Kang et al. BMC Genomics 2012, 13:360
http://www.biomedcentral.com/1471-2164/13/360

(o

Genomics

RESEARCH ARTICLE Open Access

Characterization of microRNAs expression
during maize seed development

Mingming Kang, Qian Zhao, Dengyun Zhu and Jingjuan Yu"

Abstract

of miRNA in seed development was merely discussed.

seed development.

sequencing and microarray studies.

Background: MicroRNAs (miRNAs) are approximately 20-22 nt non-coding RNAs that play key roles in many
biological processes in both animals and plants. Although a number of miRNAs were identified in maize, the function

Results: In this study, two small RNA libraries were sequenced, and a total reads of 9,705,761 and 9,005,563 were
generated from developing seeds and growing leaves, respectively. Further analysis identified 125 known miRNAs in
seeds and 127 known miRNAs in leaves. 54 novel miRNAs were identified and they were not reported in other plants.
Additionally, some miRNA*s of these novel miRNAs were detected. Potential targets of all novel miRNAs were
predicted based on our strict criteria. In addition to deep-sequencing, miRNA microarray study confirmed the higher
expression of several MiRNAs in seeds. In summary, our results indicated the distinct expression of miRNAs during

Conclusions: We had identified 125 and 127 known miRNAs from seeds and leaves in maize, and a total of 54 novel
miRNAs were discovered. The different miRNA expression profile in developing seeds were revealed by both

Background

MiRNAs are known as regulators that control various
types of biological functions in eukaryotic cells. Most
miRNA genes are transcribed to primary miRNAs (pri-
miRNAs) by RNA polymerase (RNApol) II, while other
miRNAs may be transcribed by RNApol III [1]. Then
the pri-miRNAs are processed to single-stranded stem-
loop precursors (pre-miRNAs) by Dicer protein in ani-
mals or Dicer-like (DCL) in plants [2-4], and pre-miRNAs
are further processed to miRNA:miRNA* duplexes. The
miRNA:miRNA* duplexes are methylated by HEN1 on
the 3’ terminal [5] and exported to cytoplasm by export
factors like Exportin-5 in animal or HASTY in plant
[6,7], then the mature miRNAs and miRNA* are pro-
duced. Mature miRNAs are loaded into RNA-induced
silencing complex (miRISC) that contains ARGONAUTE
(AGO) protein to guide the cleavage of target mRNAs that
are complementary to the miRNAs, while the miRNA*s
are degraded gradually [1,8,9]. Plant miRNAs were first
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reported in 2002 in Arabidopsis [2,10]. They are usually
20-22 nt in length and their precursors have various length
ranging from 60 nt to longer than 350 nt. Unlike miRNAs
in animals, plant miRNAs have near-perfectly comple-
mentary sequences to their targets sites [1,11]. There
are two major regulation mechanisms of plant miRNAs,
known as mRNA cleavage and translational inhibition.
The positions of 10 and 11 of miRNAs are critical for
the mRNA targeting and cleavage at 3’ UTR region [12].
Beside mRNA cleavage, plant miRNAs can also function
through translational inhibition that can decrease the level
of target proteins [13,14]. To date, most identified tar-
gets of plant miRNAs are transcription factors that are
involved in many biological processes such as develop-
mental patterning, cell differentiation and stress response
[1,15-17]. Recently, the roles of plant miRNAs were widely
studied in various organisms including Arabidopsis, rice,
maize and sorghum.

MiRNAs are involved in many regulatory pathways that
controls seed development, and miRNA loss-of-function
may lead to developmental defects or even lethality
[18]. In Arabidopsis, miR156 targets SPL10 (Squamosa
Promoter-Binding Protein-Like 10) and SPL11, and
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over accumulation of these targets leads to abnormal cell
divisions [18]. Plants expressing miR160-resistant ARFI17
(Auxin Response Factor 17) may cause abnormal embryo
symmetry [19]. Overexpression of miR164 reduces the
CUCI1/CUC2 (CUP-SHAPED COTYLEDON) transcripts
and results in cotyledon development defect [20]. The
sequences of miR159 and miR319 are nearly identical
and both can affect seed size. MiR172 targets several
APETALA2 (AP2)-like transcription factors that control
seed mass and yield [21]. Therefore, further focus on
developmental roles of miRNAs may reveal more detailed
functions of miRNAs in seed development.

Currently, there are 319 discovered maize miRNAs in
the miRNA database miRBase (Release 17, April 2011)
[22], most of which is primarily identified by similarity
comparison to mature miRNAs from other plant species
[23,24]. The genome-wide analysis of miRNAs and their
targets in maize had proved the importance of miRNAs
in gene regulation network throughout plant development
[24]. To further study these miRNAs in seed develop-
ment, we sequenced two sRNA libraries from developing
seeds and young leaves, leading to the identification of
125 and 127 known miRNAs in seeds and leaves, respec-
tively, and the discovery of 54 novel maize miRNAs. Small
RNA deep-sequencing is a ideal way for miRNA profil-
ing due to the high throughput comparing with other
approaches. We further characterized the miRNA expres-
sion by miRNA microarray study, and both sequencing
and microarray data uncovered the similar expression
pattern of several known miRNAs in developing seeds.

Results and discussion

Small RNA sequencing

To study the role of miRNA during seed development,
a small RNA library from five stages of immature seed
(see Methods) was generated and sequenced by Illu-
mina’s Genome Analyzer. After removal of low quality
reads and adaptor sequences, a total of 9,705,761 reads
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representing 5,396,301 unique reads from 18 to 30 nt
in length were obtained. The most sequenced sRNAs
were 24-nt in length (50%), which was the feature that
some siRNAs had, followed by 22-nt (12.3%) and 21-
nt (10.4%), which were the length of canonical miRNAs
(Figure 1). The abundance of unique reads was remarkably
different, however. For example, zma-miR168a/b, with the
total count of 131,141, is the most sequenced read, but
around 82% (4,429,004) of total signatures was sequenced
only once, indicating that the small RNA population in
maize might be highly complicated. Then, the reads were
mapped to the maize genome (B73 RefGen_v2, release
5b.60) using Bowtie [25] with a tolerance of one mismatch.
The results indicated that 271,104 reads matched perfectly
to the maize genome, representing 87,873 unique sRNAs,
and 162,106 reads had one nucleotide differed from the
genome, representing 79,930 unique sRNAs. Approxi-
mately 3.76% unique reads matched other non-coding
RNAs including rRNA (0.90%), tRNA (0.11%), siRNA
(2.71%), snRNA (0.03%) and snoRNA (0.01%), which made
up 12.12% of total sequenced reads (Table 1).

To see if the expression of miRNAs was different from
other tissues, another small RNA library from young
leaves was also sequenced and data were processed by the
same procedure as described above. Unlike in seeds, the
dominant reads in leaves were 21-nt SRNAs (25%), and 24-
nt sSRNAs only accounted for 20.9% compared to seeds.
Other abundant signatures included 20-nt (15%) and 22-
nt (9.8%) sRNAs (Figure 1). A total of 402,882 sRNAs
matched perfectly to the genome and 59,559 sRNAs dif-
fered from genome by one nucleotide. Around 30.43% of
total SRNAs were annotated as other non-coding RNAs
(Table 1).

The sRNAs length distribution of the two libraries sug-
gested a distinct SRNA population in seeds. As mentioned
above, 24-nt sSRNAs were highly accumulated in seeds
(50%), which was consistent with two recent studies in
maize [26,27].
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Figure 1 Total reads of 18-30 nt small RNAs.

Small RNA Length (nt)

Seed
M Leaf

24 25 26 27 28 29 30




Kang et al. BMC Genomics 2012, 13:360
http://www.biomedcentral.com/1471-2164/13/360

Table 1 Summary of small RNA sequencing
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Seed

Unique reads

Total reads

Leaf

Unique reads

Total reads

Non-coding RNAs

rRNA 48,744 (0.90%) 496,691 (5.12%)
tRNA 6,190 (0.11%) 197,396 (2.03%)
SiRNA 145,973 (2.71%) 476,425 (4.91%)
SNRNA 1,828 (0.03%) 4,821 (0.05%)
SNORNA 557 (0.01%) 949 (0.01%)
Protein-coding RNAs
exon 590,744 (10.95%) 1,201,276 (12.38%)
intron 747,218 (13.85%) 1,494,227 (15.40%)
Known miRNAs
mature 226 (0%) 462,609 (4.77%)
mature star 97 (0%) 1,697 (0.02%)
Other sRNAs 3,854,724 (71.43%) 5,369,670 (55.32%)
Total 5,396,301 (100%) 9,705,761 (100%)

98,035 (4.70%)
13,441 (0.64%)
42,910 (2.06%)
1,169 (0.06%)
504 (0.02%)

307,933 (14.74%)
310,191 (14.86%)

250 (0%)

131 (0%)
1,313,335 (62.90%)
2,087,899 (100%)

1,923,961 (21.36%)
639,236 (7.10%)
173,554 (1.93%)

2,399 (0.03%)
1,186 (0.01%)

810,348 (8.90%)
656,538 (7.29%)

3,098,983 (34.41%)
8,915 (0.10%)
1,690,443 (18.77%)
9,005,563 (100%)

Identification and characterization of conserved miRNAs

Since miRNA plays a important role in plant development,
there is a growing number of both mature and precur-
sor miRNAs registered in the miRNA database miRBase
(http://www.mirbase.org). There are currently 319 maize
mature miRNAs and 170 miRNA precursors in the
database (release 17, April 2011). To identify conserved
miRNAs, small RNA sequences were aligned to maize
mature miRNAs and precursors with perfect matches,
and 125 conserved miRNAs belonged to 24 miRNA fam-
ilies and 127 miRNAs belonged to 25 miRNA families
were identified in seeds and leaves, respectively. Despite
the similar family number, these conserved miRNAs were
generally more abundant in leaves (462,609 and 3,098,983
reads in seeds and leaves, respectively), indicating that
the regulation network that involves miRNAs is more
complicated in the vegetatively growing seedlings. How-
ever, there are miRNAs that were less expressed in young
leaves but relatively rich in seeds. Our result indicated
that the zma-miR319a/b/c/d and zma-miR1690 were

detected only in seeds, with 42 and 124 reads respectively,
similar with miR319 expression in the developing seeds
reported previously [26]. MiR319 targets several TCP
transcription factors in Arabidopsis [28] and can affects
seed size. Several studies also revealed that miR319c,
rather than miR319a/b, played a important role in Ara-
bidopsis leaf development [28-30]. In maize, miR319 was
predicted to target several transcription factors including
MYB and TCP domain proteins [24]. Most members of
zma-miR171, zma-miR167 and zma-miR166 families not
only had higher reads but the reads were higher in seeds
(Figure 2). MiR167 targets several ARF transcription
factors that are important in controlling seed dispersal.
A recent study reported that miR166 was sequestered by
AGO10 to prevent its loading to AGO1, consequently sev-
eral HD-ZIP III transcription factors were suppressed and
this was critical for shoot apical meristem development
[31].

Zma-miR168 and zma-miR528 were the top sequenced
in seeds and leaves, respectively (Additional file 1).
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Figure 2 More abundant conserved miRNAs in seeds. MiR319a/b/c/d and miR1690 were detected only in seeds.
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Intriguingly, one target of miR168 was AGOI which was
essential for miRNA maturation [15,32], and the inter-
action between miR168 and AGOI maintained proper
embryo development. Besides, miR168 was also respon-
sive for several salt-stresses in maize [33,34]. Recent stud-
ies suggested that miR528 showed significant repression
under low nitrate condition in maize roots and shoots
[34], while in T. dicoccoides, miR528 was down-regulated
in leaves during drought stress [35]. Other miRNAs in
high abundance include zma-miR164, zma-miR156 and
zma-miR827, which were more than 1,000 reads in both
two tissues. In summary, these suggested a developmental
and tissue-specific expression of miRNAs, and therefore
the more abundant miRNAs in seeds should have key
functions in regulating seed development.

Diverse expression pattern of small RNAs in seeds

and leaves

As mentioned above, seeds and leaves had preferential
expression of small RNAs, these might be mainly due to
the different developmental stage they stayed in. Previous
studies suggested that in the early stage of embryogenesis,
miRNAs inhibited genes from prematuration to preserve
proper developmental stage [18]. In the immature seeds,
a variety of environment and stress-response genes were
relatively less expressed, and a number of these genes
were the targets of miRNAs, therefore the regulation
network that involved miRNAs could be less compli-
cated than in other developmental stage. Whereas the
ever-growing seedings need more nutrition, and had to
confront all substantial stresses and adjust themselves to
survive. Therefore, regulatory sSRNAs in leaves should be
more complicated. Previous studies also suggested that,
the miRNA held at a relatively lower level in plant seeds
rather than in other tissues [26,36]. The similar situation
was also found in animal, as the targets of several miRNAs
were highly expressed in embryo than in other tissues,
and the miRNAs in turn were in low level in embryo
[37]. The sequencing data in this study showed a similar-
ity with those discussed above. Total reads of conserved
mature miRNAs were more than 7-fold higher in leaves
(7,700,465 RPM) compared with those in seeds (1,067,863
RPM), which was consistent with previous studies [26,36].
In the seed sequencing library, around 50% of signatures
were 24-nt in length (Figure 1), and 20-22 nt sRNAs only
took up 16.8% of the population. In contrast, the most
signatures in leaves were 21-nt sSRNAs that accounted for
25% of total reads. Previous study indicated that a number
of seed sRNAs were most likely derived from repeat-
associated siRNAs (rasiRNAs) [36]. In our case, the same
situation was also found by scanning the folded clusters
of sSRNAs by RepeatMasker. Another siRNA, called trans-
acting siRNA (tasiRNA), was involved in controlling seed
size, and both this tasiRNA and its target were conserved
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in rice and maize [38]. A recent study suggested that
the siRNA-mediated DNA methylation was enhanced in
seeds [39]. These findings indicated the siRNA’s important
role in seed development. In summary, our study showed
that miRNAs were lower expressed in seeds considering
both total and unique number, indicating that miRNA
expression was still in initialization in seeds.

The role of miRNA*s in plant development

During miRNA biogenesis in plants, miRNA:miRNA* was
spliced by DCL1 to produce functional mature miRNA,
while miRNA* was assumed to be gradually degraded [1].
The established model of selection of functional mature
strand was based on the thermodynamic structures of
miRNA:miRNA* duplexes [40], whereas the unstable
strand was so-called “miRNA*” and assumed to degrade
to a nearly undetected level [41]. Nevertheless, previous
research suggested that miRNA*s could also accumulate
to a considerable level and down-regulate their target
genes in both plants and animals [42-45]. In mouse, both
the mir-30e-5p and mir-30e-3p could suppress the expres-
sion of their targets [46]. More recently, new evidence
of miRNA*-mediated mRNA cleavage was found in Med-
icago truncatula by degradome sequencing [47]. The same
situation was found in maize as well [48], indicating the
yet less discovered function of miRNA*. Besides, due to
the over-expression of miRNA precursors, the enrichment
of miRNAs or miRNA*s was proposed to affect their pre-
cursors via a feedback pathway. We noticed that in our
sequencing result, a few of miRNA*s had been highly
sequenced in both two sequencing libraries (Additional
file 1). The total reads of miR408b* and miR396a*/b* were
greater than the corresponding mature sequences, and
both showed higher abundance in young leaves. MiR408b*
had the max reads of 5,716 in leaves, which was even
higher than the mature zma-miR408b (4,699 reads). Sim-
ilarly, miRNA396a*/b* were also more sequenced (223
reads) than the mature miRNA (99 reads) in seeds. Since
miRNA* may have the same function as mature miRNA
[49], it is possible that these miRNA*s can be de facto miR-
NAs as well. In summary, these miRNA genes should have
alternative expression preferences according to the special
developmental stage and environment.

Validation of known miRNA expression by miRNA
microarray

To further study the expression of conserved miRNAs in
maize seeds, we carried out miRNA microarray analysis.
The result indicated that, compared to leaves, all 4 miRNA
members from miR319 family had a average of 16 times
detection signals higher in seeds, which further confirmed
our sequencing result (Figure 3). Moreover, miRNAs of at
least 2 times expression level higher in seeds were all from
miR319, miR171 and miR166 family (Figure 3, Additional
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Figure 3 Highly expressed miRNAs in seeds through miRNA microarray.

file 2), indicating the important roles of these miRNAs
in seed development. MiR166 was predicted to target
basic-leucine Zipper (bZIP) genes in maize [24], which
could regulated many processes such as seed matura-
tion, stress signalling and flower timing [50]. miR171 was
predicted to target GRAS transcription factor that con-
trolled gibberellic acid (GA) signaling and phytochrome
A signal transduction [51]. The more abundant miR-
NAs in leaves were miR399a/c/d/e, miR408, miR159c/d,
miR156k/j, miR160a/b/c/d/e and miR164a/b/c/d, while
the expression of miR399e was nearly 10-fold higher than
that in seeds (Additional file 2). MiR156 targeted SBP
transcription factor [52,53], which affected shoot matu-
ration in Arabidopsis, miR159¢/d and miR164 were pre-
dicted to target MYB domain transcription factors [24,54],
and miR160 targeted ARF transcription factors [55,56].
Taken together, the highly expressed miRNAs and the tar-
get types of these miRNAs indicated the developing plants
had a more sophisticated gene regulation mechanism and
thus needed a number of regulators such as miRNAs.

Identification and characterization of novel maize miRNAs

In plants, the pri-miRNA transcript was spliced twice by
DCL RNase [1], and a hairpin-like miRNA precursor was
produced after the first cleavage. Since the special struc-
ture, secondary structures of clusters were predicted by
a RNA folding program RNAfold [57], sequences that
matched to the genome from seeds and leaves totally
folded 61,399 and 18,106 clusters, respectively. Previous
studies suggested that the miRNA precursors had a aver-
age minimal folding free energies index (MFEI) of 0.97,
which was significantly higher than other non-coding
RNAs such as mRNAs (0.62-0.66), rRNAs (0.59) and
tRNAs (0.64), and 90% of miRNA precursors had an MFEI
greater than 0.85 while no other RNAs had this feature
[58]. To validate these clusters, the MFEI of these clusters

was checked that it should be no less than 0.85, finally 25
and 33 clusters were regarded as novel miRNA precursors
in seeds and leaves respectively (Additional file 3), while
the most abundant miRNAs were regarded as novel miR-
NAs. These novel miRNAs can be further grouped into
43 miRNA families from both seeds and leaves, represent-
ing 54 individual novel miRNAs (Table 2, Additional file
4).Four novel miRNAs were experimentally validated by
stem-loop RT-PCR and sequencing (Figure 4).

As a further evidence, we had also detected some cor-
responding miRNA*s of novel miRNAs, though these
miRNA*s were low in abundance (Additional file 4). The
nucleotide composition analysis showed that more than
20% of novel miRNAs start with U, which is statisti-
cally the typical property of mature miRNAs [59,60], and
the overall nucleotide composition showed higher per-
centage of A and G (Figure 5). The genomic position
analysis of these novel miRNA precursors showed that
most of pre-miRNAs (31 out of 54 pre-miRNAs) local-
ized to the intergenic regions, more than one third of
pre-miRNAs (20 out of 54 pre-miRNAs) were located
within the intronic regions of protein-coding genes, and
3 pre-miRNAs overlapped with adjacent intron/exon (2)
or exon/intron (1) (Table 2, Additional file 5). The exact
location of novel miRNA genes may differ a little since
the pri-miRNAs were not cloned experimentally. To see
if the newly identified miRNAs were conserved in other
plants, miRNA sequences were blastn searched against
the genome sequence of Arabidopsis, rice and sorghum
(see Methods). The result indicates that 8 miRNAs were
conserved in sorghum, 3 miRNAs conserved in rice and 1
miRNA conserved in Arabidopsis (Table 2).

Target prediction of novel miRNAs
Since the miRNA and target duplexes are near-perfectly
matched in plants, it is possible to find targets by
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Table 2 Summary of newly identified miRNAs

miRNA Sequence Length Abundance Pre-miRNA Conservation
(5'-3") (nt) Seed Leaf Position’

zma-miR01 AAAAAGCCAGAACGATTTATGA 22 15 - Intron

zma-miR02a AAGCAAGGATAATGGAGGGGA 21 9 - Intron

zma-miR02b AAGCAAGGATAATGGAGGGGA 21 9 - Intron

zma-miR03 ACCGATCGGGAGAACCGGAGA 21 - 37 Overlap

zma-miR04 ACGGTGTTGTGTCAGGGGGGT 21 6 - Intergenic

zma-miR05 AGAACCGGAGAGCTAGAGGG 20 - 5 Overlap

zma-miR06 AGAGGAGATTGAAGGGGCTAG 21 6 - Intergenic

zma-miR07 AGAGGATCTATGGTGGAGGAA 21 5 - Intron

zma-miR08 AGATATGGTAGAGGGGCCTAA 21 7 - Intergenic O. sativa

zma-miR09 AGCTATGAACGTCTGGATGCA 21 - 5 Intergenic

zma-miR10 AGTGTTTGGTTAGATGGAATAG 22 - 26 Intergenic

zma-miR11 ATACTAGGAGTGAAGGGATCA 21 8 - Intron

zma-miR12 ATATATGTGGGTTGGGATTAAT 22 5 - Intron

zma-miR13 ATCACAGGAGGATTGGAGGAG 21 9 - Intron

zma-miR14a ATGGAGGGGATTGAGGGGCTA 21 - 9 Intergenic

zma-miR14b ATGGAGGGGATTGAGGGGCTA 21 - 9 Intergenic

zma-miR14c ATGGAGGGGATTGAGGGGCTA 21 - 9 Intergenic

zma-miR15 ATGGTGCATTGACTTGGTCAA 21 - 5 Intron

zma-miR16 ATTGTAGTGGATTGAGAGGGA 21 8 - Intergenic

zma-miR17 ATTTTTGAAGGAAGGAAAGC 20 9 - Overlap S. bicolor

zma-miR18a CAAAGAGAATTGAGGGGGCTA 21 10 7 Intergenic

zma-miR18b CAAAGAGAATTGAGGGGGCTA 21 - 7 Intergenic

zma-miR18c CAAAGAGAATTGAGGGGGCTA 21 - 7 Intergenic

zma-miR18d CAAAGAGAATTGAGGGGGCTA 21 10 7 Intergenic

zma-miR19 CCAACAGGATATTGGGTATTTC 22 169 - Intergenic O. sativa

zma-miR20 CGCAGCGTTGATGAGCCAGCCG 22 57 7 Intergenic S. bicolor

zma-miR21 CGGCTCACCAGCGCTGCACTC 21 6 - Intergenic

zma-miR22a CTGAAAAGTGTGGCGCGGTGT 21 - 9 Intergenic

zma-miR22b CTGAAAAGTGTGGCGCGGTGT 21 - 9 Intergenic

zma-miR23a GAGACAGACAACATATGTAGAA 22 - 26 Intron

zma-miR23b GAGACAGACAACATATGTAGAA 22 5 - Intron

zma-miR24 GAGCGCAGCGTTGATGAGCCAG 22 5 - Intergenic S. bicolor

zma-miR25 GGAGGAGATGGGAGTGGCTAA 21 12 - Intergenic S. bicolor

zma-miR26a GTCACAGAAGTTGGGATGCAA 21 5 - Intron S. bicolor

zma-miR26b GTCACAGAAGTTGGGATGTAA 21 - 13 Intron S. bicolor

zma-miR27a GTGATCACGGGAGATTGGAGA 21 - 7 Intergenic

zma-miR27b GTGATCACGGGAGATTGGAGA 21 48 - Intergenic

zma-miR28 TAGAGAGGATTAAAGTGGCTA 21 - 5 Intergenic

zma-miR29 TAGCTCTTCCTGTTTGGATAT 21 5 - Intergenic S. bicolor

zma-miR30 TAGGGATCTATGGAGAGGAA 20 5 - Intergenic

zma-miR31 TCAACACACGTGGATTGCGGT 21 - 6 Intron

zma-miR32 TCACAAGGGGATTGAAGAGGA 21 5 - Intron

zma-miR33 TCACTTTGGGATCACAGATAA 21 10 - Intron
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Table 2 Summary of newly identified miRNAs Continued
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zma-miR34 TCAGAAAATATGAACTTGAGA 21
zma-miR35 TCATAAGGGGATAAACAACGC 21
zma-miR36 TCGGGGTTAGAGGGGATTGAG 21
zma-miR37 TGAAAAGCTAGAACGATTTAC 21
zma-miR38a TGAAGAGAATTGAGGGGGCTA 21
zma-miR38b TGAAGAGAATTGAGGGGGCTA 21
zma-miR39 TGGACAGGGAAATGAAGGGGA 21
zma-miR40 TGGAGGGGATTGAGGGGCATA 21
zma-miR41 TTAGATGGGATACATGAGAGG 21
zma-miR42 TTAGTAGTTTTAGTTCTTTGC 21
zma-miR43 TTTAGTGATCAGCTGGAGGTT 21

- 19 Intron
- 5 Intron
6 - Intergenic O. sativa
5 - Intron
17 - Intergenic
17 - Intron
16 - Intergenic
- 8 Intergenic
- 5 Intergenic
5 - Intergenic A. thaliana
- 5 Intron S. bicolor

"Intron/Intergenic” indicates full-length of pre-miRNA localizes to that region, and “Overlap” indicates pre-miRNA overlaps with intron/exon or exon/intron (see

Additional file 5).

computational approach. Among the 54 newly identified
miRNAs, 41 had predicted targets that fulfilled the criteria
described previously [61]. To make the prediction more
reliable, we didn’t allow any mismatches at miRNA posi-
tion 2-12 with a max of 3 discontinuous mismatches in
the pairing region (see Methods). The additional screen-
ing suggested that 28 miRNAs had the almost perfectly
paired targets (55 in total), while 53 out of the 55 targets
had functional annotations in the InterPro entries [62]
(Additional file 6). The predicted targets belonged to var-
ious classes of molecular functions, such as DNA/RNA
binding protein, protein kinase and other enzymes, or of
biological processes, such as thiolase, cation transporter
and lipid metabolic enzymes, or of several cellular com-
ponents, indicating the miRNA’s extensive role in gene
regulation network. As shown in additional data, sev-
eral miRNAs targeted transcription factors, consistent
with their functions reported earlier. Zma-miR16 and
zma-miR37 were predicted to target bZIP-1 transcrip-
tion factor, zma-miR24 targeted both MADS-box and
K-box transcription factor, and zma-miR19a and zma-
miR20a targeted genes with MYB DNA-binding domain
(Table 3, Additional file 6). All these genes had important
regulation roles throughout plant development [54,63,64].

Conclusions

We had studied the miRNA expression profile dur-
ing maize seed development by combining small RNA
sequencing and miRNA microarray. By sSRNA sequenc-
ing, 125 and 127 conserved miRNAs were identified
in the developing seeds and young leaves, respectively.
Furthermore, 54 novel miRNAs were identified which
were not reported before, and potential targets were
also predicted with strict criteria as described. Both
deep-sequencing and miRNA microarray suggested that
miR319, miR166 and miR167 were highly expressed in the
developing seeds. In addition, we found miRNA408b* and
miR396a*/b* had been accumulated to a level higher than
their mature sequences.

Methods

Small RNA libraries construction and RNA sequencing
Maize (Zea mays) inbred line B73 was used in this study.
Plants were grown under natural conditions. Immature
seeds at 10, 15, 20, 25 and 30 days after pollenation
(DAP) were collected seperately, the young leaves from
seedlings grown in soil at 22 °C with 16 h/8 h light
cycle were obtained 3 weeks after germination. All tis-
sues mentioned above were frozen in liquid nitrogen

miR03 miR19

Actin

miR23 miR34

Figure 4 Novel miRNAs validated by stem-loop RT-PCR. Four novel miRNAs (miR03, miR23 and miR34 from seed, miR19 from leaf) were validated
by RT-PCR and sequencing. 30 cycles of standard PCR was used to amplify Actin. A non-specific band was found in the miR34 PCR product (upper).
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Figure 5 Nucleotide frequency of novel miRNAs.

immediately after collection and stored at -80°C for fur-
ther use. Total RNAs from immature seeds at 10, 15, 20,
25 and 30 DAP, and young leaves were extracted sepa-
rately using TRIzol reagent (Invitrogen) and the integrity
was checked by 1% agarose gel. The seed RNAs were
then mixed with the same amount. Small RNA library
construction was carried out as described [65]. Briefly,
16-30 nt small RNAs were gel-purified from 15% PAGE
gel, 5’ and 3’ adaptors were added and followed by RT-
PCR using adaptor-specific primers. The PCR products
were isolated, gel-purified and used for cluster genera-
tion. Sequencing was performed using Illumina’s Genome
Analyzer (Illumina Inc., USA). Clean reads were gener-
ated after filtering adaptor sequences and removal of low
quality reads.

Identification of conserved and novel miRNAs

Maize genome sequences with TE repeats masked
and cDNA sequences (B73 RefGen_v2, release 5b.60)
were downloaded from maizesequence.org (http://www.
maizesequence.org). Mature miRNAs and precursors
were retrieved from miRBase.org (Release 17, http://www.
mirbase.org) [22], other non-coding RNAs (including
rRNAs, tRNAs, snoRNAs, etc) were obtained from Rfam

database (Rfam 10.1, http://rfam.sanger.ac.uk). Conserved
miRNAs were identified by aligning to the registered
maize miRNAs in miRBase database (Release 17, http://
www.mirbase.org), sequences with perfect matches were
regarded as conserved miRNAs. To predict novel miR-
NAs, a previously reported workflow was carried out
as the initial step [66,67]. Known mature, mature star
and harpin sequences, as well as transcriptome libraries
including maize cDNA and Rfam, were filtered out from
clean reads after alignment. The remaining reads were
mapped to maize genome using Bowtie [25] with no
more than one mismatch. Sequences that didn’t match the
genome were discarded. The filtered reads were then clus-
tered and secondary structures of miRNA clusters were
checked by RNAfold (http://www.tbi.univie.ac.at/RNA/).
RepeatMasker (http://www.repeatmasker.org) was used to
remove repetitive sequences from clustered loci. Next,
the MFEI values of the remaining clusters were checked.
As previously studied, the MFEI of most miRNA pre-
cursors was greater than 0.85, which was notably higher
than other non-coding sRNAs. MFEI can be calculated
as MFE/(precursor length)x100/(G+C)%. Only clusters
with the MFEI value greater than 0.85 were considered
[58]. Then, the location of reads was checked to filter the
ones that mapped on the loop region of corresponding

Table 3 Predicted novel miRNA targets with DNA-bind domain

miRNA Target ID InterPro ID InterPro description
zma-miR04 GRMZM2G171365 IPRO02100 Transcription factor, MADS-box

IPR002487 Transcription factor, K-box
zma-miR14a/b/c GRMZM2G438293 IPRO04827 Basic-leucine zipper domain

IPROT1616 bZIP transcription factor, bZIP-1
zma-miR18a/b/c/d GRMZM2G315506 IPROO1005 SANT/Myb domain

IPRO06447 Myb DNA-binding domain, plants
zma-miR37 GRMZM2G118870 IPRO04827 Basic-leucine zipper domain

IPRO01841 Zinc finger, RING-type

IPRO13083 Zinc finger, RING/FYVE/PHD-type
zma-miR40 GRMZM2G155980 IPRO04330 FAR1 DNA binding domain

IPRO06564 Zinc finger, PMZ-type

IPRO07527 Zinc finger, SWIM-type
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cluster. Finally, the most abundant reads that were 20-
22 nt in length with no less than 5 reads were regarded
as novel miRNAs. To further validate the candidate miR-
NAs, we searched for the miRNA*s by blastn with 2-nt
3" overhangs to the mature miRNAs. The genome loca-
tions of novel miRNA precursors were annotated by
comparing the precursor position with the latest maize
genome annotation (5b.60, www.maizesequence.org). The
sequencing data were deposited at NCBI Gene Expres-
sion Ominibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE37551.

To study the cross-species conservation of novel miR-
NAs, genome sequences of Arabidopsis, rice and sorghum
were obtained from http://www.arabidopsis.org, http://
www.jcvi.org and http://www.phytozome.net. Sequences
of no more than 4 mismatches with miRNA were reserved
by blastn search against the genome sequences. Consid-
ering the plus/minus strand of pre-miRNA and 5p/3p
location of mature miRNA, genome sequences of -50 to
+250 and -250 to +50 (for plus strand), or -250 to +50
and -50 to +250 (for minus strand) were extracted and
inverted repeats (IRs) were retrieved by EMBOSS ein-
verted [68]. Then these IRs were filtered by the criteria for
pre-miRNAs to obtain conserved miRNAs.

Validation of novel miRNAs by stem-loop RT-PCR

and sequencing

A previously reported stem-loop RT-PCR method was
adopted for novel miRNA detection [69,70]. Total RNA
from seed or leaf was extracted as described above. 800
ng RNA template was reverse-transcribed to cDNA by
M-MLV reverse transcriptase (Promaga) using specific
stem-loop RT primer. PCR was performed with the fol-
lowing procedures: 94°C for 5 minutes; 30 cycles of 94°C
for 30 seconds and 60°C for 1 minutes. The PCR products
were analysed by 4% agarose gel and purified by TIAN-
gel Mini Purification Kit (Tiangen, Beijing), then ligated
to pMD19-T vector (TaKaRa, Dalian China) and trans-
formed to E.coli DH10B. Sequencing was carried out by
Invitrogen (Shanghai). All primers used can be found in
Additional file 7.

Novel miRNA targets prediction

To predict potential targets of newly identified miRNAs,
maize Filtered Gene set (release 5b.60) and annotation
data were downloaded from http://maizesequence.org.
Currently there were nearly 40,000 entries in the filtered
set. We adopted a modified scoring method for target
prediction as described [61,71]. Basically, targets should
fulfill the following criteria: no more than 3 mismatches
between miRNA and target, no mismatches at position
10 or 11 of miRNA, no more than 2 consecutive mis-
matches in position 2-12 of miRNA, and the MFE ratio
of miRNA:target duplexes and miRNA:target-binding site
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duplexes should be greater than 0.75 [61,72]. More strictly,
we further selected a subset from these potential targets
with no mismatch allowed in position 2-12 and no adja-
cent mismatches throughout the miRNA:target binding
site. The functional annotations of predicted targets were
then retrieved by using InterPro as described [62].

MicroRNA microarray hybridization

Mature miRNA sequences in miRBase (Release 12, http://
www.mirbase.org) were downloaded for probe design.
All probes were complementary to the mature miRNA
sequences. A total of 7,815 probes (including 96, 203 and
275 mature miRNAs from maize, Arabidopsis and rice
respectively, and other miRNAs from various organisms)
were synthesized. Probes were then poly(T)-concatenated
to 40 nt and 5’-amino-modifier C6 modified to strengthen
their stability on aldehyde-modified chip surface. After
dissolved in 40 uM spotting solution, all probes were
printed triply onto the activated chip sulface. GeneChip®
microRNA microarray was used for mature miRNA
expression analysis (Affymetrix, USA). Total RNAs were
isolated using mirVana® RNA Isolation Kit (Ambion,
USA), 1 g of total RNA containing low molecular weight
(LMW) RNAs were poly(A)-tailed and biotin-labeled
by FlashTag™ Biotin RNA Labeling Kit for Affymetrix
GeneChip® miRNA Arrays. Hybridization, Wash and
Stain Kit was used for hybridization, washing and staining
according to the supplier’s instructions. Hybridizations
were scanned by GeneChip® Scanner 3000 (Affymetrix)
and signals were normalized using Affymetrix Microar-
ray Suit (version 5.0). The original microarray data
were submitted to NCBI GEO under accession number
GSE37322.

Additional files

Additional file 1: Conserved maize miRNAs expression level. The total
reads of conserved miRNAs and corresponding miRNA*s, sorted by miRNA
names. Expression difference were shown in column 4.

Additional file 2: Expression of conserved miRNAs validated by
miRNA microarray. The detailed normalized signals in the microarray
experiment, including whole probes.

Additional file 3: Secondary structure of novel miRNA precursors.
Predicted secondary structures of newly identified miRNAs, mature miRNA
sequences were shown in red, while the miRNA* sequences were shown in
blue, if any.

Additional file 4: Novel maize miRNAs identified in this study.
Detailed information of newly identified miRNAs.

Additional file 5: Genome locations of novel miRNA precursors. The
genome locations of novel MiIRNA precursors based on the current
annotation of maize genome (5b.60).

Additional file 6: Potential targets of novel miRNAs. The filtered set of
targets that had no mismatch in position 2-12 and no consecutive
mismatch, filtered from the original set that passed the criteria described
above. Annotations were retrieved from the InterPro database.

Additional file 7: Primers used in this study.
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