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Abstract

Background: Pre-symptomatic prediction of disease and drug response based on genetic testing is a critical
component of personalized medicine. Previous work has demonstrated that the predictive capacity of genetic
testing is constrained by the heritability and prevalence of the tested trait, although these constraints have only
been approximated under the assumption of a normally distributed genetic risk distribution.

Results: Here, we mathematically derive the absolute limits that these factors impose on test accuracy in the
absence of any distributional assumptions on risk. We present these limits in terms of the best-case receiver-
operating characteristic (ROC) curve, consisting of the best-case test sensitivities and specificities, and the AUC (area
under the curve) measure of accuracy. We apply our method to genetic prediction of type 2 diabetes and breast
cancer, and we additionally show the best possible accuracy that can be obtained from integrated predictors,
which can incorporate non-genetic features.

Conclusion: Knowledge of such limits is valuable in understanding the implications of genetic testing even before
additional associations are identified.
Background
Accurate pre-symptomatic prediction of disease and
drug response is a vital component of personalized
medicine, which could allow for improved clinical
decision-making and targeted prevention strategies, eas-
ing both the burden and costs of disease [1]. Already,
several companies offer consumers personalized risk
assessments, lifestyle recommendations, and 'nutraceuti-
cals' based on their genetic profiles [2]. Unfortunately,
most genetic factors associated with common traits ex-
plain only a small portion of the phenotypic variance
(the “missing heritability” problem [3]), making genetic
prediction currently difficult [4]. Investment into studies
that assay rare variants [5] and the use of informative
polymorphisms that do not individually pass stringent
statistical tests of association [6] can improve the accur-
acy of predictions, but the extent to which predictions
can be improved is unclear. Thus, identifying the bounds
on the accuracy of predictive genetic testing based on
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readily-known disease parameters (such as prevalence
and heritability) can be an invaluable planning tool.
Although the accuracy of a medical test can be mea-

sured in many ways, the concepts of sensitivity and spe-
cificity are paramount [7]. Frequently, the test result is
continuous (e.g. the individual’s predicted risk), while
the clinical decision and true outcome are binary (e.g. ei-
ther the person will get sick or not), so that different
thresholds of the test result yield different pairs of sensi-
tivity and specificity. The receiver operator characteristic
(ROC) curve depicts this tradeoff between sensitivity
and specificity across all possible thresholds, and the
area under this curve (AUC) is the most widely used
metric to summarize the accuracy of a test. An AUC of
1 indicates perfect prediction while an AUC of 0.5 repre-
sents random guessing.
Evidence that a bound on maximum predictive accur-

acy exists can be found in heritability. The heritability of
a trait (in the broad-sense) is the proportion of pheno-
typic variation in the population that can be attributed to
genetic variation; that is, it reflects the contribution of
genetic factors relative to environmental ones. Narrow-
sense heritability measures the corresponding quantity
for additive genetic variance only, which excludes genetic
effects such as dominance and epistasis. The heritability
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Figure 1 Example risk distribution. This distribution has a
prevalence of 30% and a heritability of 10%. The mean of the
distribution equals the prevalence of the trait. Variance represents
the variance of risk due to genetic variation, sometimes called
genetic variance, and is proportional to heritability.
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of binary phenotypes can be computed directly on the
observed binary scale. However, it may also be calculated
on a liability scale, where it is assumed that an individual
has the binary trait if their risk exceeds a threshold. Both
types of heritability can be estimated using family-based
studies, such as twin studies [8], and the two scales can
be mapped to each other [9].
The impact of heritability on genetic test accuracy can

be seen by examining its two extremes: a trait that has
100% heritability, such as a Mendelian trait, can be pre-
dicted with certainty from the genotype; in contrast, a
trait with 0% heritability is not influenced by genetic fac-
tors, and thus genetic tests cannot produce any useful
information. Previous ground-breaking works have
investigated the bounds prevalence and heritability im-
pose on predictive accuracy using simulations [10], ana-
lytical results utilizing genotype relative risks and their
frequencies [11], and analytical approximations under
the assumption of a normally distributed liability [12,13].
Here, we mathematically elucidate the absolute bounds
on the specificities, sensitivities, and AUC for genetic
testing given any values of heritability and prevalence of
the tested trait, without making any assumptions about
the risk distribution.

Results
Common complex traits are typically the combined ef-
fect of genetic and environmental factors. Since no prac-
tical predictor can account for all factors and their
interactions, clinical prediction can at best assign prob-
abilistic risks rather than deterministic outcomes.
Viewed on the population level, these risk assignments
can be seen as comprising a risk distribution, which is
an estimate of the population’s true risk distribution.
Maximal predictive accuracy occurs when the estimated
risk matches the true risk.
The prevalence and heritability of any trait restrict the

set of possible genetic risk distributions. If we know the
risk corresponding to each individual’s genetic profile in
a large sample, then we can obtain an expression for
broad-sense heritability (H2) on the binary scale [10]:

heritability ¼ H2 ¼ 1�
P

iriski 1� riskið Þ
�risk 1� �risk
� �

n
ð1Þ

where i= 1,. . .,n indexes people, n is the sample size,
riski is individual i’s genetic risk (i.e. the conditional
probability of the trait given genes), and �risk is the aver-
age genetic risk, which equals the average population
risk (see Methods). The meaning of risk depends on the
context: for instance, when the phenotype is current dis-
ease status, the average risk in the population is its
prevalence, whereas in prediction of lifetime illness, risk
is the lifetime risk of disease. (When possible, we
nonetheless opt for the term prevalence.) Equation 1
mathematically expresses that heritability is the propor-
tion of phenotypic variance explained by the genetic risk
distribution.
To mathematically derive the risk distribution that

yields the best genetic prediction, we model the distribu-
tion as a histogram with equally-spaced bins located
from 0 to 100% representing risk groups, where the
height of each bin denotes the proportion of the popula-
tion who fall into that risk group (for an example, see
Figure 1). This approach can define any risk distribution.
Indeed, multiple genetic risk distributions can correspond
to a given combination of prevalence and heritability; each
such distribution, however, can lend itself differently to
genetic prediction. Our method is based precisely on de-
termining which such distribution (for a given prevalence
and heritability) would allow the best predictive accuracy.
Thus, for each combination of prevalence and heritability,
we optimized the AUC that would be achieved if every-
one’s risk were ideally ordered over the set of risk distribu-
tions that satisfied the combination of prevalence and
heritability; similarly, we maximized the sensitivity for any
given specificity, prevalence, and heritability over the set
of risk distributions and thresholds that satisfied the
constraints.
Using this approach, we have derived the maximum

limits on the genetic predictive accuracy of any binary
trait given only its prevalence and heritability. These
values are tabulated in Additional files 1 and 2 in terms
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of the AUC and sensitivity/specificity pairs, respectively.
Additional file 3 contains computer code in the R soft-
ware environment [14] for the algorithms we developed.
Figure 2 displays AUC limits over all heritabilities for
several prevalences, and it includes a comparison with
the limits that would exist if genetic risk followed a beta
distribution. The beta distribution is a flexible statistical
distribution which is consistent with the assumptions of
previous analytical approximations of the effect of preva-
lence and heritability on the ROC curve [12,13], because
it can take the shape of countless smooth unimodal risk
distributions. Furthermore, unlike previous approxima-
tions which deteriorate at high heritabilities [12], the
beta distribution limits do not. The limits that the beta
distribution imposes on the AUC closely track these pre-
vious approximations [12,13] and also match a predictive
genomics simulation based on a multiplicative genetic
model [10].
Knowledge of this maximal limit on accuracy is benefi-

cial in the case of type 2 diabetes (T2D), where early tar-
geted intervention can be costly but effective [15]. Many
prediction studies of T2D have been reported, yet the
genetic contribution to their predictive accuracy has
been disappointing: genes alone yield ~60% AUC, and
adding genes to clinical risk factors yields incremental
improvements of ~1-2% AUC [16,17]. The heritability of
T2D per se (as opposed to related continuous traits with
higher heritability, e.g. body mass index) was estimated
to be 26% by a population-based twin study [18], with a
Figure 2 Heritability vs. predictive accuracy. Relationship of
heritability (computed on the observed binary scale) or proportion
of variance explained to the maximal upper limit on AUC. The
numbers next to the curves represent the prevalence. The maximal
AUCs are compared with those that would exist if the genetic risk
distribution followed a beta distribution, which is consistent with
previous reports [10,12,13].
prevalence of 13%. Applying our method to these statis-
tics determines the maximum sensitivity/specificity pairs
displayed in Figure 3, which show that, for example, if a
specificity of 99% is desired, sensitivity cannot exceed
36%, and that if a sensitivity of 99% is desired, specificity
cannot exceed 74%. Similarly, they determine the max-
imum achievable AUC for genetic prediction of lifetime
T2D to be 89%. This motivates the search for additional
genetic factors influencing risk for T2D.
Breast cancer has the same maximal AUC as T2D, al-

beit with a distinct ROC curve from T2D. Breast cancer
was found to have a prevalence of 4% [19], and we cal-
culated its heritability on the binary scale to be 11% (see
Methods), which yields a maximum AUC of 89%. Al-
though this is the same maximum AUC as for T2D, the
sensitivity/specificity pairs for breast cancer (Figure 3)
are not identical to those for T2D, owing to the different
disease parameters. For example, to reach a specificity of
99%, sensitivity cannot exceed 24%, which is substan-
tially lower than the corresponding maximal sensitivity
of T2D when specificity is 99%. The divergence of these
two ROC curves as specificity approaches 100% illus-
trates the importance of identifying the maximal ROC
curve, rather than relying on the maximal AUC alone.
Heritability is the proportion of phenotypic variance

explained by all genetic factors, but our analytic ap-
proach can treat the proportion of phenotypic variance
explained by any particular set of factors. If the propor-
tion of phenotypic variance explained by a particular set
of genes is known, that proportion of variance explained
could be substituted for heritability in our model. For
instance, if a subset of genes could explain 50% of the
genetic variance of T2D (i.e. explain 13% of phenotypic
variance), then the maximum achievable AUC of this
subset would be 80%.
Our method can also be applied in elucidating the

maximum accuracy of predictors that integrate features
such as gene expression, de novo mutation, body mass
index, and lifestyle (which are not fully inherited). The
proportion of variance explained by such an integrated
predictor can then be greater than heritability. When
there are no gene-environment interactions, this differ-
ence is the proportion of phenotypic variation that these
features explain independently of genes. For example,
weekly physical activity can explain 4% of phenotypic
variance of T2D (see Methods), is moderately heritable
[20], and was found to not interact with well-known
gene variants in T2D [21]. Accordingly, the proportion
of variance explained by the integrated predictor com-
prised of genomic profile and physical activity does not
increment by the full 4% beyond the heritability of T2D.
If the proportion of T2D variance that physical activity
explains independently of genes was known to be only
3%, say, then the integrated predictor’s maximum AUC



Figure 3 ROC curves for type 2 diabetes and breast cancer from genomic profiles. Maximal sensitivity / 1-specificity pairs for prediction of
type 2 diabetes and breast cancer from full genomic profiles. The maximal pairs are compared to the pairs that would exist if the genetic risk
distribution followed a beta distribution, which is consistent with previous reports [10,12,13].
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would be calculated based on a proportion of variance
explained of 29% (sum of 26% and 3%), which yields a
maximum AUC of 90%. If, however, we did not have an
estimate for the proportion of T2D variance that physical
activity explains independently of genes, then we could
conservatively use 4% in the previous calculation, yielding
a similar AUC. This analysis applies to predictors based
on non-genetic features that are supplemented by genetics.
In general, the estimation of the proportion of variance
explained by integrated predictors is complicated by the
interaction of genetic and non-genetic features; our
method can nonetheless be applied when the interaction
can be estimated or bounded. Note that genetic testing
alone can still accurately predict outcome for some small,
extreme risk groups (such as those with highly penetrant
variants), but such a test will not benefit the general popu-
lation without both a high sensitivity and specificity [22].
Discussion
Our results are general and apply to any binary trait,
and they rely on only two commonly estimated para-
meters. Although the quality of the results is only as
good as the estimates of prevalence and heritability for
the population in question, our method allows for ranges
of prevalences and heritabilities to be considered, which
can provide important insight into predictive accuracies.
Nonetheless, care must be taken when applying these
statistics, as different estimates apply in different situa-
tions. For example, in assessing limits to the prediction
of lifelong risk, lifelong risk estimates should be used
in place of prevalence estimates. In particular, the bal-
looning lifelong risk of T2D in the USA [23] implies
genetic prediction of lifetime T2D will become more
difficult.
The method that we present here can also be used to

determine the potential benefit of a future genomewide
association study (GWAS) in improving predictive ac-
curacy. To do so, we refer to estimates of GWAS pre-
dictive power that were cleverly derived either by
simulation studies [24] or closed-form considerations
[25]. Both approaches measure the potential GWAS
benefit in terms of the correlation of individuals’ genetic
risk as predicted by the GWAS to their true genetic risk.
We can use our results to connect this measure to AUC
and sensitivity/specificity pairs by converting this correl-
ation to a proportion of phenotypic variance explained.
If H2 is the broad-sense heritability and r is the correl-
ation of true to estimated genetic risk, then the propor-
tion of phenotypic variance that the proposed GWAS
may explain, R2, is given by [12]:

R2 ¼ r2H2 ð2Þ

Using this approach, one may evaluate a proposed
GWAS based on parameters such as sample size and the
number of loci sampled.
Heritability estimates for any binary trait can be

used by our method. Broad-sense heritability esti-
mates are needed to cap predictive accuracy, since
genetic predictors can exploit dominance and epistatic
interactions not measured by narrow-sense heritability
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estimates. However, if a genetic predictor is constructed as
an additive model in line with the assumptions of narrow-
sense heritability, then its maximum accuracy can be cal-
culated using narrow-sense heritability; thus, these esti-
mates can also be used, albeit with a slightly different
interpretation. Heritability estimates on the normal liabil-
ity scale can be used after they are transformed to the
observed binary scale, e.g. using the method proposed by
Dempster and Lerner [8,9]. Heritability on the binary scale
can be sensitive to prevalence [26], but its use avoids the
assumption of normally-distributed liability, which
requires that the trait be affected by many genes, all with
small effect (normally-distributed liability effectively
requires a purely unimodal genetic risk distribution). In
fact, when variants with particularly large effects do
exist—such as APOE in Alzheimer’s disease [27], BRCA1
and BRCA2 in breast and ovarian cancer [28], and LRRK2
in Parkinson’s disease [29]—previous authors have sug-
gested simulations in lieu of their analytical approximation
[13]. Moreover, because liability cannot be measured, the
distributional assumptions on liability are virtually untest-
able [30].
Our maximal ROC curves (Figure 3) can be sub-

stantially higher than those given by the beta distribu-
tion, which is an accurate proxy for multiple previous
reports [10,12,13], indicating that the maximal accur-
acies of genetic prediction may be substantially higher
than previously thought. This difference highlights the
importance that the risk distribution can have in the
power of genetic prediction. Furthermore, as we are
only now beginning to uncover the risk distributions
of common complex diseases, it seems important to
understand the absolute, distribution-independent limits
on genetic test accuracy, which we present here.

Conclusion
We have given exact limits on genetic prediction for any
binary trait imposed by the epidemiological parameters
of prevalence and heritability. Knowledge of these limits
can help delineate the maximal benefits associated with
genetic testing, which can allow for cost-benefit analyses,
regulation, and clinical guidelines regarding genetic test-
ing even before additional associations are identified.
We have also illustrated how these limits can help us
prioritize the allocation of research resources, by showing
how they can assist in the prioritization and design of fu-
ture association studies. The calculations presented in this
paper could further be used to mitigate the possibility of
investing in the development of a genetic test which could
never be accurate enough to be of clinical relevance.

Methods
To optimize over the set of risk distributions subject to
the disease parameters of average risk and proportion of
variance explained (PVE), we modeled a categorical dis-
tribution (which resembles a histogram) with b + 1 bins
located at 0, 1/b, 2/b, . . . , 1 representing risk groups, so
i/b represents the conditional probability of disease
given a set of factors for individuals in risk group i (e.g.
people in the 1/b group have risk 1/b). An example of
such a distribution is depicted in Figure 1. The probability
that someone falls into bin i is pi, where the pi‘s (for
i = 0,. . .,b) sum to one. We restrict the average risk
(e.g. prevalence) and PVE (e.g. heritability) using two
observations. (1) By the law of total probability, the un-
conditional probability of disease is simply the mean of
the conditional risk distribution, i.e. it is equal to the aver-
age risk. (2) The PVE relates to the risk distribution
through Equation 1. (Equation 1 can be understood as the
R2 from the regression: binary phenotype = risk + error,
where risk is a probability.)
Now, we perform a brief simplification of Equation 1.

Following Wray et al. [24], we denote average risk by k,
and for generality we work in terms of PVE instead of H2:

PVE ¼ 1�
P

iriski �
P

irisk
2
i

kð1� kÞn

kð1� kÞPVE ¼ kð1� kÞ �
P

iriski �
P

irisk
2
i

n

kð1� kÞPVE ¼ kð1� kÞ � k þ
P

irisk
2
i

n

kð1� kÞPVE þ k2 ¼
P

irisk
2
i

n
ð3Þ

where i= 1,. . .,n indexes individuals, n is the sample size,
and riski is individual i’s genetic risk. We can relate the
right-hand side of Equation 3 to risk groups as follows:

Xn
i¼1

risk2i =n ¼
Xb
j¼0

njrisk
2
j =n ¼

Xb
j¼0

pj
j
b

� �2

Here, nj individuals have risk j/b, i.e. they are assigned to
risk group (histogram bin) j, and pj = nj/n is the probability
that a random individual is assigned to risk group j.
With this model of the risk distribution and con-

straints, we can identify the best-case AUC and optimal
sensitivity/specificity pairs using the procedures detailed
below. Because these procedures associate a single gen-
etic risk distribution with the best-case AUC, and a po-
tentially different risk distribution with each optimal
sensitivity/specificity pair, it is possible that only some of
these sensitivity/specificity pairs may be realizable for a
single trait in practice. Consequently, these sensitivity/
specificity pairs cannot be used directly to derive the
maximal AUC.
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Area under ROC curve
To model the AUC, we begin with the random variables
X and Y whose probability density functions represent
the risk distribution of those who will not and those
who will get sick, respectively. These densities can be

easily obtained through Bayes rule: P X ¼ i
b

� � ¼ b�ið Þpi
b 1�kð Þ

and P Y ¼ i
b

� � ¼ ipi
bk , where k is the average risk. Then,

through its equality to the Mann–Whitney–Wilcoxon U
statistic [31], the AUC is equal to PðX < Y Þ þ PðX ¼
Y Þ=2. We condition on Y to evaluate this expression:

AUC ¼
Xb
i¼1

P Y ¼ i=bð Þ
Xi�1

j¼0

P X ¼ j=bð Þ þ P X ¼ i=bð Þ
2

" #
:

We would like to optimize this term, but unfortunately
it is not convex, which would undermine our ability to
identify the global optimum. However, after we substi-

tute p0 with 1�Pb
i¼1pi , our optimization of the AUC

becomes a convex optimization problem:

AUC ¼

Pb
i¼1

ipi b�Pb
j¼1

bpj þ
Pi�1

l¼1
b� lð Þpl þ b� ið Þpi=2

" #

b2k 1� kð Þ
The numerator of this expression can be conveniently

represented as pTQp+ b2k, where Q is a symmetric
matrix whose entry at row i and column j is -j(b + i)/2
for i≥ j.
We then maximize this AUC over the vector p subject

to the disease parameters of average risk (k) and propor-
tion of variance explained (PVE):

k ¼
Xb
i¼1

i=bð Þpi

k 1� kð ÞPVE þ k2 ¼
Xb
i¼1

i=bð Þ2pi

where the sum of the pi‘s (for i = 1,. . .,b) must not exceed
1, and each pi is bounded between 0 and 1.
The parameters k, PVE, and b are predefined con-

stants. Note that for b = 100, as well as for all the values
of b we examined, Q is negative definite, so that this is a
convex program. Hence, there are efficient solution
methods to identify the global maximum. Using the
quadprog package [32] in the R software [14], we solved
this program for values of k and PVE with b = 100.
When b = 1000, all maximal AUCs shown in Figure 2
change by less than 0.01%. In fact, using b = 10 does not
change any of these maximal AUCs more than 1% from
that calculated with b = 1000. Note also that given an
estimated risk distribution vector p, a researcher can dir-
ectly calculate the AUC from the objective function. To
calculate the AUC of the beta distribution for given
levels of k and PVE, we discretized the beta distribution
with parameters a= k(1/PVE-1) and b = (1-k)(1/PVE-1),
which uniquely satisfy the constraints.

Sensitivity/specificity pairs
To represent each point on the optimal ROC curve, we
model the best sensitivity (Se) and specificity (Sp) for
any given risk threshold (t/b) in terms of the risk distri-
bution. The logic is that the best a genetic test can do is
identify true genetic risk, so it will declare those with a
risk greater than the threshold as positive and those with
a lower risk as negative. Mathematically, the sensitivity
of the test is the probability of an individual testing posi-
tive for the trait (i.e. having risk of at least t/b) given that
they are truly positive:

Se ¼ P testþ j trulyþð Þ

Se ¼ P testþ & trulyþð Þ
P trulyþð Þ

Se ¼
Xb
i¼t

i
b
pi

 !
=k

Se ¼ 1
bk

Xb
i¼t

ipi

Similarly, we can derive specificity:

Sp ¼ 1
bð1� kÞ

Xt�1

i¼0

ðb� iÞpi

We optimized sensitivity for any given value of specifi-
city, average risk, proportion of variance explained, and
threshold using a linear programming model. This was
implemented in the lpSolve package in R [14] using 1000
bins. We then optimized the sensitivities over the
thresholds to obtain the maximal sensitivity for every
specificity, average risk, and proportion of variance
explained.

Calculations for examples
To calculate the proportion of T2D variance explained
by physical activity we used Equation 1, where the risk
distribution was defined by the prevalence and the rela-
tive risks of exercise [33]. To calculate the heritability of
breast cancer on the binary scale we used twice the dif-
ference in correlation between monozygotic and dizyg-
otic twin pairs, where correlations were computed on
binary outcomes from 44,788 pairs of Nordic twins [34].

Additional files

Additional file 1: Table of maximum AUCs. These are the maximum
AUCs corresponding to Figure 2 for all values of prevalence. Row names
represent values of heritability (computed on the observed binary scale)
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or proportion of phenotypic variance explained, and column names
represent values of prevalence.

Additional file 2: Table of maximum sensitivities for each
specificity. Rows represent the combination of heritability (H.sq,
computed on the observed binary scale) and prevalence (Prev), while
columns represent specificities. The elements are the maximal sensitivity
in each case.

Additional file 3: Archive containing instructions (readme.txt) and
computer code (maxAcc.r) to implement our algorithms. The code is
written in the free statistical language and environment R (http://www.r-
project.org), relies on free R optimization packages, and is copyrighted by
the permissive MIT license (http://www.opensource.org/licenses/mit-
license.html). Updated versions are freely available for download at:
http://code.google.com/p/max-accuracy-genetic-pred/.

Abbreviations
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