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Abstract

Background: MicroRNAs (miRNAs) are endogenous regulators of a broad range of physiological processes and act
by either degrading mRNA or blocking its translation. Oilseed rape (Brassica napus) is one of the most important
crops in China, Europe and other Asian countries with publicly available expressed sequence tags (ESTs) and
genomic survey sequence (GSS) databases, but little is known about its miRNAs and their targets. To date, only 46
miRNAs have been identified in B. napus.

Results: Forty-one conserved and 62 brassica-specific candidate B. napus miRNAs, including 20 miRNA* sequences,
were identified using Solexa sequencing technology. Furthermore, 33 non-redundant mRNA targets of conserved
brassica miRNAs and 19 new non-redundant mRNA targets of novel brassica-specific miRNAs were identified by
genome-scale sequencing of mRNA degradome.

Conclusions: This study describes large scale cloning and characterization of B. napus miRNAs and their potential
targets, providing the foundation for further characterization of miRNA function in the regulation of diverse
physiological processes in B. napus.
Background
Endogenous small RNAs (sRNAs) are known to be im-
portant regulators of gene expression at the transcrip-
tional and post-transcriptional levels. They fall into a
number of different classes in plants: transacting siRNAs
(tasiRNAs), heterochromatin-associated siRNAs, natural
antisense siRNAs (nat-siRNAs) and miRNAs [1]. These
classes of non-coding RNAs are distinguished by their
biogenesis pathways and the types of genomic loci from
which they arise [2].
miRNAs are non-coding RNAs of approximately 21

nucleotides that have been identified as important regu-
lators of gene expression in both animals and plants
[2-5]. Plant miRNAs are generated from hairpin-struc-
tured non-coding transcripts by DCL1 (DICER-LIKE 1),
which cleaves a short (21 bp) duplex from the stem region
[6]. The duplex is incorporated into an AGO1 complex and
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the miRNA* strand is subsequently degraded. The ma-
ture miRNA strand guides the AGO1 complex (RNA-
induced silencing complex, RISC) to protein-coding
RNAs, which are cleaved by AGO1 at a specific position
(opposite to the 10th and 11th nucleotides of the
miRNA) [7]. Recent findings have shown that the inhib-
ition of gene expression via translational arrest by the
miRNA-guided AGO complex is more common in
plants than was previously believed [8]. The mature miR-
NAs function within large complexes to negatively regu-
late specific target mRNAs. Plant miRNAs generally
interact with their targets through perfect or near-perfect
complementarity and direct mRNA target degradation
[9,10]. Due to their evolutionary conservation, miRNAs
have been found to exist in both plants [9,11] and ani-
mals [12-14]. Conserved miRNA molecules can also be
found in ferns, mosses and fungi [15,16].
In plants, miRNAs not only post-transcriptionally regu-

late their own targets but also interact with each other in
regulatory networks to affect many aspects of development,
such as developmental timing [17-21], senescence [22-24],
leaf morphogenesis [25-31], reproductive development
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Table 1 Statistics of sRNA sequences from B. napus

Redundant Non-redundant

Number
of counts

% of
total

Number of
unique
sequence

% of
total

Raw reads 13020106 \ 2149116 \

Adaptor removed 30673 0.24 25713 1.2

Junk Filter a 5182 0.04 2362 0.11

Length filter 1379794 10.6 646357 30.08

Simple sequence filter b 69175 0.53 11859 0.55

Copy number <3 1219472 9.37 1130389 52.6

Hit mRNA, RFam, Repbase 9877816 75.87 57637 2.68

Mappable 437994 3.36 30400 1.41
a the sequences are filtered out if they contain 3 Ns (N is undetermined
nucleotide) and only A and C without G and T, vice versa; b the simple
sequences are filtered out if they contain 2 Ns (N is undetermined nucleotide),
7 consecutive As, 8 consecutive Cs, 6 consecutive Gs or 7 consecutive Ts and
10 repeats of any dimer, 6 repeats of any trimer, or 5 repeats of any tetramer.
These numbers were from the statistics of miRbase ver16.
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[32-35], and modulation of root architecture [36-42]. miR-
NAs are also reported to be involved in plant responses to
biotic and abiotic stresses [31]. To date an increasing num-
ber of miRNAs have been identified and deposited in miR-
Base V17.0 (http://www.mirbase.org/). Among these
miRNAs, there are 19,724 plant miRNAs and miRNAs*,
from a total of 153 species. The species with the fastest
growing number of miRNAs is Brachypodium distachyon,
with 120 miRNAs being recently added. Initially, miRNAs
were identified by the traditional Sanger sequencing
method, which used for relatively small-size cDNA libraries
of plant sRNAs from Arabidopsis, rice and poplar (Populus
spp.). Comparison of miRNAs from these species led to the
conclusion that plant miRNAs are highly conserved [16].
This was supported by observations that even ferns shared
common miRNAs with flowering plants [43]. However, it
was also noticed that a small number of miRNAs were not
present in the genomes of some species, suggesting that
they have evolved more recently [25]. As non-conserved
miRNAs are often expressed at a lower level than con-
served miRNAs, many non-conserved miRNAs were not
found in small-scale sequencing projects. However, high-
throughput sequencing technologies have allowed the iden-
tification of many non-conserved miRNAs in several spe-
cies [44-47]. To date, hundreds of miRNAs have been
isolated by direct cloning or by deep sequencing in higher
plants [48]. Elucidating the function of these tiny molecules
requires efficient approaches to identify their targets. Ori-
ginally, plant miRNA targets have been studied via compu-
tational prediction, which is based on either perfect or near
-perfect sequence complementarity between miRNA and
the target mRNA or sequence conservation among differ-
ent species [10]. However, target prediction is very challen-
ging, especially when a high level of mismatches exists in
miRNA:target pairing [49]. Recently, a new method called
degradome sequencing, which combines high-throughput
RNA sequencing with bioinformatic tools, has been suc-
cessfully established to screen for miRNA targets in Arabi-
dopsis [50-52]. Using degradome sequencing, many of the
previously validated and predicted targets of miRNAs and
tasiRNAs were verified [50,51,53,54], indicating that it is an
efficient strategy to identify sRNA targets on a large scale in
plants.
Rape (Brassica napus) is one of the most important oil

crops, and also is one of the major economic crops.
However, unlike Arabidopsis and other plants, much less
is known about its miRNA classification and miRNA tar-
gets, especially the roles of miRNAs in the developmen-
tal process of Brassica napus. Currently, miRBase lists
46 miRNAs forming 17 miRNA families in Brassica
napus. The exploration of sRNA-based regulatory net-
works in Brassica napus is an important step towards
our better understanding of sRNA-based genic regula-
tion. Here, we describe the high-throughput sequencing
analysis of sRNAs from a cultivated variety of B. napus,
cv Westar, using the Illumina Solexa platform.
The sRNAs library was prepared for Solexa sequencing

from greenhouse cultivated rape plants, and produced
more than 2 million unique sequences. The most abun-
dant classes were represented by 21 and 24 nt-long
sRNAs. Forty-one conserved B. napus miRNAs and 62
candidate novel B. napus-specific miRNAs were firstly
identified. Twelve conserved miRNAs and 10 B. napus-
specific candidates were further verified by real-time RT-
PCR. To identify miRNA targets, a degradome sequencing
approach was used, which globally identifies the remnants
of sRNA-directed target cleavage by sequencing the 5′
ends of uncapped RNAs [50,51]. We identified a total of
33 non-redundant target ESTs for 25 conserved miRNAs,
and 19 non-redundant target ESTs for 17 B. napus-spe-
cific miRNAs. Approximately 70% of the identified targets
for conserved miRNAs were transcriptional factors.
Results and discussion
Sequencing B. napus miRNAs using Solexa technology
We used Solexa technology to deeply sequence B. napus
sRNAs. Total RNAs from different B. napus tissues were
pooled and submitted for small RNA sequencing. A total
of 13,020,106 reads were generated from the sequencing
machine. After removing adaptor sequences, filtering
out low quality tags and cleaning up sequences derived
from adaptor-adaptor ligation, 2,149,116 unique
sequences were obtained. Among these unique
sequences, 73,931 (3.44%) were found to be similar to
known miRNAs (Table 1).
SRNAs with known function were commonly 20–24

nt in size [53]; therefore, we analyzed the size distribu-
tion patterns of the original and unique reads (Figure 1).



Figure 1 Size distribution of sequenced small RNAs.
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The majority of sRNAs were 21 nt in size, followed by
24 nt and 23 nt (Figure 1a), which is consistent with the
typical size distribution of sRNAs from other plants. The
21 nt class showed the highest redundancy, whereas the
24 nt class showed lower redundancy (Figure 1a and b).

Identification of conserved B. napus miRNAs
Conserved families of miRNAs are found in many plant
species and have important functions in plant develop-
ment and responses to stresses [55]. In this study, to
identity the conserved miRNAs in B. napus, our dataset
was mapped onto the the genome and ESTs of B. napus,
B. rapa and B. oleracea, allowing one or two mismatches
between sequences. all retained sequences were com-
pared to known miRNAs from miRBase 17.0 (http://
www.mirbase.org/), and secondary structures of these
matched miRNAs were predicted. Based on genome
mapping and the miRbase results and hairpin prediction,
a total of 55conserved miRNAs derived from B. napus
were identified, including 41 miRNAs and miRNAs* (22
families) were firstly identified together with 14 already
in miRbase (Additional file 1: Figure S1, Additional file 2:
Table S2). 41conserved miRNAs and miRNAs* were po-
tentially generated from 26 non-redundant ESTs and 3
genomic survey sequence (GSS) loci (Table 2; Additional
file 3: Table S3). The precursors of four miRNAs named
Bna-miR166f, Bna-miR824*, Bna–miR1140b and Bna–
miR1140b* were matched in the genome of B. rapa
(Additional file 3: Table S3).
The read number of the conserved miRNAs was

highly variable, indicating different expression levels of
these miRNAs. Among them, Bna-miR159, Bna-
miR166a, Bna-miR164, Bna-miR171f and Bna-miR168
had relatively high number of reads, indicating that these
miRNAs are likely to be expressed at a higher level,
whereas Bna-miR169 family members had a low number
of reads, and are, therefore, likely to be expressed at a
lower level (Additional file 4: Table S1). The relative
expression level of a few known miRNA families, such
as miR159, miR167, miR160, miR165 and miR390, were
similar to that of Arabidopsis [44] (Table 2).

Brassica-specific miRNAs
A distinct feature of miRNAs is the ability of their pre-
miRNA sequences to adopt the canonical stem-loop
hairpin structure. After removal of conserved miRNAs,
the rest sRNA reads were predicted for each mapped
locus for potential stem-loop structures. From this ana-
lysis, we identified 62 miRNA and miRNA*candidates
(47 families) that were potentially generated from 62
EST or GSS loci (Additional file 5: Figure S2, Table 3).
Generally, new species-specific miRNAs are consid-

ered to be young miRNAs that have evolved recently,
and are often expressed at a lower level than conserved
miRNAs, as was reported for Arabidopsis and wheat
[44,46,56]. This observation is also true for many of the
new B. napus miRNAs identified here. However, few
new miRNAs were expressed at a high level, which was
opposite with this observation (Figure 2). In some cases
we observed considerable inconsistency between the
level of miRNAs identified by Solexa sequencing and
quantitative RT-PCR (qRT-PCR) analysis, however,
though we do not know the explanation for these differ-
ences. It is possible that the primers used for stem-loop
real-time reactions can bind miRNA species with a few
mismatches that were not considered by the bioinfor-
matic analysis.

Stem-loop qRT-PCR validation and measurement of B.
napus miRNAs
To verify the existence of the newly identified rape miRNA
candidates, the same RNA preparation used in the Solexa
sequencing was subjected to stem-loop qRT-PCR [57]. Fi-
nally, Twelve conserved miRNAs and 10 brassica-specific
candidates, which were randomly selected, could be readily
detected by qRT-PCR (Figure 2a), suggesting that miRNAs



Table 2 Conserved miRNAs in B. napus

miRNA miR sequence (5'→3') miR
length
(nt)

Reads Precursor
from EST

Mature miRNA position Stem-loop position

miR start miR end Precursor
start

Precursor
end

Bna–miR159* GGGCTCCTTATAGTTCAAACG 21 79 EX039355 189 209 186 368

Bna–miR159b TTTGGATTGAAGGGAGCTCTT 21 66 EV097138 224 244 216 408

Bna-miR160a TGCCTGGCTCCCTGTATGCCA 21 4447 ES904429 153 173 149 237

Bna-miR160a* GCGTACAGAGTAGTCAAGCATA 22 7 ES904429 214 235 149 237

Bna-miR161* GCAAGTCGACTTTGGCTCTG 20 97 BZ512955 431 451 329 463

Bna-miR162a TCGATAAACCTCTGCATCCAG 21 193 DY025212 495 515 420 523

Bna-miR162b TCGATAAACCTCTGCATCCAG 21 EV208491 295 315 204 329

Bna-miR162b* GGAGGCAGCGGTTCATCGATC 21 32 EV208491 222 242 212 323

Bna-miR165a TCGGACCAGGCTTCATCCCCC 21 2205 FP063045 53 73 34 160

Bna–miR166a* GGAATGTTGTTTGGCTCGAAG 21 29 DX911364 806 826 697 831

Bna-miR166e GGAATGTTGTCTGGCTCGAGG 21 328 CU967744 48 68 39 185

Bna-miR167d TGAAGCTGCCAGCATGATCTA 21 6110 CT022223 721 741 635 758

Bna-miR167e TGAAGCTGCCAGCATGATCTA 21 AC189327 249 269 153 286

Bna-miR167e* GATCATGTTCGTAGTTTCACC 21 47 AC189327 169 189 153 286

Bna-miR167f TGAAGCTGCCAGCATGATCTT 21 160 ES910254 45 65 43 134

Bna-miR168b TTCGCTTGGTGCAGGTCGGGA 21 14 DU984956 357 377 258 396

Bna-miR169n GCAAGTTGACTTTGGCTCTGT 21 1463 CU944678 404 424 354 528

Bna-miR169n* TGAGCCAAAGATGACTTGCCG 21 11 CU944678 459 479 356 530

Bna-miR171a* AGATATTAGTGCGGTTCAATC 21 7 DX044654 128 148 119 219

DU980843 223 243 159 246

Bna–miR171f* TATTGGCCTGGTTCACTCAGA 21 34 DU106747 666 686 647 756

Bna-miR172a GGAATCTTGATGATGCTGCAT 21 95 EV092015 731 751 637 769

Bna-miR172a* GTGGCATCATCAAGATTCACA 21 3 EV092015 654 674 629 777

Bna-miR172b AGAATCTTGATGATGCTGCAT 21 223 CU946172 157 177 69 189

Bna-miR319a GAGCTTTCTTCGGTCCACTC 20 105 ES908144 308 327 301 477

Bna-miR319b-1 ATCTGCCGACTCATCCATCCA 21 11 CN829704 153 173 76 312

Bna-miR319b-2 GAGATTCTTTCAGTCCAGTCA 21 3 CN829704 103 123 74 310

Bna-miR390d AAGCTCAGGAGGGATAGCGCC 21 1157 EE544982 541 561 471 581

Bna-miR390d* CGCTGTCCATCCTGAGTTTCA 21 348 EE544982 441 461 421 531

Bna -miR393* ATCATGCGATCTCTTCGGATT 21 30 DU101699 224 242 116 242

Bna-miR396 AATAAAGCTGTGGGAAGATAC 21 24 DU106522 54 74 35 216

Bna-miR398 TGTGTTCTCAGGTCACCCCTG 21 66 EE426846 89 109 1 123

Bna-miR399d TGCCAAAGGAGATTTGCCCGG 21 71 CX190537 106 126 9 146

Bna-miR399f TGCCAAAGGAGAGTTGCCCTG 21 62 EE556998 584 604 475 635

Bna-miR400 TATGAGAGTATTATAAGTCAC 21 25 CX189066 239 259 212 346

Bna-miR408a ACAGGGAACAAGCAGAGCATG 21 305 ES903146 59 79 49 157

Bna-miR408a* ATGCACTGCCTCTTCCCTGGC 21 141 ES903146 128 148 49 157

Bna -miR2111c TAATCTGCATCCTGAGGTTTA 21 35 BH986382 394 414 375 493

DX056967 280 300 176 326
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Table 3 Candidate new brassica-specific miRNAs

miRNA miR sequence (5'→3') miR
length
(nt)

Reads Precursor
from EST

Mature miRNA position Stem-loop position

miR start miR end Precursor start Precursor end

Bna-miRC1 CCATACTAAATCTGGATCATTT 22 115 CU943501 519 540 519 634

Bna-miRC2 ATAAATCCCAAGCATCATCCA 21 1011 EV202910 179 199 173 261

Bna-miRC3 TGGGATTGGCTTTGGGCTTTTC 22 12 CU940792 108 129 82 281

Bna-miRC4 TTTCAGTCGTCATAGGTTAGT 21 11 GT084890 55 75 51 158

Bna-miRC5-1 TGTGTTGTGATGATAATCCGA 21 306 CU971106 285 305 132 350

Bna-miRC5-1* AATCGGATTATCATCACAACA 21 7 CU971106 93 113 29 291

Bna-miRC5-2 TCAACCAAATACACATTGTGG 21 4 CU971106 52 72 35 306

Bna-miRC5-3 TTATCATCACAACACTAGATC 21 536 CU971106 76 96 19 281

Bna-miRC5-3* TCTTGTGTTGTGATGATAATC 21 216 CU971106 288 308 136 349

Bna-miRC5-4 TGATAATCCGACTTCTATGAC 21 29 CU971106 272 292 122 356

Bna-miRC5-5 TTGGTTTGGATCTTGGAAATC 21 8 CU971106 123 143 42 304

Bna-miRC5-6 TCGGATTATCATCACAACACT 21 182 CU971106 89 109 27 289

Bna-miRC6 ATAGATCCTTCTGATGACGCA 21 16 DU099814 306 326 254 327

Bna-miRC7 CAAATCCTGTCATCCCTACCA 21 89 GT079632 102 122 102 229

Bna-miRC8 CAGGAGAGATTGTTGGATCCA 21 3 CU931338 337 357 337 443

Bna-miRC9 TGCCTGGCTCCCTGTATACCA 21 118 EV193539 387 407 380 474

Bna-miRC10 TCAATGTTGGCTCAATTATGT 21 12 CU934632 731 751 666 751

Bna-miRC11 GGCGAGTCACCGGTGTCGGTC 21 6 FP328714 415 435 406 534

Bna-miRC12 GGGTCGATATGAGAACACATG 21 15 EE426846 15 35 1 123

Bna-miRC13 ACCCTGTTGAGCTTGTCTCTA 21 3 CU980942 490 510 449 524

Bna-miRC14 CAGCTGGACGACTTAGTAGAC 21 7 CU943399 123 143 103 229

Bna-miRC15-1 ACATTGGACTACATATATTAC 21 8 ES901619 392 412 299 430

Bna-miRC15-2 TCAATACATTGGACTACATAT 21 9 ES901619 387 407 299 430

Bna-miRC16 GTTTTGAGAGATTGGGAAGCT 21 3 EV146378 77 97 58 216

Bna-miRC17a-1 TTTCCAAATGTAGACAAAGCA 21 7132 ES913560 96 116 31 137

Bna-miRC17a-1* CTTTGTCTATCGTTTGGAAAAG 22 782 ES913560 53 74 31 137

Bna-miRC18 TCGCGATCTTAGATCCTCTAA 21 41 EV179238 441 461 288 564

Bna-miRC19 CGAGTTGGTCGGGAAAGACGG 21 12 DU102764 104 124 35 128

Bna-miRC20 CTCTCGTGGAGCGTCTCGAGG 21 3 EV192419 700 720 567 746

Bna-miRC21 GGAGGCAGCGGTTGATCGATC 21 7 DY025212 429 449 420 523

Bna-miRC22a-1 CAAGTAGACGACTTTCCAGAC 21 10 CU945922 359 379 298 403

Bna-miRC22a-2 CGTGGTCGTCCAAGTAGACGA 21 13 CU945922 363 383 292 397

Bna-miRC22a-3 TTGGACGACTTTGTAGACGAC 21 9 CU945922 303 323 297 402

Bna-miRC23a-1 TCAGAACCAAACCCAGAACAAG 22 54 CU958057 25 46 3 241

Bna-miRC23a-2 TTACAGAACAGCAACAAGCTGT 22 150 CU958057 47 68 7 238

Bna-miRC23a-3 TATCTACTGCTTATGCCACCA 21 65 CU958057 54 74 1 215

Bna-miRC23a-3* GATGCATAACCACTAGATACG 21 8 CU958057 140 160 1 215

Bna-miRC24 TTAGGATTGAGATCTTAGCGA 21 7 EV176533 225 245 214 395

Bna-miRC25 TTGGACTGAAGGGAACTCCCT 21 23719 FP023833 319 339 168 343

Bna-miRC25* AGAGTTTCCTTAAGTCCATTC 21 34 FP023833 173 193 167 343

Bna-miRC26 TGAGCCAAAGATGACTTGTCG 21 45 BZ021311 68 88 66 323

Bna-miRC27 TAAGATGATGGAACACTGGCC 21 25 EE438385 18 38 14 279

Bna-miRC28 ATGGATCCGCCGGATAAGGAT 21 6 CU965419 466 486 350 511
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Table 3 Candidate new brassica-specific miRNAs (Continued)

Bna-miRC29 TTGAGGTTTTGAGGACTGGCC 21 6 EV093069 644 664 564 668

Bna-miRC30 TCCTGGACGACTTTCAAGTAAG 22 9 CZ888137 161 182 20 250

Bna-miRC31 AGATCATCCTGCGGCTTCATT 21 26 EV134163 290 310 233 335

Bna-miRC32 GCAAGTTGACTTTGGCTCCGT 21 51 BZ021311 52 72 13 184

Bna-miRC33 TTTTGCCTACTCCTCCCATACC 22 268 CU981257 103 124 95 223

Bna-miRC34 ATCCTCGGGACACAGATTACC 21 113 EV076017 357 377 339 459

Bna-miRC35 ATGGTGTAGGTACTGAGCAGA 21 13 EV194620 298 318 294 400

Bna-miRC36 CGTCCGGGGAAAGCAAAGTCG 21 11 EV088144 141 161 64 186

Bna-miRC37 TGATTTATCCAAGGGTTCAGG 21 31 DU101557 509 529 367 608

Bna-miRC38 CAAGTAGACTACTTTCCAGACG 22 9 GT084321 52 73 1 92

Bna-miRC39 TAAGATGATGGGACGTTGGATC 22 11 DY002174 42 63 40 306

Bna-miRC40 CGCTCACAGCATCTGAACTCT 21 21 CD842549 99 119 78 243

Bna-miRC41 TTTTGGAGAAGGCTGTAGGCA 21 13 DU109430 791 811 780 890

Bna-miRC42 TTCCCCGGACGACTTTAAATT 21 15 EV088144 90 110 3 125

Bna-miRC43 TGTGAATGATGCGGGAGATGT 21 15 CN829704 219 239 69 315

Bna-miRC44 TTGGCCACAACGGATTTAACA 21 9 EV006438 66 86 66 141

Bna-miRC45 TTTCATCTTAGAGAATGTTGTC 22 42 EV178795 578 599 478 617

Bna-miRC46 ACTTGTCTCACTCATCAGTT 20 7 EV063926 5 24 3 215

Bna-miRC47 CAAATGTAGACAAAGCAAAAC 21 4 ES913560 100 120 31 137
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are bona fide miRNAs. Most results of qRT-PCR analysis
agreed with the sequencing data, as in the cases of
Bna-miR159, Bna-miR159b, Bna-miR160a, Bna-
miR165a, Bna-miR166e, Bna-miR167f, Bna-miR169a,
Bna-miR171a*, Bna-miR390d, Bna-miR400, Bna-miR1140b,
Bna-miRC2, Bna-miRC5-1, Bna-miRC5-6, Bna-miRC17a-1,
Bna-miRC18, Bna-miRC21, Bna-miRC22a-1, Bna-miRC30
and Bna-miRC45. In some cases, however, a discrepancy
was also observed between the qRT-PCR and sequencing
data (Bna-miR162a and Bna-miRC9; Figure 2a, b; Table 2,
3). The results suggested that Solexa sequencing was cap-
able of successfully discovering candidate novel miRNAs
from this species with high accuracy and efficiency.

Targets of known B. napus miRNAs
In B. napus, many conserved miRNA targets have been
predicted previously [58,59], but few miRNA targets
were identified experimentally. We therefore employed
the recently developed high-throughput experimental
approach [50,51,60] allowed us to identify target genes
for known miRNAs and candidate new miRNAs identi-
fied in this work. The poly-A fraction of a balanced total
RNA mix from leaf, petiole, stalk and root tissue was
analyzed for the identification of target transcripts of
known and new miRNAs. We obtained a total number
of 8, 356, 060 reads with an average size of ~20 nt,
representing the 5′ ends of uncapped, polyadenylated
RNAs. After initial processing, 6,999,869 reads were
obtained, and could be mapped to mRNAs. Previous
studies established that the 5′ terminal nucleotide of
miRNA-cleaved mRNA fragments would correspond to
the nucleotide that is complementary to the 10th nu-
cleotide of the miRNA. Therefore, the cleaved RNA tar-
gets should have distinct peaks in the degradome
sequence reads at the predicted cleavage site relative to
other regions of the transcript [50,51]. CleaveLand pipe-
line [60] was used to identify cleaved targets for both
known and new miRNAs in B. napus. The abundance of
the sequenced tags was plotted for each transcript, and
the results are shown in Figures 3, Additional file 6:
Figure S3 and Additional file 7: Figure S4. The cleaved
target transcripts were categorized into five classes (cat-
egories 0, 1, 2, 3 and 4). There were 31 non-redundant
ESTs identified as known miRNAs targets, covering 17
miRNA families (Table 4). Nine target ESTs were classi-
fied as category 0 (Figure 3a). Category 0 targets are
transcripts where the degradome reads corresponding to
the expected miRNA-mediated cleavage site were the
most abundant reads matching the transcript and there
is only one peak on the transcript with more than one
raw read at the position. Transcripts of one target
(EV184491, for Bna-miR156a) fall into category 1
(Figure 3b), where the total abundance of degradome
sequences at the cleavage position is equal to the max-
imum on the transcript, and there is more than one raw
read at the position and more than one maximum pos-
ition on the transcript. 3 target ESTs were classified as
Category 2 (Figure 3c), where abundance at the cleavage



Figure 2 Expression levels of Bna-miRNAs by two methods. (a) Profile of qRT-PCR Ct values for Bna-miRNAs; (b) Profile of sequencing
frequencies for Bna-miRNAs.
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position is less than the maximum but higher than the
median for the transcript and more than one raw read at
the position. 2 target ESTs were classed as Category 3
(Figure 3d), where abundance at the cleavage position is
equal to or less than the median for the transcript and
more than one raw read at the position. Among the iden-
tified targets the most abundant category was category 4
(18 target ESTs), where there is only one raw read at the
cleavage position (Figure 3e). Using these classifications
we identified targets for 17 conserved miRNA families out
of 25. Many highly conserved miRNAs were identified in
B. napus (Table 2) did not have detectable sliced targets in
the degradome sequencing data (e.g. miR161, miR166,
miR168 and miR397). It is possible that the levels of con-
served miRNAs (e.g. miR161) or sliced targets are below
the detection level in this growth stage, and may be
present in other specific stages or tissues that have not yet
been analyzed. Alternatively, these miRNAs inhibit target
gene expression through translational arrest rather than
mRNA cleavage.
Most of the identified targets of the conserved B. napus
miRNAs belong to diverse gene families of transcription
factors, such as SPLs, ARFs, MYBs, NF-Y subunits, NAC-
domain proteins, AP2-like factors, SCLs and MADS-box
factors (Table 4). Many of these transcription factors are
known to regulate diverse aspects of plant growth and de-
velopment. For example, SPLs and AP2-like factors tar-
geted by miR156 and miR172, respectively, have been
shown to play an important role in phase changes (from
juvenile to adult and from vegetative to the reproductive
phase) in Arabidopsis [21]. Another important family of
transcription factors is the MADS-box gene family,which
is known to play a critical role in determining organ speci-
ficity during flower development in Arabidopsis [61]. One
MADS-box gene (AtAGL16-like protein) was validated as
a target for miR824 in B. napus (Table 4). MADS-box fac-
tors in B. napus have also been identified to play import-
ant roles in petal identity [62]. Similarly, three SCL6s
targeted by miR171 play an important role in the regula-
tion of shoot branch production in Arabidopsis [63].



Figure 3 Confirmed microRNA (miRNA) targets using degradome sequencing are presented in the form of target plots (t-plots). We
used normalized numbers in plotting the cleavages on target mRNAs, which were referred to as ‘target plots’ (t-plots) by German et al. [51].
Signature abundance throughout the length of the indicated transcripts is shown. Representative t-plots for class 0 (a), class I (b), class II (c), class
III (d), and class VI (e) categories are shown. Arrows indicate signatures consistent with miRNA-directed cleavage. miRNA:mRNA alignments along
with the detected cleavage frequencies (normalized numbers) are shown. The frequencies of degradome tags with 50ends at the indicated
positions are shown in black, with the frequency at position 10 of the inset miRNA target alignment highlighted in red. The underlined
nucleotide on the target transcript indicates the cleavage site detected in the degradome.
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Besides their possible involvement in plant development,
miRNA targets identified in this study could also play fun-
damental roles in biotic and abiotic stress resistance in B.
napus. NF-YA transcription factor genes were validated as
targets of for miR169 family numbers. The AtNF-YA5
transcription factor, whose transcript is a target of
miR169, has been implicated in drought stress responses
in Arabidopsis [64]. Over-expression of a miR169-resistant
AtNF-YA5 transgene significantly improves drought re-
sistance by promoting stomatal closure under drought
stress [64]. Furthermore, NF-YA factors in Petunia
hybrida and Antirrhinum majus were validated to play
important roles in floral organ identity [65]. NF- YA
mRNAs were identified as targets of miR169 in B. napus
(Table 4). In addition, laccases (enzymes involved in cell
wall metabolism), plantacyanin-like proteins (involved in



Table 4 Targets of conserved B. napus miRNAs

miRNA Target
EST

Category Cleavge site Reads mapping
to the expected
cleavage site

Percentage of expected
reads to total reads
mapped to the full
length of EST (%)

Target site location Target annotation

Bna-miR156a EL625881 4 455 5 19 30UTR A. thaliana SPL3 transcription factor

EV190718 2 681 3 38 30UTR A. thaliana SPL10 transcription factor

EV184491 1 747 2 100 30UTR A. thaliana O-fucosyltransferase family protein

Bna-miR156c EV190718 2 682 3 38 30UTR A. thaliana SPL10 transcription factor

Bna-miR159 EV087133 4 439 2 20 ORF A. thaliana MYB65

EV223870 4 279 5 25 ORF metallo-beta-lactamase family protein

EV136053 4 685 3 21 ORF pyruvate, phosphate dikinase (PPDK)

Bna-miR160a EV006535 0 256 2 50 ORF auxin response factor

Bna-miR164b ES906443 4 68 3 20 ORF NAC domain-containing protein

Bna-miR167b ES962471 4 264 3 25 ORF Auxin response factor 8

Bna-miR167c EV208388 4 657 3 27 ORF B. rapa IAA-amino acid hydrolase 3

Bna-miR169a EE543166 0 247 3 50 30UTR A. thaliana NF-YA3

CN729971 4 406 3 17 30UTR A. thaliana NF-YA5

Bna-miR169e ES980547 2 459 5 36 30UTR A. thaliana NF-YA3

EE543166 0 247 3 50 30UTR A. thaliana NF-YA3

CN729971 4 406 4 22 30UTR A. thaliana NF-YA5

Bna-miR169l ES980547 2 459 5 36 30UTR A. thaliana NF-YA3

ES959135 4 352 3 27 30UTR B. napus clone bncbf-b2

EE543166 0 247 3 50 30UTR A. thaliana NF-YA3

CN729971 4 406 4 22 30UTR A. thaliana NF-YA5

Bna-miR171b ES907976 3 609 3 33 ORF B. napus SCL1

ES902868 3 673 4 34 ORF A. thaliana SCL6-IV

Bna-miR171f ES902868 4 676 3 21 ORF A. thaliana SCL6-IV

ES907976 4 612 4 25 ORF B. napus SCL1

Bna-miR171g ES902868 4 676 3 23 ORF A. thaliana SCL6-IV

ES907976 4 612 2 18 ORF B. napus SCL1

Bna-miR172f FG568924 4 488 2 20 ORF B. napus APETALA2

EV197066 0 677 6 50 ORF A. thaliana AP2-like protein (At2g28550)

DY025256 4 609 5 24 ORF A. thaliana AP2-like protein (SMZ)

Bna-miR390a EV220086 0 433 4 50 ORF cytochrome P450 family 78, subfamily A

Bna-miR390d EV220086 0 433 4 50 ORF cytochrome P450 family 78, subfamily A
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Table 4 Targets of conserved B. napus miRNAs (Continued)

Bna-miR393 EL628991 2 246 10 17 ORF A. thaliana auxin signaling F-box 3

EV176346 0 564 6 50 ORF A. thaliana auxin signaling F-box 3

Bna-miR396a ES923674 4 571 1 20 ORF A. thaliana bHLH74 transcription factor

Bna-miR397b ES906654 4 736 3 20 ORF A. thaliana laccase-4 (IRX12)

EE460611 4 445 5 25 ORF A. thaliana 60S ribosomal protein L15

Bna-miR399 EV157460 4 268 3 23 50UTR A. lyrata PHO2/UBC24

CX281881 4 581 5 23 ORF B. napus genes for ITS1, ITS2

Bna-miR408a EE417826 4 457 2 20 ORF A. thaliana peptide chain release factor 1

Bna-miR408b EV075738 4 63 2 22 50UTR A. thaliana plantacyanin

Bna-miR824 EV112524 0 319 4 50 ORF A. thaliana MADS-box protein AGL16

miR1140b EV217683 0 473 3 50 ORF T. aestivum mRNA for glycosyltransferase

ES912747 0 119 1 50 ORF A. thaliana two-component response regulator ARR8 (RR3)

Bna-miR2111b EV221566 0 337 3 50 ORF A. thaliana F-box/kelch-repeat protein

Xu
et

al.BM
C
G
enom

ics
2012,13:421

Page
10

of
15

http://w
w
w
.biom

edcentral.com
/1471-2164/13/421



Xu et al. BMC Genomics 2012, 13:421 Page 11 of 15
http://www.biomedcentral.com/1471-2164/13/421
reproduction and seed setting) and F-box proteins
involved in auxin-stimulated protein degradation (TIR1-
like) were among the confirmed targets in B. napus
(Table 4). Bna-miR1140 is a brassica-specific miRNA iden-
tified in our previous work.
Brassica-specific miRNA targets
Out of the 62 candidate new miRNAs, we only identified
targets for only 17 miRNAs from the degradome sequen-
cing data, plus 19 non-redundant target ESTs for candidate
new brassica-specific miRNAs (Table 5). The abundance of
the sequence tags for candidate brassica-specific miRNA
target transcripts was plotted as a function of its position
in the target genes (Additional file 7: Figure S4). We found
there was no clear correlation between the expression level
of the new miRNAs and their ability to target an mRNA
for cleavage. We found candidate new miRNAs, such as
Bna-miRC8, Bna-miRC13, Bna-miRC16, target mRNAs
despite their low abundance and that target mRNAs. Con-
sistent with our observation, no clear inverse correlations
between the miRNA abundance and the cleavage fre-
quency of target transcripts in Arabidopsis, rice and grape-
vine have been reported [53,66,67]. The new B. napus
miRNAs target different genes with a wide variety of
Table 5 Targets of candidate novel B. napus miRNAs

miRNA Target EST Category Cleavage
site

Reads
mapping
to the
expected
cleavage
site

Pe
ex
to
m
fu
ES

Bna-miRC2 EV142354 1 347 6 30

Bna-miRC5-2 EV077017 0 326 4 50

Bna-miRC5-5
Bna-miRC8

EV154449
FG574835

2 4 296 119 3 2 27

Bna-miRC9 EV006535 0 256 2 50

Bna-miRC13 EV022057 1 105 3 30

Bna-miRC15-1 EV191962 0 132 5 50

Bna-miRC15-2 EV054423 2 615 3 33

Bna-miRC16 GR445128 3 416 4 27

Bna-miRC17a-1 CD818234 1 647 5 36

Bna-miRC18 GT074945 2 341 12 30

Bna-miRC20-1 GR442870 0 578 3 50

ES987065 0 39 3 50

Bna-miRC21 GT079646 2 65 3 33

Bna-miRC22a-1 EV044066 3 505 4 27

Bna-miRC26 EV077764 0 593 5 50

Bna-miRC30 EV025081 2 329 4 36

CX189212 3 269 3 27

Bna-miRC47 ES992448 0 517 6 50
predicted functions. For instance, Bna-miRC16 targets
chlorophyll a/b-binding protein gene, Bna-miRC20-1 tar-
gets photosystem II reaction center W-like protein gene
and Bna-miRC21 targets photosystem I subunit XI gene,
which are all involved in photosynthesis. Bna-miRC17a-1
targets cinnamyl alcohol dehydrogenase (CAD), which is
likely to be involved in pathogen resistance and plant de-
velopment [68]. Several specific targets, such as PPR-con-
taining protein (required for normal plant development),
ferrochelatase (involved in the heme biosynthetic pathway),
GF14 omega proteins (potential roles in signaling), FtsH-
like protease (an ATP-dependent zinc metalloprotease,
related to photo-oxidative damage), glycosyl hydrolase
family proteins (involved in plant cell wall architecture),
Histone H2A and Histone H2B (involved in compacting
DNA strands and chromatin regulation) were found as tar-
gets of rape-specific miRNAs in B. napus.
Verification of miRNA-guided cleavage of target mRNAs
in B. napus
To verify the miRNA-guided target cleavage, RLM-RACE
experiment was performed to detect cleavage product of 5
predicted Bna-miRNAs (primers were listed in Additional
file 8: Table S4). As shown in Figure 4, all five of the Bna-
rcentage of
pected reads
total reads
apped to the
ll length of
T (%)

Target
site
location

Target annotation

ORF A. lyrata PPR-containing protein

ORF A. lyrata exostosin family protein

20 ORF
50UTR

A. thaliana alpha-tubulin 6A. thaliana
uncharacterized protein

ORF A. thaliana auxin response factor 17

ORF A. thaliana protein PIR

50UTR A. thaliana ferrochelatase 1

ORF A. lyrata ferrochelatase 1

ORF B.juncea chlorophyll a/b-binding protein

ORF A. thaliana cinnamyl alcohol dehydrogenase

ORF B.napus GF14 omega

ORF A. thaliana histone H2B-like protein

ORF B.rapa photosystem II center W-like protein

50UTR A. thaliana photosystem I subunit XI

ORF A. thaliana OST3/OST6 family protein

ORF A.thaliana uncharacterized protein
(AT3G51610)

ORF Glycosyl hydrolase family protein

ORF Glycosyl hydrolase family protein

ORF A. thaliana prenylcysteine oxidase (FCLY)



Figure 4 Mapping of the mRNA cleavage sites by RNA ligase-mediated 50RACE. Each top strand (black) depicts a miRNA complementary
site, and each bottom strand depicts the miRNA (red). Watson-Crick pairing (vertical dashes) and G:U wobble pairing (circles) are indicated. The
arrows indicate the 50 termini of mRNA fragments isolated from B. napus, as identified by cloned 50 RACE products, with the frequency of clones
with the predicted cleavage site shown.
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miRNAs guided the target cleavage, often at the tenth nu-
cleotide, or eleventh nucleotide (Figure 4). Thus, all the
five predicted targets were found to have specific cleavage
sites corresponding to the complementary sequences of
miRNA.
Conclusion
Here, 41 conserved data and 62 brassica-specific candidate
miRNAs, including 20 miRNA* sequences were firstly
identified. The sequencing results were further confirmed
using stem-loop quantitative RT-PCR. The data will be
updated to incorporate future miRBase updates. Our ap-
proach leads to the identification of several conserved and
specific brassica miRNA targets in the available EST and
genomic databases. 33 non-redundant mRNA targets for
the conserved brassica miRNAs and 19 non-redundant
mRNA targets of new brassica-specific miRNAs were
identified. Validated miRNA targets in B. napus are
potentially involved in diverse biological processes, includ-
ing phase transitions, flowering, hormone signaling,
photosynthesis, metabolism and biotic and abiotic stress
resistance. Our data will be a useful resource for further
investigation of the evolution of small RNA-based
regulation in Brassica napus and related species. More im-
portantly, this study will serve as a foundation for future
research on the functional roles of miRNAs and their tar-
get genes in this important oil crop.

Methods
Plant materials
The dihaploid B. napus line, Westar, was grown in a
glasshouse at 22–25°C with a 16 h light/8 h dark photo-
period and light intensity of >8000 lx. Leaves, petiole,
stalk, roots and shoot apices from one month-old seed-
lings were collected and used for RNA extraction. A
balanced RNA mix was used for small RNA expression
and degradome analysis.

RNA extraction and preparation of sRNA and degradome
cDNA libraries for Solexa sequencing
B. napus total RNA from different tissues was extracted
using Trizol (Invitrogen). The total RNA balanced mix
sample was size-fractionated by 15% denaturing poly-
acrylamide gel electrophoresis, after which the small
RNA fragments of 18–28 nt were isolated from the gel
and purified. The small RNA molecules were then
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ligated to a 5' adaptor and a 3' adaptor sequentially and
then converted to cDNA by RT-PCR following the Illu-
mina protocol. The concentration of the sample was
adjusted to ~10 nM and a total of 10 μL was used in a
sequencing reaction. The purified cDNA library was
sequenced on an Illumina GAIIx.
The degradome library was constructed as previously

described [51]. Similarly to the short RNA libraries, the
degradome cDNA library was sequenced on an Illumina
GAIIx.

Bioinformatic analyses
After masking adaptor sequences and removal of con-
taminated reads the clean reads were filtered for miRNA
prediction with the ACGT101-miR-v3.5 package (LC
Sciences, Houston, USA). First, reads that matched
rRNA, tRNA, snRNA, snoRNA, repeat sequences, and
other ncRNAs deposited in Rfam (http://www.sanger.ac.
uk/software/Rfam) [48] and the GenBank noncoding
RNA database (http://www.ncbi.nlm.nih.gov/) were dis-
carded. The retained 15–26 nt reads were mapped onto
the the genome and ESTs of Brassica napus, Brassica
rapa and Brassica oleracea using MapMi software under
default parameters. Sequences with up to two mis-
matches were retained for miRNA prediction. After
rigorous screening, all retained sequences of 15–26 nt
with three or more copies in frequency were considered
as potential miRNAs. We then attempted to align the
predicted miRNAs to all rape known mature miRNA
sequences in miRBase Version 17.0 [48] to identify nov-
elty. Finally, Secondary structure prediction of individual
miRNA was performed by MFOLD software (Version
2.38, http://mfold.rna.albany.edu/?q=mfold/RNA-Fold-
ing-Form) using the default folding conditions [69].
The degradome analysis and the classification of target

categories were performed using CleaveLand 2.0 [60].
Small RNA targets prediction was run against the tran-
scriptome of interest. The alignment scores (using the
[70] rubric) for each hit up to a user-defined cutoff were
calculated, full RNA-RNA alignments were printed, and
the 'cleavage site' associated with each prediction was also
calculated. The cleavage site is simply the 10th nt of com-
plementarity to the aligned small RNA. For randomized
queries, no alignments were retained. However, concise
records of each predicted target for the random queries
were retained, including the predicted cleavage sites.

End-point and SYBR Green I real-time PCR assays of B.
napus miRNAs
End-point and Real-time looped RT-PCR [57] were used to
validate and measure the levels of B. napus miRNA. Stem–
loop RT primers, universal reverse primer and miRNA-spe-
cific forward primers for Bna-miR159, Bna-miR159b,
Bna-miR160a, Bna-miR162a, Bna-miR165a, Bna-miR166e,
Bna-miR167f, Bna-miR169a, Bna-miR171a*, Bna-miR390d,
Bna-miR400, Bna-miR1140b, Bna-miRC2, Bna-miRC5-1,
Bna-miRC5-6, Bna-miRC9, Bna-miRC17a-1, Bna-miRC18,
Bna-miRC21, Bna-miRC22a-1, Bna-miRC30and Bna-
miRC45 were designed according to Varkonyi-Gasic et al.
[57]. (Additional file 4: Table S1). 1 μg of total RNA was re-
verse-transcribed to cDNA using ReverTra Ace (TOYOBO,
Osaka, Japan). Stem-loop pulsed reverse transcription and
end-point PCR was performed according to Varkonyi-
Gasic et al. [57]. Advantage 2 PCR Polymerase Mix (Clon-
tech, Mountain View, CA, USA) was used to perform end-
point PCR. qRT-PCR was performed using SYBR Premix
Ex TaqTM of TaKaRa (TaKaRa Code: DRR041A) on an Ap-
plied Biosystems 7500 thermocycler (Applied Biosystems,
Foster City, CA, USA). All reactions were run in triplicate.
After the reaction, the threshold cycle (Ct) was determined
using default threshold settings. The Ct is defined as the
fractional cycle number at which the fluorescence passes
the fixed threshold.

Modified 5′ RNA ligase-mediated RACE for the mapping
of mRNA cleavage sites
Total RNA from different tissues was extracted using Trizol
(Invitrogen). Poly(A) +mRNA was purified from all kinds
of pooled tissue RNA using the PolyA kit (Promega, Madi-
son, WI), according to manufacturer’s instructions. A small
RNA adapter (5′GUUCAGAGUUCUACAGUCCGACGA
UC- 3′) was ligated to Poly(A) +mRNA. A modified pro-
cedure for 5′ RNA ligase-mediated RACE (RLM-5′
RACE) was followed with the 5′-Full RACE Kit (TaKaRa,
Dalian), according to manufacturer’s instructions. Nested
PCR amplifications were performed using the 5′ small
RNA nested primer (5′ AATGATACGGCGACCACCGA
CAGGTTCAGAGTTCTACAGTCCGA 3′) and gene-
specific nested primers (Additional file 8: Table S4). The
amplification products were gel purified, cloned, and
sequenced, and at least 10 independent clones were
sequenced.
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yellow section represents miRNA*
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Additional file 3: Table S3. Four conserved miRNAs in B. napus.
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Additional file 5: Figure S2. Secondary structures of 62 putative novel
B.napus miRNAs and miRNAs*.

Additional file 6: Figure S3. T-plots for targets of known miRNAs. Only
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