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Abstract

resistance mechanisms to targeted therapies.

Background: Aberrant activation of signaling pathways downstream of epidermal growth factor receptor (EGFR)
has been hypothesized to be one of the mechanisms of cetuximab (a monoclonal antibody against EGFR)
resistance in head and neck squamous cell carcinoma (HNSCQ). To infer relevant and specific pathway activation
downstream of EGFR from gene expression in HNSCC, we generated gene expression signatures using immortalized
keratinocytes (HaCaT) subjected to ligand stimulation and transfected with EGFR, RELA/p65, or HRA

Results: The gene expression patterns that distinguished the HaCaT variants and conditions were inferred using the
Markov chain Monte Carlo (MCMC) matrix factorization algorithm Coordinated Gene Activity in Pattern Sets
(CoGAPS). This approach inferred gene expression signatures with greater relevance to cell signaling pathway
activation than the expression signatures inferred with standard linear models. Furthermore, the pathway signature
generated using HaCaT-HRAS"?"? further associated with the cetuximab treatment response in isogenic
cetuximab-sensitive (UMSCC1) and -resistant (1CC8) cell lines.

Conclusions: Our data suggest that the CoGAPS algorithm can generate gene expression signatures that are
pertinent to downstream effects of receptor signaling pathway activation and potentially be useful in modeling
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Background

Aberrant signal transduction pathways induce and main-
tain many cancers [1-3]. Therefore, targeted therapeutics
blocking this aberrant cellular signaling activity can im-
pede malignant progression. However, the clinical suc-
cess of targeted agents relies on accurate identification of
the relative contribution of the targeted pathway to the
malignancy prior to treatment. For example, EGFR over-
expression is associated with poor prognosis of head and
neck squamous cell carcinoma (HNSCC) leading to
adoption of EGFR-targeted agents including cetuximab,
a monoclonal antibody against EGFR, for clinical
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management [4-7]. Although many HNSCC patients
benefit from cetuximab treatment, a majority of patients
do not respond or eventually develop acquired resistance
after the initial clinical response. Previous studies have
implicated activation of epistatic signaling intermediaries
downstream of EGFR activation in cetuximab resistance
[8]. Thus, inference of aberrant pathway activity con-
trolled by EGFR activation may shed light on molecular
underpinnings of acquired cetuximab resistance in
patients with HNSCC.

Gene expression profiles constitute an important tool
to investigate and predict biochemical network activity in
complex cellular systems such as human tumors. Stand-
ard class discovery techniques, such as hierarchical clus-
tering [9] and singular value decomposition (SVD; [10]),
can implicate gene expression activity common to sub-
sets of samples. However, clustering algorithms are
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unable to account for the reuse of genes in diverse bio-
logical processes as is common in eukaryotic systems
[11,12]. Moreover, algorithms such as SVD infer complex
combinations of responses across all measured genes,
without regard for the biochemical structure of cellular
signaling networks. As a result, these inference techni-
ques often obscure the relationship of the resulting gen-
etic signatures to the specific cell signaling processes
that are active in the measured system [13].

On the other hand, coordinated expression changes in
a priori sets of downstream targets of pathway-activated
transcription factors can implicate activity in specific sig-
naling pathways [14-16]. These pathway-inference tech-
niques predominately use statistical techniques that
quantify the magnitude of class comparison statistics, not-
ably t-statistics, in a priori gene sets relating to cell signal-
ing relative to a background, null distribution (reviewed in
[17]). Similar to clustering algorithms, co-regulation of in-
dividual genes by multiple pathways and transcription fac-
tors will bias these gene set-based analysis techniques [18].
Previous studies have shown that Markov chain Monte
Carlo (MCMC) matrix factorization techniques, such as
Bayesian Decomposition (BD; [11]) and Coordinated Gene
Activity in Pattern Sets (CoGAPS; [19]), robustly infer
gene expression patterns relating to transcription factor
activity in cancers [13].

To generate pathway signatures for HNSCC that are
well characterized at the molecular level, we use HaCaT
keratinocytes and isogenic variants thereof. HaCaT cells
are well characterized in reference to their biological and
malignant properties [20-23]. Therefore, these HaCaT
models provide a potential to identify oncogenic signa-
tures related to signaling responses that are unencum-
bered by ‘background noise’ inherent to tumor tissues.
The HaCaT cell lines have the further advantage as a
model system because their genetic aberrations closely
parallel early oncogenic events seen in HNSCC. Specific-
ally, like HNSCC [24], the HaCaT lines represent a spon-
taneously immortalized aneuploid human keratinocyte
cell line of monoclonal origin with increased telomerase
activity [25], two mutant p53 alleles [26], and absence of
p16™ 4 expression due to promoter hypermethylation
[27].

Here we show that the MCMC matrix factorization al-
gorithm CoGAPS infers gene expression patterns in
HaCaT keratinocytes associated with modulation of the
EGFR activity by forced expression, ligand stimulation,
and pharmacological inhibition [28]. We relate these pat-
terns directly to activity at the pathway level, in contrast
to previous studies that have focused on transcription
factor-level activity [13,29]. In addition, the CoGAPS in-
ferred patterns predict molecular response to cetuximab
treatment in an isogenic pair of HNSCC cell lines with
varying cetuximab sensitivities.
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Results

Compilation of protein-protein interaction data in the
signaling pathways downstream of EGFR in HNSCC for
pathway-level gene set inference

A number of molecular interactions triggered by EGFR
activation have been characterized in HNSCC. Figure 1
summarizes the corresponding pathway diagram of ca-
nonical protein-protein interactions in EGFR signaling in
HNSCC compiled from reviews by [30,31]. This diagram
displays that many of the EGFR-dependent signaling
events culminate in activation of distinct subsets of tran-
scription factors (Additional file 1: Additional file 6:
Table S1). Although not directly downstream of EGER,
Addional file 6: Table S1 also shows transcription factors
activated by the Notch and TGF-f pathways. These path-
ways are included in our analyses because they intersect
with EGFR-dependent signaling events and have previ-
ously been implicated in HNSCC biology [32-35]. The
pathway-activated transcription factors and associated
targets listed in Additional file 6: Table S1 were used to
infer specific pathway activity from Affymetrix micro-
array measurements of HNSCC using the gene set statis-
tics from the CoGAPS algorithm (eqgs. 2 and 3) and from
linear models [36] as described in the methods section.

CoGAPS reveals transcriptional responses to EGFR
pathway modulation in the isogenic HaCaT model system
reflected in their gene expression changes

Isogenic HaCaT variants overexpressing either wild-
type EGFR or the transcription factor NF-kappa-B p65
subunit (p65), or mutant HRAS have previously been
described by [23,28,37,38]. In order to delineate specific
targets resulting from activating these pathways, we mea-
sured gene expression patterns associated with increased
expression of wild-type EGFR (HaCaT-EGFRYT) and
p65 (HaCaT-p65™ ") with and without serum and ligand
stimulation (EGF and TNF-q, for 4 h or 8 h) and from
constitutive activation of HRAS imparted by an activat-
ing mutation (HaCaT-HRAS"*'?P) concurrently with the
pathway modulation demonstrated in [28]. Table 1 fur-
ther summarizes the experimental design for these gene
expression data.

CoGAPS infers the relative presence of patterns in
gene expression (columns of the matrix A) across sam-
ples measured (rows of P) from a matrix of microarray
data D with N genes (rows) and M samples (columns).
Specifically, it uses the MCMC algorithm described in
the Methods section to find the optimal, sparse non-
negative matrices A and P according to the equation

D~ N(AP,3) (1)

where N represents the normal distribution on each
element of the matrix multiplication AP and the i row
and j™ column of the matrix X is the standard deviation
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Figure 1 EGFR signaling network in HNSCC. Simplified diagram of the protein-protein interaction network downstream of EGFR in HNSCC
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of gene expression for the i™™ gene and j™ sample. The
resulting signals that are common to subsets of the sam-
ples are summarized in the rows of the pattern matrix P,
with related gene expression patterns in the correspond-
ing columns of A. In contrast to standard techniques
class-comparison algorithms that strictly infer differential
expression between sets of samples, the CoGAPS ana-
lysis infers predominant signals from the gene expression
data in an unsupervised analysis. As a result, CoOGAPS
can capture degrees of gene expression activity that are
common to various sample classes. A further advantage
of CoGAPS over standard class-comparison or clustering
algorithms is its ability to infer activity in subsets of
genes concurrently affected by the diverse biological pro-
cesses in each sample type [12,19,29].

When decomposing the data from the HaCaT model
system according to eq. 1, CoGAPS infers six patterns.
These patterns are robust in that they are conserved

Table 1 HaCaT experimental design

Over-expression Media Treatment Replicates
none serum none 3
vector serum none 3
vector none none 4
vector EGF none 4
vector TNF none 3
HRASYa!12P serum none 3
p65"T serum none 3
p65"/T none none 3
p65"T TNF none 5
EGFRVT serum none 5
EGFRT none none 7
EGFRT EGF none 7

Summary of the experimental conditions in the HaCaT cell line expression
experiments, provided in further detail in Supplemental File 5.

across three separate simulations of the CoGAPS algo-
rithm (Additional file 1: Figure S1). Therefore, all subse-
quent analyses are performed for the average patterns
inferred from these simulations. Although the CoGAPS
analysis is unsupervised, the six inferred patterns plotted
in Figure 2 separate samples based on the experimental
conditions summarized in Table 1. Specifically, CoGAPS
infers patterns that relate to the molecular changes intro-
duced in the isogenic HaCaT model system; EGFR"7,
p65YT, HRASY™12P and empty vector control. Likewise,
CoGAPS infers an additional pattern that reflects path-
way activity resulting from the exposure of cell lines
to fetal calf serum. When serum starved, both HaCaT-
EGFRY"' and HaCaT-p65™" show weak upregulation in
the pattern associated with the control HaCaT-vector
(Figure 2¢; one sided p-value of 0.001 for HaCaT-
EGFRYT and 0.013 for HaCaT-p65™"). Moreover, in-
corporating the EGF ligand in the media for HaCaT-
EGFRY" (Figure 2d) and the TNF-a ligand for HaCaT-
p65™ T (Figure 2f) moderately increases the association
of both cell lines to their respective patterns over their
serum starved counterparts (one-sided p-value of 0.002
for HaCaT-EGFRY " and 0.065 for HaCaT-p65™ *).

In accordance with eq. 1, the inferred patterns from
the rows of P can be linked to signatures of gene expres-
sion in the columns of the amplitude matrix A to impli-
cate relative gene expression in subsets of samples. We
apply the Z-score gene-set statistic of [13] (egs. 2 and 3
of the Methods section) to infer pattern-specific pathway
activation (repression) from over- (under-) representa-
tion of large magnitude elements in the A matrix for
genes that are targets of transcription factors. Whereas
[13] limited application of this statistic to targets of tran-
scription factors, Figure 3 displays estimates of activation
and repression of pathways and Additional file 2: Figure
S2 the statistics for component transcription factors
(listed in Additional file 1: Table S1) estimated with eq. 3
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Figure 2 CoGAPS inferred gene expression patterns. Box plot of six gene expression patterns inferred from the HaCaT gene expression data
for samples in Table 1. Plotted values are normalized to sum to one across all samples and are averaged across three applications of the CoGAPS
algorithm. All results for HaCaT-EGFR"T are colored in green, HaCaT-HRAS"®'?® in red, HaCaT-EGFR"" in grey, HaCaT-p65"" in blue, and
HaCaT-vector in black. The y-axis is labeled according to the row of the inferred P matrix plotted in each panel. Specifically, (a) contains the pattern
attributed to the baseline HaCaT activity, (b) attributed to HaCaT-HRAS"'?2, (c) HaCaT-vector control, (d) HaCaT-EGFR"", () serum, and (f) HaCaT-p65"".

for the HaCaT data. Therefore, in this application a path-
way is inferred to be either up or down regulated if its
targets have a correspondingly larger or smaller Z-score
in elements of the A matrix relative to a random selec-
tion of genes. By basing this statistic on the relative
standard-deviation adjusted magnitude in elements of A,
CoGAPS directly infers pathway activity that is active in
each pattern inferred (row of P). Therefore, CoGAPS
provides a direct implication of relative pathway activity
in samples in contrast to the inference limited to differ-
ential pathway activity in gene set statistics in standard
class-comparison algorithms. Similar to the inferred pat-
terns, these pathway and transcription factor level statis-
tics are robust across CoGAPS simulations (Figure 3 and
S3).

In analyzing the CoGAPS estimated pathway activity
(Figure 3), we observe the expected global upregulation
of STAT, RAS, and AKT pathways in HaCaT-EGFRY",

upregulation of RAS in HaCaT-HRASY*'?P, and upregu-
lation of AKT resulting in HaCaT-p65" . We also ob-
serve unexpected weak activation of TGF-p in HaCaT-
EGFRY" and of RAS and TGF-f in HaCaT-p65™ '.
These unexpected signals are likely due to pathway cross
talk and the observed weak upregulation of RAS and
TGEF-PB pathways in HaCaT-vector control. The presence
of serum also enhances this upregulation of RAS and
TGE-B. The final pattern is consistent across samples
and reveals a global upregulation of Notch and STAT
pathways in the HaCaT cell lines.

Comparison of gene expression signatures inferred in
CoGAPS and linear models

We note that the six CoGAPS patterns are inferred
without any prior information about the experimental
conditions in Table 1, whereas standard linear models
of pathway response require information about the
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Figure 3 HaCaT expression CoGAPS gene set statistics. Gene set
statistics for pathway activity of the HaCaT expression data
calculated from eq. 3 averaged across three CoGAPS simulations.
Error bars indicate minimum and maximum values of the pathway
activity statistic in each of the three CoGAPS simulations. Bars are
grouped and labeled according to the dominant experimental
condition to which inferred CoGAPS patterns correspond. Within each
block, statistics are provided for the STAT, RAS, AKT, TGFB, and Notch
pathways (left to right) colored according to the figure legend.

pertinent experimental conditions. As a result, linear
models formed based upon the experimental conditions
in the HaCaT forced expression experiments may overfit
expression changes due to treatment and stimulation con-
ditions. Moreover, they would be unable to account for
relative changes in the magnitude of expression across
comparable samples encoded in the relative magnitude of
rows of P (Figure 2).

For comparison, we formulate a linear model that
accounts for the forced overexpression conditions and
presence or absence of serum based upon the inferred
CoGAPS patterns. In Figure 4a, we observe that the ex-
pression patterns inferred for the linear model across all
HaCaT samples (baseline), all serum treated samples in
HaCaT, and all HaCaT-HRASY2"12P samples are most simi-
lar to the corresponding CoGAPS patterns. However, the
patterns associated with known molecular variables in
HaCaT cells cluster separately from the CoGAPS esti-
mated patterns. These patterns also show a larger differ-
ence in their clustering than the patterns of molecular
variables inferred from CoGAPS.

Figure 4b and 4c show the pathway statistics from the
linear model gene expression signatures using standard
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gene set tests and a test analogous to CoGAPS, respect-
ively, as described in the Methods section. In contrast to
CoGAPS (Figure 3), the gene set statistics from the linear
model (Figure 4b) show strong upregulation of only the
AKT and Notch pathways in both the EGFR and RAS
pathways, with only weak upregulation of RAS, which
would be predicted from the experimental conditions.
While the linear model reveals expected upregulation of
the AKT pathway in HaCaT-p65"", it also infers unex-
pected upregulation of Notch and strong upregulation of
the STAT pathway. This latter STAT upregulation due to
p65 overexpression is inconsistent with the structure of
EGFR protein-protein interactions (Figure 1), in which
p65 is far downstream of STAT. In further contrast to
the CoGAPS gene expression patterns, the linear model
does not infer expected STAT pathway upregulation in
the HaCaT-HRASY*"*" or HaCaT-EGFRY" data. Similar
to CoGAPS, the linear model infers a strong upregula-
tion of TGF-B from the introduction of serum. Unlike
CoGAPS, the linear model also predicts that serum
strongly upregulates signaling in the RAS pathway. The
signaling patterns are largely similar using the CoGAPS-
based permutation statistics from eq. 4 in Figure 4c.
In this case, the linear model statistics do infer a weak
upregulation of RAS in HaCaT-HRASY™'?P. However,
unlike the gene expression patterns from CoGAPS, the
linear model for HaCaT-EGFR™Y" still does not infer the
expected upregulation of the STAT or RAS pathways.

Gene expression signatures from CoGAPS distinguish
pathway-level response in isogenic cetuximab sensitive
and resistant HNSCC cell lines

We project the three HaCaT signaling patterns averaged
across three CoGAPS simulations and associated with
the HaCaT forced over-expression (HaCaT-HRASY!12P,
HaCaT-EGFRY7, and HaCaT-p65™ ") onto the gene ex-
pression data for HNSCC cell lines UMSCC1 and 1CCS8.
As previously described, this pair of cell lines are iso-
genic sensitive and resistant HNSCC lines, respectively [8].
Thus, we can infer whether the signaling-related gene
expression signatures elucidate the molecular mecha-
nisms underlying cetuximab resistance in this pair of cell
lines to potentially model cetuximab resistance in HNSCC.
Figure 5 summarizes the relative CoOGAPS inferred signa-
ture activity in UMSCC1 with and without cetuximab
treatment, and 1CC8 with and without cetuximab treat-
ment. The signatures associated with modulation of
EGFRY", p65™ " and HRASY*"?P are all significantly larger
in 1CC8 than UMSCC1 (p-value of 7x10™ for the HaCaT-
HRASY'?P signature, 8x10™ for the HaCaT-EGFRY" sig-
nature, and 5x107 for HaCaT-p65" " signature). Treatment
with cetuximab in the sensitive cell line UMSCC1 further
reduces the activity in HaCaT-HRASY2!12P (p-value 0.042)
and HaCaT-p65" ' (p-value 0.004), but upregulated the
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Figure 4 Comparison of CoGAPS and linear models. (a) Clustering diagram to compare the gene signatures in the columns of A from eq. 1 in
each of three CoGAPS simulations (simulation 1 in red, simulation 2 in green, and simulation 3 in blue) to the signatures inferred from a limma
linear model using the same design matrix (black). (b) and (c) display gene set statistics for pathway activity resulting from the limma estimated
linear model for STAT, RAS, AKT, TGFB, and Notch (left to right within each group) colored according to the bottom figure legend. (b) Uses the
standard gene set test from limma, rescaled according to eq. 4. (c) Uses the permutation-based gene set statistic adapted for a linear model from
eqgs. 2 and 3 described in the methods section.

signature associated with HaCaT-EGFRY" (p-value 0.13).
A similar trend is observed for 1CC8 (p-value of 0.007 for
HaCaT-EGFRYT and 0.0008 for HaCaT—p65WT). However,
whereas treatment with cetuximab reduces the HaCaT-
HRAS"*"?P signature in the sensitive cell line UMSCC1, it
has no effect on treatment in the resistant cell line 1CC8
(p-value of 0.23).

Discussion
CoGAPS demonstrated improved ability to correctly
infer patterns with even subtle transcriptional differences

because this algorithm can accurately account for gene
re-use [12,19,39]. In contrast to linear models, CoGAPS
seeks gene expression signatures with minimal structure.
As a result, the signatures inferred with CoGAPS are
more similar than those inferred with linear models.
Therefore, these CoGAPS expression signatures reveal
degrees of activation of the pathways downstream of
EGFR due to pathway cross-talk, unlike the standard
gene set test or permutation gene set analysis for linear
models. For example, only the CoGAPS analysis can de-
tect the modest RAS and STAT signals associated with
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Figure 5 CoGAPS signature in UMSCC1 and 1CC8 cell lines. Box
plot of the P matrix resulting from projecting the CoGAPS inferred
gene expression signatures for (a) HaCaT-HRAS 2120,
(b) HaCaT-EGFR"", and (c) HaCaT-p65™" onto gene expression data
for UMSCCT1 (left group) and 1CC8 cell lines (right group). Results for
data treated with cetuximab are colored in red (right in each group)
and untreated are colored in blue (left in each group).

forced expression of EGFR and HRAS in HaCaT cells.
Moreover, the sparsity in the CoGAPS prior ensures that
gene expression amplitude is assigned only to pertinent
patterns. As a result, while the linear model assigns
Notch activity to each of the forced expression signa-
tures, CoGAPS correctly assigns this global signature to
the background term.

This type of statistical modeling can delineate the key
pathway activity of relevance to the development of tar-
geted agents in genetically heterogeneous HNSCC. In
our previous molecular characterization of HNSCC
based on gene expression profiling, we have shown that
there are at least four subtypes of HNSCC and these
subtypes have prognostic implications reflecting the bio-
logical heterogeneity [40]. In addition, recent completion
of whole exome sequencing of HNSCC has shown that
tobacco-related HNSCC contain average of 20.6 muta-
tions per tumor and many of the mutated genes are
tumor suppressors that cannot be easily targeted [34,35].
Furthermore, many of these mutated genes are regulated
in contextual manner meaning that one mutation of a
gene in a tumor may result in a different phenotype de-
pending on the genetic context determined by other co-
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existing mutations or deregulations. The analyses of
global gene expression signature will potentially yield the
dominant pathways that result from lack of tumor sup-
pressor or contextual regulated genes, and allow exploit-
ation as therapeutic targets or biomarkers of clinical
outcome. It is also a potentially valuable tool of deter-
mining the on- and off-target effects of targeted agents
and hypothesis generating approach to unravel the
mechanism of resistance by unbiased examination of
global changes in the inter-connected pathways induced
by inhibition of the targeted pathway. Due to the small
sample size, we could not infer accurate expression sig-
natures from the pharmacological inhibition of EGEFR,
MEK or PI3K in our model system. However, additional
studies to optimize the experimental design and to fur-
ther validate the model for utilization in experimental
therapeutics are in progress.

In this study, the inferred CoGAPS gene expression
signatures implicate signaling processes in the HNSCC
system that they model. For example, the gene expres-
sion signature related to constitutive activation of the
RAS pathway in the HaCaT-HRAS"™'?" distinguishes
the transcriptional profile of UMSCCI1 and 1CC8 and
their relative transcriptional response to cetuximab treat-
ment. This observation suggests that over-activation of
the RAS pathway cannot be repressed by cetuximab in
resistant HNSCC cell lines. While HRAS mutations are
found in HNSCC [34], the UMSCCI1 and 1CCS8 cell lines
are HRAS wild type. Therefore, this aberrant activity in
the RAS pathway that our algorithm inferred for 1CC8 is
consistent with activation of the wild type RAS pathway
in cetuximab resistance. One possible mechanism for
this activation would be the compensatory pathway ac-
tivity proposed in [8]. Further studies to validate the
mechanisms underlying these are currently ongoing.

Conclusions

This work demonstrates the versatility of the CoGAPS
matrix factorization algorithm to infer biological signal-
ing nodes and intermediaries as they relate to specific
gene expression in immortalized HaCaT and transformed
variants thereof. For example, upon stimulation/deregu-
lation of EGFR activity, the algorithm successfully identi-
fied gene expression signatures consistent with known
elements of the EGFR signaling network (Figure 1). In
contrast to linear models, the CoGAPS algorithm per-
forms pathway inference without a priori knowledge of
the experimental conditions listed in Table 1. Pathway
inference by CoGAPS was predictive across a heteroge-
neous set of experimental pathway manipulations, i.e.,
transcriptional responses triggered either by overexpres-
sion of EGFR, NF-kB/p65 or mutant HRAS, or those
induced by addition of serum to culture media.
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Similarly to the UMSCC1/1CC8 model, we hypothesize
that the pathway-level gene expression signatures in-
ferred from the HaCaT model with CoGAPS will impli-
cate relevant molecular mechanisms in gene expression
data from HNSCC patients in future studies. For example,
the gene expression signature relating to constitutive RAS
activation estimated from the HaCaT-HRASY**?? provides
a potential biomarker to infer patient-specific cetuximab
sensitivity and resistance prior to clinical treatment. More-
over, previous studies have also linked cetuximab resist-
ance to increased AKT pathway activity in HNSCC cell
lines with cetuximab resistance [8]. We hypothesize that
application of the CoGAPS algorithm to future samples of
HaCaT with forced expression of RAF and PI3K with
activating mutations will distinguish whether the activa-
tion of the RAS pathway induces AKT pathway activity
preferentially over MAPK pathway (Figure 1) in cetuximab
resistance. When applied to tumor data, these additional
CoGAPS inferred gene expression signatures would also
provide candidate molecular targets for patients with pre-
dicted cetuximab resistance.

Methods

Inhibition and stimulation of EGFR signaling pathway in
the HaCaT model system and HNSCC cell lines

HaCaT cells overexpressing EGFR (HaCaT-EGFR) were
maintained in cell culture media (W489) as previously
described [20,22]. The cells were seeded in 100 mm tis-
sue culture plates in regular media until they reach 70-
80 % confluency. After incubation with serum-free media
for 12 hours, EGF or TNF-a (10 ng/ml, Sigma-Aldrich,
St. Louis, MO) were then added for 4 or 8 hours before
cells were harvested for total RNA isolation. The culture
conditions, total RNA isolation and microarray experi-
ments of SCC1 and 1CC8 HNSCC cell lines used in the
study were previously published [8].

Microarray data preprocessing

To ensure that the microarray measurements from the
HaCaT samples and the UMSCC1/1CC8 cell lines are
comparable, we normalize all microarray measurements
using fRMA [41]. After fRMA normalization, clustering
reveals an apparent batch effect from processing date in
the HaCaT expression data (Additional file 3: Figure
S3a). We, therefore, fit a linear model with date and ex-
perimental conditions summarized in Table 1 using the
ImFit function in the R Bioconductor package limma
(Linear Models for Microarray Data; [36]). Additional file
3: Figure S3b shows that samples correctly cluster by ex-
perimental condition after removing the modeled date
effect using the clustering diagram generated with [42].
This batch corrected, normalized data will be used for
subsequent analyses of the HaCaT cell lines. For robust-
ness, the clustering and linear models were performed
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on all HaCaT samples, including eight samples that were
treated with pharmacological agents. These latter samples
were excluded from subsequent analyses due to an inabil-
ity to infer accurate expression signatures from their small
samples size. On the other hand, the UMSCC1 and 1CC8
samples are processed in the same batch, requiring no
correction after fRMA normalization. All the data are
MIAME compliant and the raw data for all samples have
been deposited in Gene Expression Omnibus (HaCaT data
GSE32975; SCC1 and 1CC8 data in GSE21483). All ana-
lyses are performed with software R using scripts provided
as Additional file 7: Files S1, Additional file 8: File S2,
Additional file 9: File S3, Additional file 10: File S4 and
Additional file 11: File S5.

Pathway and transcription factor targets
We identify candidate transcription factor regulators for
each probe of the Affymetrix U133 Plus 2.0 array from
TRANSFAC using the Automated Sequence Annotation
Pipelines (ASAP; [43]). The list used in these analyses
was obtained and frozen on December 8, 2010 and pro-
vided as a supplemental file containing the ASAP results
(Additional file 7: File S2). Gene sets related to each
pathway listed in Additional file 6: Table S1 are defined as
the targets of each transcription factor identified as down-
stream to the pathway from Additional file 6: Table S1.
We limit all subsequent analyses of HaCal and
UMSCC1/1CC8 cell line expression to only those probes
that are annotated in TRANSFAC. We select a single
probe for each gene to further avoid biases in gene set
tests from using multiple probes for a single gene. Spe-
cifically, we retain the probe for each gene with the smal-
lest p-value resulting from comparisons of the HaCaT
experimental conditions using t-statistics moderated with
empirical Bayes from the limma package [36].

CoGAPS pattern inference and pathway analysis

CoGAPS factors the expression matrix D into amplitude
(A) and pattern (P) matrices with p patterns according
to the distribution in eq. 1. The posterior distribution for
elements of each of these matrices are computed with an
MCMC Gibbs sampler based upon the atomic prior of
[44] and implemented in the Bioconductor package
CoGAPS [19]. Here, the standard deviation in eq. 1 is
given by Z;; = 0.1D;; for each gene i and sample j, based
upon the established, microarray error-model in [45] and
previous applications of [13,29].

The quality of the CoGAPS fit is assessed through the
X fit of the posterior mean of A and P and identifiability
of these matrices across MCMC simulations. Using these
criterion, the optimal number of patterns p for the
matrix factorization is the minimum number of patterns
for which the y* reaches a minimal value and the in-
ferred patterns persist across simulations. For the HaCaT
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expression data analyzed in this paper, the y’value of the
fit begins to plateau for 6 patterns (Additional file 4:
Figure S4), at which point multiple CoGAPS simulations
obtain the same A and P matrices (Additional file 1:
Figures S1 and Additional file 2: S2).

Comparing the posterior distribution of the amplitude
matrix for a pattern (i.e., column of A) between genes in
a gene set and in the background can indicate over- or
under-expression of that gene set in a pattern. Based
upon previous work from [13], we define a Z-score to
quantify the enrichment of gene-set G with R targets in
pattern p by

1y A
Zop=— 2.2 2
Gp Rgezg(fgpj ( )

where A,, and o,, are the sample mean and variance,
respectively, from the CoGAPS MCMC samples for gene
(row) g and pattern (column) p amplitude. We compute
p-values through a permutation test that compares the
computed value of Zg,, to a null distribution obtained by
the values of the statistic in eq. 2 resulting from selecting
random sets of R genes. In contrast to [13], we apply this
statistic to both targets of individual transcription factors
and targets of sets of transcription factors regulated in
the pathways (Additional file 6: Table S1) to infer path-
way level activity. For visualization, p-values computed
from the statistic in eq. 2 are transformed as follows

p=2p-1. (3)

Therefore, a transformed p value of -1 indicates under-
representation of set G and +1 indicates over-representa-
tion. The associated pathway-level statistics in Figure 3
represent the mean of the statistic from eq. (3) across three
CoGAPS simulations, with error bars representing the mini-
mum and maximum values in each of these simulations.

Projecting the gene expression signatures in the col-
umns of A onto additional samples can implicate the
relative activity of inferred patterns in those samples. In
this paper, the projection is implemented by solving the
factorization in eq. 1 for the new data matrix where A is
fixed as the average of the CoGAPS posterior mean for
each of the three CoGAPS simulations performed. We
estimate the patterns P associated with this amplitude
matrix using the least-squares fit to the new data imple-
mented with the ImFit function in the limma package
[36]. Applying this projection to the original, HaCaT data
reveals that the projection provides similar, albeit slightly
nosier, estimates when compared to the CoGAPS poster-
ior mean for P (Additional file 5: Figure S5). This linear
projection is, therefore, used to project the gene signa-
tures inferred from the HaCaT data onto gene expression
data from the HNSCC UMSCC1 and 1CC8 cell lines.
Differences between the values of the pattern matrix P
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inferred through CoGAPS or these subsequent projections
are quantified using p-values from a ¢-test between the
groups of experimental conditions being compared.

Linear models and gene set pathway-level analysis

In the results section, we compare the CoGAPS inferred
expression signatures in the columns of the A matrix to
expression signatures inferred by the coefficients of a lin-
ear model. In this linear model, we use the limma pack-
age [36] to fit the batch-corrected HaCaT data to a
design matrix comparable to the P matrix inferred in
CoGAPS by specifying a common intercept term, HaCaT
cell type (HaCaT—EGFRWT, HaCaT—p65WT, HaCaT-
HRASY2P, or HaCaT-vector), and presence or absence
of serum. Contrasts are formulated for each of these six
conditions to obtain coefficients for each condition com-
parable to the columns of the CoGAPS A matrix
(Figure 4a). The gene set statistic in Figure 4b uses the
standard limma package geneSetTest function to test the
probability of activity inferred from the contrast-based,
empirical Bayes t-statistics in the pathway and transcrip-
tion factor level targets in Additional file 6: Table S1. To
make values comparable to the CoGAPS analysis, only
the subset of probes analyzed in CoGAPS (ie, in
TRANSFAC and summarized by gene) are considered for
the background of the gene set statistics. Similar to eq. 3,
we rescale the resulting statistics for visualization by

if Pdown < Pup,
otherwise

I;l _ { lOgIO (pdown)
" - logy, (pup)

(4)

where Pygyn and Py, are the p-values resulting from the
geneSetTest function if the alternative hypothesis is speci-
fied as down or up regulated, respectively. The heatmap in
Figure 4b then rescales these statistics across columns are
1 at the maximum value of pj, and -1 at the minimum
value. For further comparison to the CoGAPS results,
Figure 4c plots the transformed p-values resulting from
the permutation-based CoGAPS gene set test in egs. 2 and
3. To reflect the statistics of the linear model, the posterior

estimate for the ratio % in eq. 2 is replaced with the esti-
2.p

mated, empirical Bayes moderated t-statistics for each of
the six conditions specified in the linear model.

Additional files

Additional file 1: Figure S1. Box plot of six gene expression patterns
inferred from the HaCaT gene expression data for each of the three
CoGAPS simulations (pages 1-3) for the samples in Table 1. Plotted
values are normalized to sum to one across all samples. All results for
HaCaT-EGFR™" are colored in green, HaCaT-HRAS"?'"?" in red,
HaCaT-EGFR"" in grey, HaCaT-p65"" in blue, and HaCaT-vector in black. The
y-axis is labeled according to the row of the inferred P matrix plotted in
each panel. Specifically, (a) contains the pattern attributed to the
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baseline HaCaT activity, (b) attributed to HaCanHRASVBMD,
(c) HaCaT-vector, (d) HaCaT-EGFR", (e) serum, and (f) HaCaT-p65™"".

Additional file 2: Figure S2. Gene set statistics of the HaCaT expression
data calculated from eq. 3 for each of the three CoGAPS simulations from
blue for significantly downregulated to yellow for significantly upregulated
according to the color bar. Columns are labeled according to the
dominant experimental condition to which inferred CoGAPS patterns
correspond and colored as indicated in the column color legend (red for
the first COGAPS simulation, green the second, and blue the third). The
top set of statistics represents the gene set statistics computed at a
pathway level. Colors along rows indicate the pathway for which
activation statistics are calculated as indicated in the row color legend.
The lower set of statistics represents the gene set statistics computed for
the transcription factors activated by the pathway also indicated by colors
in the rows associated with the pathway to which the transcription factor
was assigned and indicated by the color code on the left.

Additional file 3: Figure S3. Clustering of HaCaT expression data after
fRMA colored by date (a). Analogous clustering after batch correction in
(b).

Additional file 4: Figure S4. y’ fit from CoGAPS as a function of the
number of patterns used in the matrix factorization for eq. 1.

Additional file 5: Figure S5. Heatmap comparing patterns inferred in
CoGAPS as plotted Figure S2 (filled boxes on rows) to patterns that would
be inferred from projecting expression patterns as described in the
methods (open boxes on rows) colored according to the row figure legend.
As indicated in the row figure legend, patterns are plotted for each of three
CoGAPS simulations, colored in red (simulation 1), green (simulation 2),
and blue (simulation 3) along the rows. The bars across the columns
indicate media and forced expression conditions, colored according to
the figure legend. Shading of these bars indicates media (white for serum
starved, grey for serum, green for EGF, and blue for TNFa) while borders
indicate forced expression (grey for HaCaT"", black for HaCaT-vector, green
for HaCaT-EGFR"", blue for HaCaT-p65""", and red for HaCaT-HRAS'?™?D).

Additional file 6: Table S1. PathwayTableS1.txt: List of targets of
transcription factors annotated to each pathway for pathway-level and
transcription factor-level gene set analyses.

Additional file 7: File S1. CompleteAnalysis.R: R script used for to
generate all analyses and figures.

Additional file 8: File S2. TF2Gene_2010.R: R script encoding a list of
transcription factor targets in TRANSFAC from ASAP.

Additional file 9: File S3. PathwayHeatmap.R: Support script used to
generate pathway-level heatmaps in Figures S1 and S3.

Additional file 10: File S4. ExperimentalDescription.txt: Detailed
annotation of experimental conditions summarized in Table 1.
Additional file 11: File S5. SCC11CC8Annot.txt: Detailed annotation of

the experimental conditions in the UMSCC1 and 1CC8 cell line expression
datasets.
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