lactis genes which encode enzymes not available in the baker's yeast genome

K. lactis tag Homologue Annotation SPECIES SUPERKINGDOM Function

KLLAOAQ2475g Q9Y7N4 1433 Schizosaccharomyces pombe Eukaryota D-amino-acid oxidase
KLLAOA08492g Q99042 1433 Trigonopsis variabilis Eukaryota D-amino-acid oxidase
KLLAOA11352g P50167 1.1.1.250 Scheffersomyces stipitis Eukaryota D-arabinitol 2-dehydrogenase
KLLAOB00473g P59668 1.14.19.6 Mortierella isabellina Eukaryota d-12-fatty-acid desaturase
KLLAOB04004g Q9USY1 2.7.183,32-- Schizosaccharomyces pombe Eukaryota pseudouridine kinase, -
KLLAOB14883g PO6864 32123 Escherichia coli (strain K12) Bacteria beta-galactosidase
KLLAOCO0715g POA9HS8 2.1.1.79 Escherichia coli O6 Bacteria cyclopropane-fatty-acyl-phospholipid synthase
KLLAOC09240g Q65756 1352 Kluyveromyces marxianus Eukaryota dihydroorotate dehydrogenase
KLLAOC11803g 074492 35217 Schizosaccharomyces pombe Eukaryota hydroxyisourate hydrolase
KLLAOC19107g Q9P903 3522 Saccharomyces kluyveri Eukaryota dihydropyrimidinase
KLLAOD00330g P07337 32.1.21 Kluyveromyces marxianus Eukaryota beta-glucosidase
KLLAOD00506g 059832 34.13.19 Schizosaccharomyces pombe Eukaryota membrane dipeptidase
KLLAOD03520g  Q96W94 3516 Saccharomyces kluyveri Eukaryota beta-ureidopropionase
KLLAODO07568g Q9Y7N4 1433 Schizosaccharomyces pombe Eukaryota D-amino-acid oxidase
KLLAOEO2641g Q16739 24.1.80 Homo sapiens Eukaryota ceramide glucosyltransferase
KLLAOE10737g Q54GH4 1.13.99.1 Dictyostelium discoideum Eukaryota inositol oxygenase
KLLAOE10935g P78609 1733 Cyberlindnera jadinii Eukaryota urate hydroxylase
KLLAOE14631g P07337 32.1.21 Kluyveromyces marxianus Eukaryota beta-glucosidase
KLLAOE14763g A7SMW?7 1.1.99.2 Nematostella vectensis Eukaryota 2-hydroxyglutarate dehydrogenase
KLLAOE15181g Q5R778 1.3.99.3 Pongo abelii Eukaryota acyl-CoA dehydrogenase
KLLAOE18371g Q12556 14322 Aspergillus niger Eukaryota diamine oxidase
KLLAOE19471g F2QNN3 1.14.194 Pichia pastoris Eukaryota d-8-fatty-acid desaturase
KLLAOE22397g Q75Ws0 1.1.1.184, 1.1.1.289 Kluyveromyces aestuarii Eukaryota carbony! reductase (NADPH), sorbose reductase
KLLAOE24003g A3GF07 1.1.1.184, 1.1.1.289 Scheffersomyces stipitis Eukaryota carbonyl reductase (NADPH), sorbose reductase
KLLAOE25081g P07337 32.1.21 Kluyveromyces marxianus Eukaryota beta-glucosidase
KLLAOF031469 P51691 3.16.1 Pseudomonas aeruginosa Bacteria arylsulfatase

KLLAOF04235g Q10088 35301 Schizosaccharomyces pombe Eukaryota agmatinase

KLLAOF07095g P59668 1.14.19.6 Mortierella isabellina Eukaryota d-12-fatty-acid desaturase
KLLAOF27995g 042887 353.11 Schizosaccharomyces pombe Eukaryota Agmatinase

The species name was automatically retrieved; thus, instead of the last taxonomic name, the organism name may be a synonym.
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acid, and K lactis has two homologues of such gene
(KLLAOB00473g and KLLAOF07095g). Escherichia coli
strains have two K. lactis homologue genes not present
in the S. cerevisiae genome: cyclopropane fatty acid syn-
thase, (2.1.1.79), and the aforementioned [-galactosidase
(3.2.1.23).

Annotation scheme and manual curation results

merlin’'s automatic scored similarity results were manu-
ally curated by the authors, using the annotation pipe-
line described on the methods section. The outcome of
such classification is shown in Additional file 3: Table S8
of the supplemental material. It represents the results
obtained using the cross classification developed and ap-
plied throughout this work. This table shows that most
annotations were supported by all databases (SGD, Uni-
Prot and BRENDA), which means that the present anno-
tation is robust and supported by information provided
by several data sources.

Also, almost half (calculation details on Additional file 2)
of the incorrect merlin automated gene annotations were
reclassified by BRENDA. Most of the reclassifications dic-
tated by BRENDA corresponded to partial EC numbers for
which a complete EC number was now available in
BRENDA.

BRENDA was also important for other reasons. For ex-
ample, one of the K. lactis genes that had a baker’s yeast
homologue was assigned with a completely different
function in both genomes. The XYL1 (KLLAOE21627g —
1.1.1.307) K. lactis gene [63] is homologue to the GRE3
(YHR104W-1.1.1.306) S. cerevisiae gene. However, on
the first case it encodes a NADPH-dependent D-xylose
reductase, but on the second organism it encodes a
NADPH-dependent aldose reductase. This is a major dif-
ference because the baker’s yeast, despite having xylose
transporters, cannot use xylose as the single carbon
source. The XYLI gene is identified in UniProt [Swiss-

Table 6 Enzyme encoding genes classification
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Prot: P49378] as a “NAD(P)H-dependent D-xylose reduc-
tase”; yet, UniProt provides a partial EC number (1.1.1-)
and KEGG annotates such gene as an hypothetical pro-
tein [KEGG: kla:KLLAOE21627g]. BRENDA was used to
confirm EC number assignments, describing the reac-
tions catalysed by those enzymes, allowing a more pre-
cise gene annotation.

Another carbon source that S. cerevisiae is unable to
metabolise is lactose. However, in this case, the gene did
not have a baker’s yeast homologue (it was an Escheri-
chia coli homologue). That gene was well known to be
encoded in K. lactis, the previously mentioned LAC4
gene (B-galactosidase — 3.2.1.23).

Additional file 3: Table S9 of the supplemental mater-
ial lists the seven genes for which literature was consid-
ered through the annotation process. The curation of
those genes was based on previous knowledge of the
authors regarding specificities of Kluyveromyces lactis
metabolism.

Assignment of enzyme commission numbers

More than 80% of the genes to which a metabolic func-
tion was assigned were classified with at least one EC
number. Indeed, as shown in Table 6, 1325 (1107 + 218)
genes were assigned with only one EC number (mono-
functional genes). Nevertheless, three other gene groups
were identified while classifying the protein encoding
genes, originating 4 distinct groups:

monofunctional genes
multifunctional genes

multiclass genes

genes with EC and TC(S) numbers

The multifunctional genes set includes enzyme encod-
ing genes that were assigned with two or more EC num-
bers of the same class, according to the Enzyme

Oxidoreductases Transferases Hydrolases Lyases Isomerases Ligases Total
monofunctional 165 397 347 53 44 101 1107
multifunctional 13 28 8 5 1 4 59
complete multiclass 4 4 4 3 1 2 18
with TC(S) number 16 6 23 0 0 1 46
subtotal 198 435 382 61 46 108 1230
monofunctional 38 63 110 0 3 4 218
multifunctional 0 1 2 0 0 1
partial multiclass 0 4 0 0 0 0
with TC(S) number 0 0 0 0 0
subtotal 38 70 112 0 3 5 228
Total 236 505 494 61 49 113 1458

Complete EC numbers are assigned when all classes are identified (e.g. 1.1.1.1). Partial EC numbers are assigned when at least one class is unknown (e.g. 1.1.-.- or

1.1.1.).
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Commission classification (e.g. KLLAOF20163g - 2.3.1.23,
2.3.1.51). The multiclass genes encompassed enzyme
encoding genes assigned with EC numbers classified in
more than one class. For the last subgroup, the approach
was somewhat different. The proteins may not have vari-
ous functions, but had at least one EC number and one
TC(S) number assigned to them. Hence, despite the dis-
tinctive classification, the function of the protein may
well be the same in both classification systems.

Regardless of the previous sorting, the genes were also
divided in two major categories: the ones that encoded
enzymes with complete EC numbers (e.g. 1.1.1.1) and
the ones that encoded enzymes with partial (e.g. 1.-.-.-)
EC numbers. These two categories were then subdivided
in the four sets presented above as depicted in Table 6.
Thus, any gene that encoded at least one enzyme with
one partial EC number was clustered with the partial en-
tries, even for the ones that were simultaneously classi-
fied with TC(S) numbers.

Finally, the gene assignments were also cross-classified
according to the EC class of the encoded proteins, those
being Oxidoreductases, Transferases, Hydrolases, Lyases,
Isomerases and Ligases.

The cross-classification of enzyme encoding genes
assigned to the multiclass group in the EC class followed
a simple rule. When classifying a gene product, such
gene was assigned to the subgroup of whatever enzyme
was annotated first, because such function was assumed
as the main function (e.g. gene KLLAOE15357g is asso-
ciated with EC numbers 6.3.5.5 and 2.1.3.2; the gene was
assigned to the Ligases multiclass group instead of the
Transferases multiclass group because it is assumed that
the ligase function is more significant). The final result
of all cross-classifications is presented in the Table 6.

As depicted in Table 6, most of the identified complete
monofunctional genes encode Transferases. On the
other hand, most of the genes that encode enzymes for
which only a partial EC number is available are hydro-
lases. Table 6 also indicates that Oxidoreductases, Trans-
ferases and Hydrolases represent almost 85% of the
identified enzyme encoding genes. Thus, Lyases, Iso-
merases and Ligases represent just a small quota of this
organism’s genome.

Most enzyme encoding genes were assigned with just
one EC number (1325 genes), which means that such
genes are monofunctional. Still, 218 genes encoding
monofunctional enzymes have only partial EC numbers
assigned. Thus, either the catalysed reactions are not
completely known (and therefore the enzymes may be
either mono or multifunctional), or the catalysed reac-
tion is well known but the EC number has not been
assigned yet.

The multifunctional genes encode proteins that cata-
lyse similar reactions, though using substrates with small
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differences, such as the case of KLLAOF20163g -
(2.3.1.23, 2.3.1.51), in which

i. 1.2.3.1.23 - acyl-CoA + 1l-acyl-sn-glycero-3-
phosphocholine = CoA + 1,2-diacyl-sn-glycero-3-
phosphocholine

ii. 2.3.1.51 - acyl-CoA + 1-acyl-sn-glycerol 3-phosphate =
CoA + 1,2-diacyl-sn-glycerol 3-phosphate

These enzymes are O-acyltransferases that mediate the
incorporation of unsaturated acyl chains into the sn-2
position of phospholipids.

There were also 22 genes in the K lactis genome that
encoded multiclass enzymes due to their diversified cata-
lytic activity. For example, as previously mentioned, the
gene KLLAOE15357g - 6.3.5.5, 2.1.3.2 encoded the
homologue of the S. cerevisiae URA2 gene. Such protein
catalyses the first two enzymatic steps in the de novo
biosynthesis of pyrimidines: first L-glutamine is hydro-
lysed by the carbamoyl-phosphate synthase (6.3.5.5). Next,
the aspartate carbamoyltransferase (2.1.3.2) uses the
carbamoyl phosphate formed in the previous reaction
and interacts with L-aspartate generating N-carbamoyl-
L-aspartate with the release of one phosphate molecule.
Hence, the gene was classified in the Ligases sub-group.

Assignment of transporter classification numbers
Throughout this work, some enzymes encoded in the
milk yeast genome were identified and classified with
both EC and TC(S) numbers. In some cases, the pro-
tein was assigned with the same function by both clas-
sification systems. An example of such annotations
were the functions assigned to the gene KLLAOF20658g,
which encodes the Sodium transport ATPase ENAI
(S. cerevisiae homologue). The protein was annotated
by the enzyme commission with the EC number 3.6.3.7
(Na + exporting ATPase) and in the transporter classifi-
cation database as belonging to the 3.A.3 P-type ATPase
(P-ATPase) Superfamily 3.A.3.##, which includes pro-
teins that promote cations, such as sodium, exchange
or efflux. The transported metabolites analysis (to be
published together with the transports classification
methodology in Genome-wide semi-automated annota-
tion of transporter systems, Dias et al., 2012), provided
by merlin, confirms that such gene facilitates the efflux
of sodium ions, among the transport of other cations.
In this work, 301 genes were assigned with, at least,
one TC(S) number and no EC number, which means
that such genes are exclusively associated to transport
mechanisms. As depicted in Figure 5, more than 65% of
the transporter proteins (without EC numbers) identified
in this work were electrochemical potential-driven trans-
porters. The electrochemical potential-driven transporters
class encompasses several protein families, such as sugar
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and monocarboxylate porters, drugs and UDP-Galactose:
UMP antiporters, amino acids and chloride transporters,
zinc and iron permeases or cation and phosphate sym-
porters, among many others [50]. According to Add-
itional file 3: Table S10 of the supplemental material,
although all 199K. lactis genes classified as electro-
chemical potential-driven transporters belong to the 2.
A Porters (uniporters, symporters, antiporters) sub-class,
such genes are classified in 63 distinct families. Neverthe-
less, most of the Porters identified within the K. lactis
genome (75 genes) were carriers of the 2.A.1 — Major
Facilitator Superfamily (MES). According to Law et al.
(2008) [64] the MFS encompasses proteins that trans-
port several substrates through an energy independent
carrier mediated process, binding the transporter to
the solute and undergoing a series of conformational
changes. Such superfamily includes the secondary active
membrane transporters, which sort the transporters
through the kinetic mechanism, used to carry the sub-
strate, in three categories: uniporters, symporters and
antiporters [55,64].

The classification of two thirds of the transport sys-
tems available in K /lactis in the Porters sub-class sug-
gests that this microorganism may be able to control the
uptake and efflux of the nutrients, providing the organ-
ism with the ability to be selective about the carbon
source it will use.

Additional file 3: Table S10 of the supplemental mater-
ial also demonstrates that at least 21 broad sugar porters
encoding genes were identified, as well as several alco-
hols, organic acids and nitrogen sources and amino acid

transport systems. It is accepted that non-ionized or-
ganic acids can penetrate cell walls by passive diffusion
[65]. Thus, evidences of organic acids transport systems
may be related to the transport of ionized organic acids
and with the need for controlling the uptake or excre-
tion of those compounds.

Furthermore, Kluyveromyces lactis can use several
alcohols as carbon sources, as demonstrated in [66-71].
Some of those alcohols are known as sugar alcohols (poly-
ols) and are transported by the sugar porter family trans-
port systems 2.A.1.1.# encoded in genes KLLAOE06755g
and KLLAOE01783g. Three glycerol transport systems
were also identified during the course of this work
(KLLAOA03223g - 2.A.1.1.#, KLLAOF26246g - 2.A.1.1.#,
KLLAOE19185g - 2.A.50.1.#, KLLAOE00617g - 1.A.8.5.#).

KEGG pathways annotation analysis

Table 7 demonstrates that the new annotation identified
several new enzymes in global pathways. Global path-
ways are universal, and include enzymes from several
pathways, which may or may not be available in K. lactis.
Thus, Additional file 3: Table S11 of the supplemental
material depicts the pathways in which new enzymes
have been identified in the new annotation, as well as
the number of unidentified enzymes, and the enzymes
identified by both the new annotation and KEGG.

The new annotation provides new insights on the K
lactis metabolic capabilities, as it brings new information
to the KEGG pathways, identifying several new enzymes
in 56 KEGG metabolic pathways. Indeed, only 45 of such
pathways are recognised by KEGG as K. lactis pathways.
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Table 7 Number of enzymes in each Global pathway
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Global pathways Identified by KEGG  Identified in new annotation  Unidentified in K. lactis  Total
01100 Metabolic pathways 383 51 869 1303
01110 Biosynthesis of secondary metabolites 167 12 349 528
01120 Microbial metabolism in diverse environments 93 8 351 452

Thus, the other 11 pathways should be further studied
to assess if the milk yeasts uses such paths to metab-
olise compounds, offering investigators new research
opportunities.

Nevertheless, the new annotation also identified new
enzymes that are not allocated to any pathway and pro-
teins associated only with TC numbers.

Analysis of the Annotation of the Kluyveromyces lactis
central carbon metabolism

The central carbon metabolism is a collection of path-
ways mainly composed by three vias, namely the
Embden-Meyerhof-Parnas (EMP) Pathway, the Pentose
Phosphate Pathway and the TCA Cycle. The new anno-
tation presented in this work was able to identify the
genes involved in such pathways.

The EMP pathway converts glucose to pyruvate, gen-
erating small amounts of ATP and NADH in the
process. The uptake of glucose is done by hexose trans-
porters such as RAGI — KLLAODI13310g, HGTI -
KLLAOA11110g, KHT1 or KHT2. In some strains RAGI
is the unique low-affinity glucose transporter, whereas in
other strains such function is divided by two genes
(KHT1, KHT2). The strain studied throughout this work,
Kluyveromyces lactis NRRL Y-1140 (CBS 2359), encoded
the RAGI gene.

The EMP pathway has only one hexokinase, RAGS
(KLLAOD11352g) which was identified in the new anno-
tation. Breunig and Steensma (2003) [72] confirm that it
is the only hexokinase encoding gene, unlike in the case
of S. cerevisiae, which has three hexokinases. RAGS5 is
an essential gene because its absence inhibits growth
on glucose, fructose and higher sugars that produce
these isomers. Glucose-6-phosphate isomerase RAG2
(KLLAOE23519¢g) was also identified in the new annota-
tion, and, although K. lactis has only one phosphoglucose
isomerase, RAG2 mutants grow well in glucose. Hence,
RAG?2 is not an essential gene.

The oxidative phase of the pentose phosphate path-
way generates 2 NADPH molecules from the conver-
sion of glucose-6-phosphate into ribulose 5-phosphate
which is then delivered to the non-oxidative phase
(Figure 6). If either the 6 — phosphofructokinase pro-
tein complex encoding genes or the triosephosphate
isomerase encoding gene TPII (KLLAOF18832g) are
deleted, the transaldolase TALI (KLLA0A02607g), to-
gether with the transketolase TKLI1 (KLLA0B09152g)

can convert ribulose 5 — phosphate into fructose 6 —
phosphate D-glyceraldehyde 3-phosphate and surpass
the phosphofructokinase complex deletion, as depicted
in Figure 5.

Several ATP and NADH molecules are formed in the
second half of glycolysis, which is known as the pay-off
phase. There are NADPH dehydrogenases not present in
the baker’s yeast reported to exist in the milk yeast gen-
ome. Such enzymes are NDEI (KLLAOE21891g) and
NDE2 (KLLA0A08316g), and were indeed annotated in
the present work. Both genes re-oxidise NADH as well
as NADPH. NDET’s ability to bind NADPH was verified
experimentally [73]. However, NDE2 was reported to
have a less important role in NADPH re-oxidation [74].
NDII1 (KLLA0C06336g) also encodes a mitochondrial in-
ternal NADH oxidoreductase, though such enzyme does
not oxidise NADPH. Neither NDEI, NDE2 or NDII are
annotated in UniProt and are incorrectly annotated in
KEGG.

The re-oxidation of NAD(P)H by mitochondrial exter-
nal dehydrogenases supports the high activity of the pen-
tose phosphate pathway, and the ability of the K lactis
RAG2 mutants to grow on glucose.

In Crabtree negative yeasts, such as K. lactis, ethanol
formation only sets in when the oxygen supply becomes
limiting. According to Van Urk et al. (1989) [75], Crab-
tree negative yeasts can prevent the overflow metabol-
ism, by regulating the glucose uptake using the available
symport transport mechanisms to control the amount of
glucose going inside the cells. The new annotation pro-
vided by this work demonstrates that more than 65% of
the identified transport systems were classified in the 2.
A — Porters (uniporters, symporters, antiporters), allow-
ing K lactis to regulate nutrients uptake and efflux.
However, Breunig and Steensma state that the regulation
of the glucose uptake is not enough to explain the Crab-
tree negative phenotypes. Only when the pyruvate de-
hydrogenase (Pdh) complex is down regulated, or
blocked, the pyruvate decarboxylase (Pdc) can convert
pyruvate to ethanol and acetaldehyde [1]. The first step
of the alcoholic fermentation, which only occurs at low
oxygen concentrations, is promoted by the pyruvate de-
carboxylase PDCI (identified in gene KLLAOE16303g).
Therefore, a null mutation on the PDAI (KLLAOF12001g),
a gene which encodes the o subunit of the E1 component
(the B subunit was identified in the new amnnotation,
gene PDBI_KLULA - KLLAOF09603g, not identified in
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Figure 6 EMP and Pentose Phosphate pathways after the new annotation. Enzymes (green), gene identifiers (blue) and metabolites (red).

UniProt) of the Pdh complex, can constrain growth on
glucose, as PDA1 mutants show high ethanol formation
[76]. Such phenotype suggests that high Pdh activity is
the reason for the Crabtree negative phenotype exhib-
ited by the wild type strain.

The lactose metabolism in Kluyveromyces lactis has been
well studied, because it is a distinct characteristic within
yeasts. The lactose uptake is performed by the specific per-
mease LACI2 (KLLAOB14861g) and the hydrolysis by the
[-galactosidade LAC4 (KLLAOB14883g) into glucose and
galactose. The lactose metabolism is induced by both lac-
tose and galactose. Galactose is converted into galactose—
1-phosphate by galactokinase GALI (KLLAOF08393g).
Then, the GAL7 (KLLAOF08437g) gene that encodes the
enzyme UDP-glucose-hexose-1-phosphate uridylyltransferase
takes UDP—glucose and a—D-galactose—1-phosphate to
synthesize a—D-glucose—1-phosphate and UDP-galactose.
The UDP-galactose formed by this reaction will be again
converted to UDP-glucose by the GALIO bifunctional
gene. This gene encodes two enzymes, the aforemen-
tioned UDP-glucose—4—epimerase and the aldose—1-
epimerase, that converts a—D—glucose into f—D—glucose.

All of the genes described earlier were annotated
throughout this work.

Assessing the agreement of the new annotation to a
previous comparison of the Kluyveromyces lactis genome
to the one of Saccharomyces cerevisiae

In 1998 Ozier-Kalogeropoulos et al. [77] studied the
Kluyveromyces lactis unsequenced genome, and identi-
fied 296 K. lactis genes with homology to the baker’s
yeast. The exploration of the genome was random, thus
several types of genes were identified.

All S. cerevisiae genes identified in that study were
reviewed in UniProt (SGD does not provide an application
programming interface to expedite the results retrieval) to
identify genes with metabolic (enzymatic or transport)
functions. As depicted in Additional file 3: Table S12 of
the supplemental material, 113 of those S. cerevisiae genes
had metabolic functions. The 113 metabolic genes identi-
fied in that study, and the corresponding milk yeast
homologues, were predicted by the new annotation, ex-
cept for four baker’s yeast transport systems which were
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not identified because the corresponding K. lactis homolo-
gues did not have any transmembrane domain.

Again, that work was in agreement with the results
obtained with the approach undertaken throughout this
study.

In conclusion, these examples illustrate that the new
annotation not only confirms pre-sequencing knowledge
but also, adds new gene annotations to the information
currently available in databases such as KEGG or UniProt.

Conclusions

Since the genome sequence of K. lactis was published in
2004, the proteins encoded in the Kluyveromyces lactis
genome had never been thoroughly reviewed and anno-
tated; or at least this information was not published, to
our knowledge.

In this work, 2000 genes with potential to be assigned
with metabolic functions within the proteins encoded in
the Kluyveromyces lactis genome were studied. Most of
those, specifically 87.95% (1759 genes), were indeed classi-
fied as metabolic genes. The metabolic genes could be ex-
clusively enzymatic (1410 genes), transporter proteins
(301 genes) or have both metabolic activities (48 genes).
The new annotation proposed in this work could only be
accomplished as merlin provided semi-automatic scored
results. Such results were then reviewed in other databases
such as UniProt or BRENDA to maximize the confidence
in the results. The new annotation includes novelties, such
as the assignment of transporter superfamily numbers to
genes identified as transporter proteins. Moreover, it was
demonstrated that Oxidoreductases, Transferases and
Hydrolases represent almost 85% of the identified
enzymes. When the new annotation is compared to the
annotations currently available in some databases, it is
shown to be broader and reliable, as it encompasses most
of the metabolic information in such databases.

Furthermore, the new annotation of the K. lactis meta-
bolic genome confirmed the predictions of pre-genome
sequencing studies. One of those studies compared ran-
dom sequences of the K. lactis genome to the S. cerevi-
siae sequenced genome. All metabolic genes in that
study were identified in the new annotation.

Also, the central carbon pathways were revised in this
work to assess the robustness of the new annotation. The
new annotation was in agreement with several publications
that study Kluyveromyces lactis’ phenotypical behaviour.

The new annotation provided by this study, available
in Additional file 4 on the GenBank format, yields basic
knowledge which might be useful for the scientific com-
munity working on this model yeast, as new functions
have been identified for the so-called metabolic genes.

The methodology used throughout this work can be
used by other groups to annotate other organisms and
build a robust genome-scale model.
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Furthermore, the new annotation served as the basis
for the reconstruction of a compartmentalized, genome-
scale metabolic model of Kluyveromyces lactis, which is
currently being finished.
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