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Transcriptome landscape of the human placenta
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Abstract

Background: The placenta is a key component in understanding the physiological processes involved in
pregnancy. Characterizing genes critical for placental function can serve as a basis for identifying mechanisms
underlying both normal and pathologic pregnancies. Detailing the placental tissue transcriptome could provide a
valuable resource for genomic studies related to placental disease.

Results: We have conducted a deep RNA sequencing (RNA-Seq) study on three tissue components (amnion,
chorion, and decidua) of 5 human placentas from normal term pregnancies. We compared the placental RNA-Seq
data to that of 16 other human tissues and observed a wide spectrum of transcriptome differences both between
placenta and other human tissues and between distinct compartments of the placenta. Exon-level analysis of the
RNA-Seq data revealed a large number of exons with differential splicing activities between placenta and other
tissues, and 79% (27 out of 34) of the events selected for RT-PCR test were validated. The master splicing regulator
ESRP1 is expressed at a proportionately higher level in amnion compared to all other analyzed human tissues, and
there is a significant enrichment of ESRP1-regulated exons with tissue-specific splicing activities in amnion. This
suggests an important role of alternative splicing in regulating gene function and activity in specific placental
compartments. Importantly, genes with differential expression or splicing in the placenta are significantly enriched
for genes implicated in placental abnormalities and preterm birth. In addition, we identified 604-1007 novel
transcripts and 494-585 novel exons expressed in each of the three placental compartments.

Conclusions: Our data demonstrate unique aspects of gene expression and splicing in placental tissues that
provide a basis for disease investigation related to disruption of these mechanisms. These data are publicly
available providing the community with a rich resource for placental physiology and disease-related studies.

Keywords: Placenta, Amnion, Chorion, Decidua, RNA-Seq, Transcriptome, Alternative splicing, Functional interaction
network, Novel transcriptional active region

Background
Pregnancy and parturition require an intricate interplay
between maternal and fetal factors, orchestrated by the
placenta, which lies at the interface between mother and
fetus. The placenta performs multiple functions critical
for fetal survival, growth, and development, including
transport of gases, nutrients, and waste products, hor-
mone production, protection of the fetus from maternal
immune attack, and anchorage of the fetus to the uterus
[1]. The role of the placenta as a key organ of pregnancy
is well demonstrated by the fact that placental pathology

is associated with adverse maternal and fetal outcomes
such as preterm birth (PTB), intrauterine growth restric-
tion (IUGR), and preeclampsia (PE) [1-3].
The value of placental examination is well recognized

in the setting of PTB, for instance, which complicates
over 12% of all pregnancies in the U.S. [3-5]. Histologi-
cal examination of the placenta, which is frequently car-
ried out to explore possible causes of preterm delivery,
has been a useful tool for identifying lesions commonly
associated with PTB, such as chorioamnionitis [3]. In
cases where no remarkable histologic abnormalities are
found, investigation into molecular alterations causing
placental dysfunction could provide insight into the
pathogenesis of prematurity.
The normal function of the placenta depends on its

structural integrity, and the proper growth and develop-
ment of its structural components require the finely
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tuned regulation of relevant genes. Thus, alterations in
gene expression and RNA processing may represent one
of the major molecular mechanisms underlying patholo-
gical pregnancies. Previously, numerous studies have
investigated changes in global human placental gene
expression associated with gestational age [6], physiolo-
gic labor [7,8] or pathological conditions [9]. The two
most comprehensive gene expression profiling studies
related to the placenta used microarray analysis to char-
acterize four different components of the human pla-
centa in 76 individuals [10] and the mouse placenta
over the whole course of pregnancy [11]. Although
those microarray studies have provided useful insights
into the placental transcriptome, they were limited in
depth in that they only examined gene-level expression
changes, and did not have the resolution to investigate
the complexity of the placental transcriptome that arises
from changes in RNA processing.
Alternative splicing (AS) is a common mechanism of

gene regulation in higher eukaryotes, occurring in over
90% of multi-exon genes in the human genome [12,13].
AS is regulated by complex interactions between cis-act-
ing splicing elements and trans-acting factors [14].
Many splicing regulators have tissue-specific expression
patterns, resulting in widespread differences in AS pat-
terns across different tissues. In addition to playing a
critical role in regulating normal gene functions, AS is
also frequently involved in diseases [15,16]. Previous stu-
dies have revealed associations between AS of individual
genes and human pregnancy complications [17-19]. For
example, the soluble isoform of the fms-like tyrosine
kinase-1 (sFlt1) arising from AS and polyadenylation is
significantly up-regulated in placentas of women with
PE [19], and encodes a potent inhibitor of the vascular
endothelial growth factor (VEGF) [18]. Despite such
interesting anecdotal examples, the global patterns of
AS of human genes have not been examined systemati-
cally in the placenta.
In this study, we used high-throughput RNA-Seq to

conduct a genome-wide analysis of the normal placental
transcriptome. RNA-Seq is a powerful technology for
transcriptome analysis that allows global characteriza-
tion of gene expression and AS at the nucleotide resolu-
tion [20]. Given the heterogeneity in tissue composition
of the placenta and the importance of both fetal and
maternal factors in normal and pathological pregnancy,
we separately examined three placental tissue compo-
nents: the amnion and chorion of fetal origin, and the
maternally derived decidua [1]. The amnion and chorion
were obtained from the extraplacental membranes
(reflected membranes), which provide a purer source of
the fetal membranes compared with those overlying the
chorionic plate. The decidua was dissected from the sur-
face of the basal plate of the placenta, which has close

relevance to normal placental physiology. We observed
a wide spectrum of gene-level and exon-level transcrip-
tome differences both between placenta and other
human tissues and between distinct compartments of
the placenta. Our work provides the first high-resolution
profiles of gene expression and AS characteristic of dif-
ferent parts of the normal human placenta.

Results
Overview of the RNA-Seq data
We sequenced pooled mRNA of amnion, chorion, and
decidua separately taken from five normal term placen-
tas (3 from male infants and 2 from female infants). For
each of the placental tissues, we generated 2 lanes of
paired-end Illumina RNA-Seq data with 54 bp and 72
bp in read length and 23-33 million reads of each lane,
for a total of 50-60 million paired-end reads per tissue.
We only used 50 bp of each end for mapping and analy-
sis based on the sequencing error profile. In addition,
we also obtained the Illumina Human Body Map 2.0
(HBM2.0) data with 73-83 million 50 bp paired-end
reads from 16 normal non-placental human tissues (adi-
pose, adrenal, brain, breast, colon, heart, kidney, liver,
lung, lymph node, ovary, prostate, skeletal muscle,
testes, thyroid and white blood cells). We mapped the
sequence reads of each tissue to the reference human
genome sequence (hg19) as well as all possible exon-
exon junctions (Ensembl genes, r57). We obtained a
high mapping rate with 70-90% and 7-10% of reads
mapped to the reference genome and exon-exon junc-
tions, respectively (Table S1 in Additional file 1). 70-
80% of the mapped paired-end reads were uniquely
mapped pairs and were used for subsequent analysis.

Global analysis of gene expression in placenta and other
human tissues
Using the uniquely mapped read pairs, we estimated the
expression levels of 22,523 protein-coding genes
(Ensembl genes, r57) in each tissue using the “Frag-
ments Per Kilobase of gene per Million mapped frag-
ments” (FPKM) metric [21] in a way similar to RPKM
[22] (see details in Methods). With a coverage depth
ranging from 50 to 80 million paired-end reads per tis-
sue, we detected the expression (i.e. FPKM > 0) of the
majority of the protein-coding genes (66-84% for each
of the 19 tissues). Approximately half of the genes were
expressed with FPKM > 1 (Table S2 and Figure S1 in
Additional file 1). We investigated the similarity in the
global gene expression profiles among the three placen-
tal compartments and 16 HBM2.0 tissues using average
linkage hierarchical clustering of the top 1,000 most
divergent genes (Figure 1). The three placental tissues
clustered more closely with one another than with the
other 16 tissues, suggesting the existence of a placenta-
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specific gene expression signature. In addition, we also
observed genes with distinct expression patterns among
amnion, chorion, and decidua, indicating that each com-
partment of the placenta has its unique expression sig-
nature, possibly reflecting differences in their functions
and/or biological activities.

To obtain a more detailed picture of genes potentially
important for normal placental function, we compared
the RNA-Seq gene expression profiles between the three
placental compartments and the 16 HBM2.0 tissues to
identify two types of genes with preferential expression
in the placenta: (1) placenta-enriched genes, defined as
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Figure 1 Hierarchical clustering analysis of differentially expressed genes among placental and other human tissues. We calculated
expression levels of 51,682 Ensembl genes in each tissue and selected those expressed with FPKM > 5 in 8 or more tissues, which were then
ranked based on their coefficient of variation (CV). The heat map was generated by average linkage hierarchical clustering of the top 1,000
differentially expressed genes, using 1-Pearson correlation coefficient as the distance metric. Scaled expression values are color-coded according
to the legend in the top left corner.
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genes with an FPKM value of at least 1 and greater than
4-fold difference in FPKM between any of the three pla-
cental tissues and the average of the 16 non-placental
tissues as similarly defined in another study [11]; and (2)
placenta-specific genes, defined as genes whose RNA-
Seq reads were only detected in the placenta but not in
any of the 16 non-placental tissues.
We identified 938, 865, and 944 genes with at least 4-

fold enriched expression in amnion, chorion, and
decidua, respectively, as compared to non-placental tis-
sues, including 216 genes shared among the three com-
partments of the placenta. We also used a similar
strategy to generate a list of 758 placenta-enriched
genes using the GeneAtlas microarray data set covering
whole placental and other human tissues [23] (see
Methods for further details). Among the 758 array-
based placenta-enriched genes, 297 were found to be
enriched in one of the 3 placental tissues according to
our RNA-Seq data, representing a significant overlap
between the array and RNA-Seq results (p = 2.2e-119,
Fisher’s exact test). The difference between the array
and RNA-Seq based gene lists could be due to the dif-
ference in platforms as well as in tissue samples used
for expression profiling. We also used a similar
approach to identify tissue-enriched genes in each of the
16 HBM2.0 tissues (15 other HBM2.0 tissues were used
as the background). Of all 19 tissues, the three placental
tissues were among the tissues with the highest number
of tissue-enriched genes, with only testes, brain and
white blood cells topping the placental tissues (Figure
2a).
The RNA-Seq data also allowed us to identify genes

whose expression was restricted to the placenta (i.e. not
a single read detected in any of the 16 non-placental tis-
sues). We identified a total of 170 placenta-specific
genes in the three placental compartments combined.
We also used the same criteria to identify tissue-specific
genes within the 16 HBM2.0 tissues. Consistent with the
pattern observed for the tissue-enriched genes, the three
placental tissues were among the tissues with the high-
est number of tissue-specific genes, only after testes and
brain. Taken together, these data indicate abundant tis-
sue-specific activation of gene transcription in the
placenta.

Genes enriched in or specific to the placenta play
important roles in placental function and pregnancy-
related diseases
In order to understand the functional significance of the
genes with enriched expression (EE) in the placenta, we
asked whether these genes have been implicated in pla-
cental biology and/or pregnancy disorders. We compiled
two lists of human genes using the Mouse Genome
Informatics (MGI) database [24,25] and the PTBGene

database [26,27]. The MGI list consisted of human
genes whose mouse orthologs are associated with abnor-
mal placental phenotypes when disrupted. The PTB list
consisted of genes collected from the literature on
genetic association studies on preterm birth (PTB). We
found that the placenta-enriched genes overlapped with
70 genes (19%, p = 1.9e-9) in the MGI list and 20 genes
(24%, p = 1.7e-5) in the PTB list, significantly overrepre-
sented compared to random expectation (Figure 2b).
Many of the genes associated with placental abnormal-

ities in mice (see the heat map of their expression pat-
terns in Figure 2c) were previously known to be
involved in physiological and pathological processes
related to pregnancy, with examples including prolactin
receptor (PRLR) and insulin-like growth factor 2 (IGF2).
The PTB list was particularly enriched with interleukin-
1 (IL1)-related genes, including IL1R1, IL1RN, IL1B, and
IL1A. We also found genes overlapping with both the
MGI and PTB lists, such as coagulation factor II
(thrombin) receptor (F2R) and vascular endothelial
growth factor A (VEGFA).
To gain more insight into key processes that may pos-

sibly explain functional differences among the three pla-
cental tissues, we carried out functional annotation
analysis of placenta-enriched genes identified in each of
the three placental tissues compared with the other 16
human tissues using DAVID [28,29]. The analysis
revealed significant enrichment (p < 0.05 after Bonfer-
roni correction) of Gene Ontology (GO) terms and
KEGG pathways involved in a wide range of biological
processes, including focal adhesion, vasculature develop-
ment, wound healing, and extracellular matrix (ECM)-
receptor interaction (Table 1). Of particular note is that
there was no significantly enriched GO term shared
among all three placental tissues, indicating that each
compartment of the placenta has its unique profile of
active genes involved in different biological processes.
Although there was no GO annotation shared by all

three compartments, we identified several biologically
relevant enriched categories that overlap between the
two membranous compartments amnion and chorion.
For example, epithelium development, one of those
categories, explains a common compositional feature
that exists between the two tissues with both at least
partially consisting of a layer of cells that are epithelial
in origin (the amniotic epithelium and extravillous cyto-
trophoblast) [30]. The enrichment of cell/biological
adhesion-related genes supports the role of the two
membranes as a barrier protecting the fetus from exter-
nal mechanical force, which requires substantial involve-
ment of cell adhesion molecules. Of note is that we also
observed an overrepresentation of mesoderm develop-
ment in both tissues when we performed our analysis
using a different annotation system PANTHER [31,32],
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which reflects a common structural feature shared by
the two membranes.
Among the non-overlapping GO terms, it was noted

that there was significant overrepresentation of vascular-
related GO terms such as blood vessel development,
vasculature development, blood vessel morphogenesis,
and angiogenesis in the chorion, while these terms were

absent from the amnion, an avascular tissue. One of the
genes belonging to these categories is VEGFA, which is
an extensively studied gene that acts as a signal trigger-
ing the induction of angiogenesis [33] and has been
implicated in pregnancy complications [34-36].
We found that three GO terms are significantly

enriched for the decidua with female pregnancy being
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Figure 2 Analysis of placenta-enriched and -specific genes. (a) Number of tissue-enriched (blue bar) and tissue-specific (red bar) genes.
Tissue-enriched genes were defined as genes with more than 4-fold change in expression and minimum FPKM of 1. (b) Proportions of
overlapping genes between the placenta-enriched gene list and the MGI or PTB gene list (see text and Methods for details). The lighter shade
indicates the proportion of non-placentaenriched genes while the darker shade indicates the proportion of placenta-enriched genes. P-values
were determined by Fisher’s exact test. (c) Expression profile of the 70 placenta-enriched MGI list genes. Gene expression values were normalized
for each gene and color-coded using the same scheme depicted in Figure 1. (d) Expression patterns of placenta-specific genes in amnion,
chorion, and decidua. Color scheme is based on log10(FPKM value).
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Table 1 Gene Ontology (GO) analysis of placenta-enriched genes

Tissue Category# Term Number of
genes

P-Value Fold
Enrichment

Bonferroni-
corrected P-Value

Amnion GO_BP GO:0007398 ~ ectoderm development 46 9.95E-21 5.3 2.51E-17

Amnion GO_BP GO:0008544 ~ epidermis development 43 1.28E-19 5.4 3.23E-16

Amnion GO_BP GO:0007155 ~ cell adhesion 76 1.71E-12 2.4 4.31E-09

Amnion GO_BP GO:0022610 ~ biological adhesion 76 1.85E-12 2.4 4.67E-09

Amnion GO_BP GO:0030855 ~ epithelial cell differentiation 27 1.46E-10 4.5 3.68E-07

Amnion GO_BP GO:0009913 ~ epidermal cell differentiation 19 2.80E-10 6.5 7.07E-07

Amnion GO_BP GO:0030216 ~ keratinocyte differentiation 18 4.05E-10 6.8 1.02E-06

Amnion GO_BP GO:0060429 ~ epithelium development 33 7.05E-09 3.2 1.78E-05

Amnion GO_BP GO:0018149 ~ peptide cross-linking 10 1.14E-06 8.5 2.87E-03

Amnion GO_BP GO:0031424 ~ keratinization 10 1.53E-05 6.4 3.79E-02

Amnion GO_BP GO:0043062 ~ extracellular structure organization 22 1.86E-05 2.9 4.59E-02

Amnion GO_BP GO:0030198 ~ extracellular matrix organization 17 1.91E-05 3.6 4.69E-02

Amnion KEGG hsa04512:ECM-receptor interaction 21 5.92E-10 5.4 8.05E-08

Amnion KEGG hsa04510:Focal adhesion 28 2.30E-07 3.1 3.13E-05

Chorion GO_BP GO:0007155 ~ cell adhesion 73 1.33E-11 2.3 3.43E-08

Chorion GO_BP GO:0022610 ~ biological adhesion 73 1.46E-11 2.3 3.77E-08

Chorion GO_BP GO:0007166 ~ cell surface receptor linked signal
transduction

123 1.09E-09 1.7 2.81E-06

Chorion GO_BP GO:0007398 ~ ectoderm development 30 4.77E-09 3.6 1.23E-05

Chorion GO_BP GO:0007223 ~ Wnt receptor signaling pathway, calcium
modulating pathway

11 9.29E-09 11.3 2.40E-05

Chorion GO_BP GO:0008544 ~ epidermis development 28 1.35E-08 3.6 3.49E-05

Chorion GO_BP GO:0007565 ~ female pregnancy 21 9.50E-08 4.2 2.46E-04

Chorion GO_BP GO:0009611 ~ response to wounding 51 3.61E-07 2.2 9.33E-04

Chorion GO_BP GO:0051270 ~ regulation of cell motion 27 7.39E-07 3.0 1.91E-03

Chorion GO_BP GO:0001501 ~ skeletal system development 36 1.72E-06 2.4 4.43E-03

Chorion GO_BP GO:0060429 ~ epithelium development 28 2.25E-06 2.8 5.79E-03

Chorion GO_BP GO:0001568 ~ blood vessel development 30 2.29E-06 2.7 5.91E-03

Chorion GO_BP GO:0030334 ~ regulation of cell migration 24 2.62E-06 3.1 6.76E-03

Chorion GO_BP GO:0016055 ~ Wnt receptor signaling pathway 21 3.00E-06 3.4 7.73E-03

Chorion GO_BP GO:0001944 ~ vasculature development 30 3.75E-06 2.6 9.65E-03

Chorion GO_BP GO:0042127 ~ regulation of cell proliferation 64 6.58E-06 1.8 1.69E-02

Chorion GO_BP GO:0035295 ~ tube development 27 7.56E-06 2.7 1.94E-02

Chorion GO_BP GO:0048514 ~ blood vessel morphogenesis 26 1.06E-05 2.7 2.71E-02

Chorion GO_BP GO:0001525 ~ angiogenesis 21 1.14E-05 3.1 2.92E-02

Chorion KEGG hsa04060:Cytokine-cytokine receptor interaction 38 3.89E-10 3.1 5.48E-08

Chorion KEGG hsa04512:ECM-receptor interaction 19 7.54E-08 4.6 1.06E-05

Chorion KEGG hsa04340:Hedgehog signaling pathway 14 1.99E-06 5.1 2.80E-04

Chorion KEGG hsa05217:Basal cell carcinoma 13 9.93E-06 4.8 1.40E-03

Chorion KEGG hsa04510:Focal adhesion 25 2.91E-05 2.6 4.09E-03

Chorion KEGG hsa05200:Pathways in cancer 33 9.39E-05 2.1 1.32E-02

Chorion PANTHER P00034:Integrin signalling pathway 26 5.49E-04 2.0 4.40E-02

Decidua GO_BP GO:0007565 ~ female pregnancy 27 4.48E-12 5.2 1.20E-08

Decidua GO_BP GO:0042060 ~ wound healing 26 2.91E-06 2.9 7.77E-03

Decidua GO_BP GO:0048732 ~ gland development 20 1.55E-05 3.2 4.08E-02

Analysis was performed on genes identified as being enriched in each of the three placental tissues compared to the other 16 human tissues

# GO term Biological Process categories are based on GO FAT definition from the DAVID website; KEGG and PANTHER are the corresponding pathways defined
in the DAVID website.
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the most enriched category, consistent with the role of
decidua as a principal source of hormones and cytokines
pivotal in the maintenance of pregnancy. It was noted
that many of the genes associated with female preg-
nancy have also been implicated in pregnancy-related
disorders. These genes include transforming growth fac-
tor beta 1 (TGFB1) and placental growth factor (PGF)
in PE [37-39] and corticotropin releasing hormone
(CRH) in preterm labor or delivery [40,41].
For placenta-specific genes, we further removed genes

with extremely low FPKM values (< 0.3) in the placental
tissues, which could represent genes with universal low
expression in all tissues but sampled by RNA-Seq in the
placenta by chance. This led to a final set of 24 pla-
centa-specific well-annotated protein-coding genes with
FPKM > 0.3 in at least one placental tissue. The pla-
centa-specific genes are highly enriched for genes
encoding pregnancy-related hormones, including preg-
nancy-specific glycoproteins (PSGs), chorionic somato-
mammotropin hormones (CSHs), and chorionic
gonadotropin, beta polypeptides (CGBs) (Figure 2d).

Expression profiles of splicing factors (SFs) in placental
and other human tissues
The deep RNA-Seq data also allowed us to go beyond
whole transcript level changes, to identify transcript iso-
form changes due to pre-mRNA alternative splicing
(AS). Splicing factors (SFs) are RNA binding proteins
that play key roles in AS regulation [14]. Tissue- and
cell-type specific expression of SFs is a major mechan-
ism that drives AS differences among human tissues
[42]. For example, brain-specific SFs NOVA1, NOVA2,
and FOX1 control a large number of brain-specific AS
events [43]. The epithelial-specific splicing factor ESRP1
is transcriptionally silenced during the epithelial-to-
mesenchymal transition, which flips the switch off for a
genome-wide epithelial splicing regulatory network [44].
To identify SFs with a placenta-specific increase or

decrease in expression levels, we compiled a list of sixty
well-studied SFs [14,45], and analyzed their RNA-Seq
FPKM gene expression levels in the placenta and 16
other human tissues. Hierarchical clustering of the 60
SFs revealed a sub-cluster among the three placental
compartments, (Figure 3a), consistent with the cluster-
ing pattern based on all genes (Figure 1). This cluster
analysis recapitulated the known tissue-specific expres-
sion patterns of SFs, such as the brain-specific expres-
sion of NOVA1, NOVA2, FOX1 (also known as
A2BP1), and BRUNOL4. Interestingly, we identified sev-
eral SFs with compartment-specific changes in expres-
sion levels in the placenta, most notably ESRP1 (in
amnion) and MBNL3 (in decidua) (Figure 3b), which we
confirmed by qRT-PCR (Figure S2 in Additional file 1).
ESRP1 and MBNL3 are known to regulate splicing of a

large number of genes in epithelial cells [46] and during
myogenic differentiation [47], suggesting a unique set of
AS events in individual placental compartments down-
stream of these master splicing regulators. We also iden-
tified several ubiquitously expressed SFs with a
significant difference in expression levels among the
three placental compartments. For example, FOX2 (also
known as RBM9), an important splicing regulator in the
heart, muscle, and neurons [14], was expressed two-fold
higher in amnion compared to chorion and decidua.
Together, the expression profiles of SFs suggest tissue-
specific regulation of AS between the placenta and other
tissues and between different compartments of the
placenta.

RNA-Seq and RT-PCR analysis of exon skipping events in
placental and other human tissues
To directly identify AS differences between the placenta
and other human tissues, we calculated the exon inclu-
sion level (Ψ) of alternatively spliced cassette exons in
each tissue using RNA-Seq reads that are uniquely
mapped to the upstream, downstream, and skipping
exon-exon junctions of alternatively spliced exons as
previously described [13]. We used a Bayesian approach
MATS (Multivariate Analysis of Differential Splicing)
[48] to perform pairwise comparisons of tissue pairs to
test if the difference in Ψ of any alternatively spliced
exon between two tissues exceeds 10% (see Methods for
details). Between the three compartments of the pla-
centa, approximately 0.1% of exons were found to be
differentially spliced (FDR < 0.1). In contrast, there was
a much greater degree of splicing difference between
placental and other human tissues, with 1.6% of exons,
on average, being differentially spliced between one of
the placental tissues and one of the 16 HBM2.0 tissues
(Figure 4a). It should be noted that given the moderate
sequencing depth of 50-83 million reads per tissue, this
analysis is expected to have an appreciable level of false
negatives. The true extent of splicing differences among
these tissues could be considerably larger.
In order to boost the power of RNA-Seq splicing ana-

lysis and obtain a robust set of splicing differences
between the placental and non-placental tissues, we
pooled the RNA-Seq data of all HBM2.0 tissues. We
then compared the pooled data to that of each placental
tissue. We identified 393, 637, and 402 differentially
spliced exons (in 275, 464, and 289 genes) when com-
paring the pooled non-placental tissues to amnion, chor-
ion, and decidua, respectively (Figure 4b). 129 exons (in
76 genes) were shared among the three placental tissues.
On the other hand, the majority (74%) of differentially
spliced exons identified were restricted to only one of
the three placental tissues as compared to the non-pla-
cental tissues (Figure 4b). Importantly, among the 744
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genes containing differentially spliced exons between
placental and non-placental tissues, we observed a sig-
nificant enrichment for genes in the MGI list (2.8% over
1.4% for the genome background, p = 0.001 based on
Fisher’s exact test), indicating the importance of tissue-
specific AS in placental function and development. For
example, one of these exons (ENSE00000882762) was in
integrin, alpha 6 (ITGA6), which forms heterodimers
with other integrin components and plays a crucial role
in cell adhesion and migration [49,50]. We observed a
high inclusion level of this exon in amnion and chorion
compared to most of the other tissues, with close to
100% exon inclusion in amnion as validated by fluores-
cently labeled RT-PCR (Figure 5a). Exon
(ENSE00001385284) in another integrin gene ITGB4
was frequently skipped in the placental tissues (Figure
5b). TCIRG1 (T-cell, immune regulator 1, ATPase, H +
transporting, lysosomal V0 subunit A3) is another differ-
entially spliced gene with multiple known isoforms pro-
duced by AS [51,52]. As shown in Figure 5c, the
inclusion level of one of its exons (ENSE00000736978)
was significantly lower in amnion.

To further confirm the RNA-Seq results of exon spli-
cing, we randomly selected 34 exons in total (including
the 3 aformentioned exons) for fluorescently labeled
RT-PCR. Using an independent set of term placental
samples (N = 4) that were not used in the RNA-Seq
experiments, we validated the predicted differential spli-
cing events of 27 exons, yielding a validation rate of
79%. The RNA-Seq difference in exon inclusion levels
between the placental tissues and the pooled non-pla-
cental tissues strongly matched the RT-PCR results
(Pearson’s correlation coefficient = 0.78) (Figure 6a).

The splicing factor ESRP1 regulates tissue-specific splicing
in amnion
The placenta-specific increase in the expres levels of
certain master splicing regulators such as ESRP1 and
MBNL3 raises the possibility that downstream exon tar-
gets of these regulators may have altered splicing activ-
ities in the placenta over non-placental tissues. To test
this, we studied the splicing factor ESRP1, which had
5.4 fold higher expression in amnion over the average of
the 16 HBM2.0 tissues (Figure 4b). Of note, among the
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Figure 3 Expression profile of splicing factors in placental and other human tissues. (a) Heat map showing the expression levels of 60
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exons validated by RT-PCR as differentially spliced
between amnion and non-placental tissues, several were
known ESRP1 targets (such as those in ITGA6, LAS1L,
MAP3K7, LRRFIP2 and KIF13A; see Figure 6a). To
assess the overall enrichment of ESRP1 target exons
among differentially spliced exons in amnion, we col-
lected 167 RT-PCR validated ESRP1 target exons from
our previous genome-wide analysis of ESRP1-regulated
splicing events in epithelial and mesenchymal cells [46].
Of the 167 known ESRP1 target exons, 131 were
expressed and detectable in our data. Among them, a
significantly enriched set of 20 exons exhibited differen-
tial splicing in amnion compared to other human tissues
according to RNA-Seq data (Fisher’s exact test, p = 4.3
e-33) (Figure 6b).

Given our moderate sequencing depth in the placental
tissues, it is possible that additional ESRP1 target exons
with differential splicing in amnion were missed by
RNA-Seq. We therefore selected additional 21 ESRP1
target exons besides the aforementioned 5 validated
exons for RT-PCR analysis, resulting in 26 exons tested
in total. Seven of those exons did not have any RNA-
Seq reads presumably due to their relatively low expres-
sion levels and the limited coverage depth of our
sequencing data. We confirmed that 12 of the 26 ESRP1
target exons showed more than 10% changes in splicing
in amnion, with known ESRP1-enhanced exons having
increased splicing activities, and known ESRP1-silenced
exons having decreased splicing activities. One of the
validated ESRP1 target exons was in misshapen-like
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kinase 1 (MINK1), which has an important role in cell
adhesion and motility [53]. The exon
(ENSE00001213221) in MINK1, a known ESRP1 target
had an inclusion level of > 90% in amnion, approxi-
mately 20-30% higher than those observed for other
human tissues (Figure 6c). The increased splicing activ-
ity of this MINK1 exon was consistent with the previous
observation that ESRP1 positively regulates the splicing
of this exon [46].

Analysis of pathways influenced by tissue-enriched
expression and differential splicing in placenta
The differential gene- and exon-level expression patterns
observed between the placental and non-placental tis-
sues may underlie gene pathways that have key roles in
the normal biology of the placenta. To identify pathways
and molecular networks influenced by placenta-specific
gene expression and splicing, we constructed functional
interaction (FI) networks [54] covering genes with
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enriched expression (EE) and genes with differential
splicing (DS) in amnion, chorion and decidua compared
to other human tissues. These genes were used as query
sets and projected onto a functional interaction network
of human genes constructed from diverse genomic data
sources [54]. We used the edge betweenness algorithm
[55] to find functional modules in the network, each of
which contained enriched functional annotation terms
(pathways) that describe the biological roles of genes
that are grouped together.
The results of our analysis performed on each of the

three placental tissues showed significant enrichment of
many functional pathways (Table S3 in Additional file
2), including those involved in the regulation of
SMAD2/3 signaling, TGF-beta receptor signaling, and
HIF-1 alpha TF network, which were significantly over-
represented in module 0 of all the amnion, chorion, and
decidua FI networks (shown in Figure 7 is module 0 of
the chorion FI network).
The analysis performed on genes abundantly expressed
and/or differentially spliced in all three placental tissues
revealed strong overrepresentation of pathways related
to integrin signaling and focal adhesion (Figure S3 in
Additional file 1). These pathways were enriched with
genes encoding collagens (COL17A1, COL7A1,
COL5A1), laminins (LAMA3, LAMA5), filamins (FLNC,
FLNA), integrin (ITGB4), and actinin (ACTN1), all of
which are structural components of extracellular matrix
(ECM). These results suggest the critical role of ECM in
processes involved in normal placental biology. It is
interesting to note that the network module contained
an appreciable number of both differentially expressed
and differentially spliced genes, suggesting that AS and
gene transcription act in a coordinated manner to con-
trol the overall pathway activity in the placenta.

Novel transcriptional active regions (TARs)
One major advantage of RNA-Seq compared to micro-
array technology is its capability to detect un-annotated
novel transcripts. To identify novel transcriptional active
regions (TARs) in placental tissues, we used the soft-
ware Scripture [56] for ab initio reconstruction of tran-
scripts for each tissue after sequence mapping with
Tophat [21] (see details in Methods). We identified
approximately 100,000 transcripts in each of the placen-
tal tissues with more than 70% of them being multi-
exon transcripts (Table 2). To reduce false signals, only
multiexon transcripts were used in the following analy-
sis. After overlapping transcripts were merged into one
single TAR, a total of 13,469, 16,987, and 15,158 TARs
were found in amnion, chorion, and decidua, respec-
tively. We filtered out the ones overlapping with the
annotated transcripts from the NCBI RefSeq, UCSC,
Ensembl, and Vega database and identified 604, 1,007,

and 896 novel TARs in amnion, chorion, and decidua,
respectively. The expression levels of the identified
novel TARs are listed in Table S4 in Additional file 3.
Importantly, a large proportion of these novel TARs
(285, 456, and 468 in the corresponding placental tis-
sues) are placenta-specific or more than 4 fold enriched
compared to non-placental tissues. Shown in Figure 8 is
one example of novel TARs on chromosome 16
(chr16:50424807-50430893) expressed in amnion with a
high FPKM value of 7.1. Of note, this transcript is not
documented in any human gene databases, although the
existence of human expressed sequence tags (ESTs) at
this locus further supports the validity of this TAR (Fig-
ure 8).
We also used RNA-Seq data to identify novel exons in
annotated genes. There are a total of between 93 and
103 thousand exons identified in the TARs overlapping
with annotated genes. Although more than 80% of these
exons were well annotated with the same 5’ and 3’ ends,
we detected between 494 and 585 totally new exons
with no sequence overlap with any annotated exons in
the placental tissues. These novel TARs and exons pro-
vide a valuable resource for novel transcripts with
potential functional significance in the placenta.

Discussion
With the emergence of new high-throughput technolo-
gies such as RNA sequencing, we have recently wit-
nessed a remarkable increase in our knowledge of
mammalian transcriptome content and diversity. There
has been a particular surge in our understanding of the
transcriptome diversity between different tissues and cell
types. For example, Wang et al. performed an RNA-Seq
analysis of 15 human tissues and cell lines and identified
over 22,000 tissue-specific AS events [13]. Other studies
have established the association between tissue-specific
expression of SFs and genome-wide changes in tissue-
specific splicing patterns [42,45], which underscores a
critical role of AS regulation in tissue differentiation and
specialization.
The majority of previous gene expression studies of

human placental tissue have only provided gene-level
insights [6-10], driving the need for higher-resolution
analysis to enable a better understanding of the com-
plexity of the placental transcriptome at the level of
exon splicing. AS, which has a well-established role in
cell differentiation [57,58], may be critical for the proper
functioning of the placenta, an organ composed of a
variety of differentiated cell types, each with its own
specific functions during pregnancy. Thus, uncovering
the complexity of AS in the placental transcriptome will
provide a valuable basis for understanding genes with
functional and clinical relevance in placental biology
and pathophysiology.
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In the present study, we used RNA-Seq to characterize
the transcriptome of selected compartments of the
human placenta from normal term pregnancies. RNA-
Seq allows an unbiased and sensitive interrogation of
the full repertoire of placental mRNA transcripts. We
took a two-step approach to analyze the RNA-Seq data
at both the gene-level and the exon-level. First, we
investigated differential gene expression between the
placental and other human tissues to identify genes that
are specifically or abundantly expressed in the placenta.
Second, we carried out exon profiling as well as SF

expression profiling to find AS events and their poten-
tial regulators that are differentially present in the pla-
cental versus non-placental tissues.
We have compared placenta-enriched genes to genes

with putative functional significance in the placenta
using the mouse phenotype data and human PTB asso-
ciation study data. We observed that genes implicated in
placental abnormalities and PTB are enriched among
the genes with placenta-enriched expression profiles.
We note that the mouse phenotype data from MGI
were generated independent of any previously known
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gene expression pattern in the placenta. Among such
genes are PRLR and F2R, genes encoding receptors for
prolactin and thrombin, respectively, whose levels are
precisely regulated during pregnancy [59,60]. The
enrichment of IL1-related genes was also noted, suggest-
ing the importance of IL1 signaling in normal placental
function and pregnancy. IGF2, one of the genes asso-
ciated with abnormal placental phenotypes in mice, is
known for its active role in placental and fetal growth
[61,62]. Together, these provide a link between highly
expressed placenta-enriched genes and their functional
importance in the placenta. Similarly, our work provides
evidence suggesting the importance of genes uniquely
expressed in the placenta in diverse pregnancy-related
processes, with examples including CSH1 in the

regulation of fetal growth [63], CGB in the maintenance
of early pregnancy [64,65], and human leukocyte anti-
gen-G (HLA-G) in feto-maternal immune tolerance
[66,67]. In addition, we observed a significant enrich-
ment of differentially spliced genes in the placenta
among genes with placental phenotypes in the mouse,
suggesting the importance of tissue-specific AS in pla-
cental development and function.
Because the HBM2.0 data all came from adult tissues,

it is possible that some placenta-enriched genes identi-
fied in our study reflect age-specific expression signa-
tures. Because of the unavailability of RNA-Seq data
from other fetal tissues, we assessed this possibility
using the GeneAtlas array data [23]. There were 4 fetal
tissues (brain, liver, lung, and thyroid) included in the

Table 2 Novel transcriptional active regions (TARs) and exons discovered in placental tissues

Amnion Chorion Decidua

Transcripts

Total transcripts 92,265 107,371 105,158

Multi-exon# transcripts 69,721 69,858 75,958

Perfect match with annotated transcripts (ignoring transcript start and end) 21,288 22,724 25,077

Total TARs* 13,469 16,987 15,158

Novel TARs (not overlapping with the combined annotation of Ensembl, UCSC, RefSeq and Vega genes) 604 1,007 896

Internal exons in TARs overlapping annotated transcripts

Total exons 93,506 103,356 100,003

Annotated exons 75,154 81,591 83,283

Novel exons with one end (5’ or 3’) shared with an annotated exon 16,907 20,121 15,246

Novel exons overlapping with an annotated exon but with no shared 5’ or 3’ end 950 1,093 876

Novel exons not overlapping with any annotated exons 494 537 585

Analysis was performed using software Scripture for ab initio reconstruction of transcripts for each placental tissue after sequence mapping with Tophat.

*TAR: Transcriptional Active Region after merging overlapping transcripts
# Single exon transcripts were not included in all the downstream analysis

Figure 8 An example of novel transcriptional active regions (TARs) identified in the present study. Shown is a novel TAR on
chromosome 16 found in amnion. A wiggle plot of RNA-Seq read coverage, structures of 3 alternatively spliced transcripts and ESTs were
shown from top to bottom. Note that there is no gene annotated in this region in the indicated annotation databases.
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GeneAtlas data. Of the 297 genes with at least 4-fold
enrichment in the placenta over adult tissues in both
the GeneAtlas array data and our RNA-Seq data, the
vast majority (281 genes) were more than 4-fold
enriched in the placenta compared with the 4 fetal tis-
sues according to the GeneAtlas array data. This sug-
gests that the placenta-enriched genes identified in our
study reflect genuine placenta-associated gene expres-
sion signatures. In addition, the strong association of
placental expression enrichment with placental disease-
related gene sets further supports that most of the pla-
centa-enriched genes found here reflect tissue effect
rather than age effect.
Given the heterogeneous tissue composition of the

placenta, we have characterized the transcriptome pro-
files of the placenta not only at the whole-organ level,
but also at the sub-organ level. It should be noted that
the placental samples used in our study (amnion, chor-
ion, and decidua) may not be completely pure, contain-
ing minor contamination with other placental
components. Nonetheless, our study demonstrated that
they are highly enriched for the corresponding tissue
types, displaying compartment-specific expression pro-
files and splicing patterns. The amnion is the innermost
layer of the fetal membranes lining the amniotic cavity
and is composed of an epithelial cell layer on top of a
basement membrane and an avascular matrix [68,69].
Consistent with these histological properties of the
amnion, we have detected enrichment of genes involved
in cell/focal adhesion and observed that the epithelial
splicing regulator ESRP1 was highly expressed. Our spli-
cing analysis of the amnion using RNA-Seq and RT-
PCR revealed 20 and 12 known ESRP1 target exons,
respectively, with differential splicing activities in the
amnion. It should be noted that ESRP1 is a master cell-
type-specific splicing regulator critical for maintaining
the epithelial cell identity and has been implicated in a
variety of developmental and disease processes [46]. The
ESRP1 target exons are strongly enriched in genes
involved in the regulation of cell adhesion such as the
exon in MINK1 [53], that was found to be differentially
spliced in the amnion compared to other human tissues
by RNA-Seq and validated by RT-PCR. These data sup-
port a role of the ESRP1 splicing regulatory network in
the amnion. The chorion, the outer layer of the fetal
membranes in contact with the decidua, consists of the
reticular layer, the basement membrane, and the tropho-
blast layer [30]. Similar to the amnion, genes with a role
in cell/biological adhesion are also enriched in the chor-
ion, which may be important for the adherence of the
trophoblast layer to the decidua [70]. The enrichment of
genes involved in vascular-related processes in the chor-
ion may be explained by velamentous vessels traversing
the extraplacental membranes or maternal vessels in

interdigitating decidua processed along with the chorion.
Unlike the two fetal membranes, the decidua is of
maternal origin [1,10]. It is noteworthy that genes
related to female pregnancy were significantly enriched
in this compartment of the placenta, further supporting
the crucial role of this tissue in pregnancy. Of note, we
observed significant differential expression of a splicing
factor MBNL3 in the decidua. In future studies, it would
be useful to examine how MBNL3 globally impacts gene
splicing and function in the decidua.
We also examined potential interactions among

genes highly expressed and differentially spliced in the
placenta compared to other human tissues by con-
structing FI networks composed of sub-network mod-
ules enriched for specific gene categories and
functional pathways. Analysis performed separately on
each of the three placental tissues revealed enrichment
of set of pathways commonly enriched in all three
compartments, for example, regulation of cytoplasmic
and nuclear SMAD2/3 signaling and TGF-beta recep-
tor signaling. These pathways are known to be
involved in a wide range of cellular processes [71],
which reflects the versatile function of the placenta
that can be achieved through diverse cellular activities
occurring in different parts of the placenta. Among its
other main functions, the placenta plays an important
role as an immune barrier, protecting the fetus from
the mother ’s immune system [1]. This function is
reflected by the enriched expression of transcription
factors (TFs) involved in immune regulation such as
GATA3 and IRF7 as well as the differential splicing of
REL, a member of the Rel/NFKB family and NFATC2,
a member of the nuclear factors of activated T cells
transcription complex. HIF-1 alpha TF network is
another pathway that was enriched in module 0 of all
the three FI networks. The placenta, during its devel-
opment, is exposed to different oxygen environments
and tight regulation of oxygen homeostasis is necessary
for proper placental development and function, which
requires active involvement of the HIF-1 alpha TF net-
work [72]. These findings suggest: (1) the common
importance of these pathways in the functioning of the
different parts of the placenta examined in the present
study; and (2) the importance of the regulation of gene
expression and AS as critical mechanisms underlying
anatomical, developmental, and functional specializa-
tion of the placenta. When the analysis was performed
on all of the tissues combined, we observed the overre-
presentation of ECM-related gene sets such as integrin
signaling pathway, ECM-receptor interaction, focal
adhesion, and integrin cell surface interactions. These
results provide evidence for the role of ECM in placen-
tal development and placental cell proliferation as
demonstrated in earlier studies [73,74].
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Conclusions
Our study provides the first comprehensive view of the
placental transcriptome at exon-level resolution, and
reveals that tissue-specific gene regulation in the pla-
centa involves complex changes in both gene transcrip-
tion and exon splicing. Our data should serve as a
valuable resource for future in-depth investigations into
what genes contribute to specification of the placenta.
All of the RNA-Seq data can be accessed as the raw
RNA-Seq reads and as a processed UCSC Genome
Browser custom track http://intron.healthcare.uiowa.
edu/placenta/. Furthermore, the findings of this work
may provide useful clues on how those genes/pathways,
when altered at either the gene level or exon level,
could lead to pregnancy-related diseases. Future
research using tissues from abnormal conditions will
help expand our knowledge of the transcriptome altera-
tions and pathological processes involved in maternal
and fetal complications.

Methods
Tissue collection
Fresh human placentas were obtained within one hour
of normal vaginal delivery at term with signed informed
consent under protocols approved by the University of
Iowa Institutional Review Board (200506792,
200411759). The placentas were received largely intact
when visually inspected. Each placenta was dissected
into the fetal (amnion, chorion) and maternal (decidua)
portions. The amnion and chorion were taken from the
reflected membranes and separated by blunt dissection.
Decidual tissue samples were macroscopically isolated
from the maternal-facing surface of the placenta. The
dissected tissues were cut into small pieces and placed
in RNAlater® solution (Applied Biosystems, Foster City,
CA). To ensure that our results better reflect the true
nature of the normal term placental transcriptome, we
used placentas from term (≥ 37 weeks of gestation)
deliveries with spontaneous onset of labor.

RNA extraction
Total RNA was extracted from each tissue using the
TRIzol® reagent (Invitrogen, Carlsbad, CA) according
to manufacturer’s instructions and stored at -80°C
until used. For RNA-Seq, we prepared pooled amnion,
chorion, and decidua samples, using an identical set of
RNA from five different individuals. The pooled sam-
ples were of high quality with an RNA integrity num-
ber (RIN) > 8. For validation of differential splicing
events and splicing factor expression, we generated
RNA pools, each for amnion, chorion, and decidua,
consisting of 4 biological replicates that are indepen-
dent from those used in the RNA-Seq experiments.

For validation experiments, we purchased total RNA
representing all HBM2.0 tissues except white blood
cells from Applied Biosystems (Foster City, CA) or
Clontech (Mountain View, CA).

Library construction and sequencing
Library preparation and paired-end sequencing were
performed by Ambry Genetics (Aliso Viejo, CA). Dou-
ble-stranded cDNA fragments were synthesized from
mRNA, ligated with adapters, and size-selected for
library construction according to the manufacturer’s
protocol (Illumina, San Diego, CA). Each of the three
libraries generated was loaded onto one lane of the flow
cell at 8 pM concentration. Two paired-end runs (72 bp
and 54 bp runs) of sequencing were carried out on the
Illumina Genome Analyzer IIx. Initial data processing
was performed using RTA 1.6.47.1 (SCS version 2.6.26).
Sequence quality filtering script was executed in the
Illumina CASAVA version 1.6.0 software (Illumina, Hay-
ward, CA).

Sequence alignment
For each end (forward or reverse) of the paired-end
reads from placenta, we trimmed the sequence to 50 bp
based on the sequencing error profile. The HBM2.0 data
consist of the following tissues: adipose, adrenal, brain,
breast, colon, heart, kidney, liver, lung, lymph node,
ovary, prostate, skeletal muscle, testes, thyroid and white
blood cells. Each tissue came from a single adult donor
with ages ranging from 19 to 86. The HBM2.0 data are
accessible from EBI ArrayExpress track: http://www.ebi.
ac.uk/arrayexpress/browse.html?keywords=E-MTAB-513.
For HBM2.0, we used all the 50 bp from the paired end
data. Each read was mapped to the reference human
genome (hg19) as well as all possible exon-exon junc-
tions (Ensembl genes, r57) as previously described [75].
Each exon-exon junction is 84 bp in length, containing
the last 42 bp of the upstream exon and the first 42 bp
of the downstream exon. We used Bowtie [76] to map
those reads, allowing up to three mismatches and also
required that each read has at most three possible
mapped locations in either the human genome or all
possible exon-exon junctions. For each pair of forward
and reverse reads, we enumerated all possible combina-
tions of mapped forward and reverse reads. We required
that the two ends from the same read pair should be on
the same chromosome but in the opposite orientation.
Since 98.4% of human introns have length less than 50
kb (data not shown), we also required that the two ends
should be within 50 kb of each other in the mapped
genomic locations. Based on these criteria, we collected
a set of uniquely mapped pairs to do the subsequent
analysis.
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Gene expression quantification using RNA-Seq data
We estimated the gene expression level using RNA-Seq
by the Fragments Per Kilobase of gene per Million
mapped fragments (FPKM). Ensembl release r57 was
used for gene annotation. To avoid the ambiguity of
assigning reads to different isoforms of the same gene
and obtain a robust estimate of the overall gene expres-
sion levels, we used an exon union method by counting
all reads mapped to any exon in any of the gene’s iso-
forms. This approach is similar to the original RPKM
definition [22] instead of the transcript isoform level
estimate as in Cufflinks [21].

Placenta-enriched genes based on GeneAtlas array data
We selected 16 tissues from the Human GeneAtlas
array dataset [23], consisting of whole placental tissue
and 15 non-placental tissues. These 15 tissues are
identical to those examined in the Human Body Map
2.0 project except that breast tissue is not included in
the GeneAtlas data set. We compared the expression
values from the whole placental tissue to the average
values from 15 other human tissues and generated a
list of 758 genes with at least 4-fold enrichment in the
whole placenta.

Enrichment of GO functional categories and pathways
To identify the overrepresented functional categories
among the genes with enriched expression or differential
alternative splicing in the placenta compared to the 16
HBM2.0 tissues, we used the online functional annota-
tion tool DAVID [28,29,77]. All the expressed protein-
coding genes in the combined placenta and HBM2.0
data were used as the background. We used the
GO_BP_FAT categories for GO biological process cate-
gories and KEGG and PANTHER annotation for path-
way analysis. A modified Fisher’s exact test (EASE
score) from DAVID was used for testing the significance
of functional category enrichment. The significant cate-
gories with a p-value < 0.05 after Bonferroni correction
were reported.

Placental abnormality- and preterm birth-related genes
To obtain genes associated with abnormal placental
phenotypes, we searched the MGI database [24,25] for 4
MGI phenotypes (abnormal amnion morphology,
MP:0005029; abnormal chorion morphology,
MP:0002836; abnormal placenta morphology,
MP:0001711; abnormal maternal decidual layer mor-
phology, MP:0004256). These mouse genes were
mapped to human based on the Human and Mouse
Orthology in the MGI database to obtain the ortholo-
gous human genes. Preterm birth-related genes were
taken from the preterm birth genetics knowledge base
PTBGene [26,27], a regularly updated and manually

curated collection of genes implicated in published asso-
ciation studies of PTB.

Alternative splicing analysis
We focused our analysis on the exon-centric analysis.
We only used those reads that uniquely mapped to the
splicing junctions to estimate the exon inclusion level
(Ψ) of alternatively spliced exons. We used the same
formula as in [13]: Ψ = I+S. Suppose UJC, DJC, and SJC
represent read counts of upstream junction, downstream
junction and skipping junction respectively, then junc-
tion read counts from the exon-inclusion transcript (I)
equal ((UJC + DJC)/2) and read counts from the exon-
skipping transcript equal S. To find the placenta specific
exon inclusion/skipping, we also pooled all the reads
from the 16 HBM2.0 tissues to get a mean inclusion
level of non-placental tissues. Utilizing the read counts
information on the 3 types of junctions of each exon,
we used a multivariate Bayesian algorithm MATS (Mul-
tivariate Analysis of Transcript Splicing) [48]. Briefly,
MATS uses a multivariate uniform prior to model the
between-sample correlation in exon splicing patterns,
and a Markov chain Monte Carlo (MCMC) method
coupled with a simulation-based adaptive sampling pro-
cedure to calculate the P value and false discovery rate
(FDR) of differential AS. Importantly, the MATS
approach provides the flexibility to identify differential
AS events that match a given user-defined pattern. Sup-
pose Ψ1 and Ψ2 are the exon inclusion levels of 2 tis-
sues and we want to test if |Ψ1-Ψ2| > 10%, we can
obtain the Bayesian posterior probability P = P(|Ψ1-Ψ2|
> 10%) and subsequent P value and FDR. The MATS
software can be downloaded from http://intron.health-
care.uiowa.edu/mats/.

Fluorescently labeled RT-PCR and qRT-PCR
We validated 2 sets of exons using RT-PCR. One set
includes 34 exons that showed significant differential
splicing (> 10% inclusion level difference with FDR < 0.1
between one of the three placental tissues and the
pooled HBM2.0 tissues). Another set includes 21 known
ESRP1 target exons that are predicted to have differen-
tial splicing due to differential expression of ESRP1 in
amnion. Single-strand cDNA was synthesized from total
RNA using the High Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems) according to the manufac-
turer’s protocol. Fluorescently labeled RT-PCR was
performed as described [78]. Briefly, for each tested
exon, we designed a pair of primers targeting flanking
constitutive exons. Fluorescent labeling of PCR products
was carried out according to a method modified from
that of Schuelke [79]. PCR products were separated on a
polyacrylamide gel and the fluorescence signal was cap-
tured and quantified using a Typhoon 9200 scanner
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(Molecular Dynamics, Sunnyvale, CA) and the Quantity
One 4.6.2 software (Bio-Rad, Hercules, CA). To validate
the expression levels of ESRP1 and MBNL3, qRT-PCR
was performed using the Power SYBR Green PCR Mas-
ter Mix (Applied Biosystems) and the 7900HT Fast
Real-Time PCR System (Applied Biosystems). In each
experiment, HPRT1 was used as an endogeneous refer-
ence. Three technical replicates were included for each
sample. Data were generated using the SDS 2.3 software
(Applied Biosystems) and analyzed using the compara-
tive CT method [80]. All primer sequences used for this
study and exon inclusion levels from both RNA-Seq and
RT-PCR are provided in Table S5 in Additional file 4
and gel pictures are shown in Figure S4 and S5 in Addi-
tional file 5.

Functional interaction networks of genes with placenta-
enriched expression or differential splicing
We combined the genes with placenta-enriched expres-
sion or differential splicing into 4 query gene sets: com-
bination of placenta-enriched genes with FPKM > 1 and
> 4 fold enrichment (EE) and genes significantly differ-
entially spliced with FDR < 0.1 and |Ψ1-Ψ2| > 10% (DS)
compared to the HBM2.0 tissues in each of the three
placental tissues individually and the intersection set of
all three tissues. We projected each of the query gene
set onto the functional interaction network of human
genes from the Reactome database [54] using the Reac-
tome FI network plug-in in Cytoscape [81]. Edge-
betweenness algorithm was used to cluster the network
into modules [82]. Pathway enrichment analysis was
done on the whole network and within each of the sub-
network modules. The networks from representative
modules are visualized in Cystoscape [81]. Enriched
pathways with FDR < 0.05 in modules with size of at
least 40 are listed in Table S3 in Additional file 2.

Discovery of novel transcriptional active regions (TARs)
Scripture software [56] was used for ab initio recon-
struction of the transcripts for each tissue after mapping
with Tophat [21]. Same as in the expression analyses,
reads of the three placental tissues were trimmed at 3’
end to 50 nt before mapping. As reported, starts and
ends of reconstructed transcripts were usually not as
accurate as splice sites, thus single-exon transcripts were
removed in the analyses. The reconstructed transcripts
were clustered into TARs when there were any overlaps
between transcripts. Overlapping between two tran-
scripts was defined when they are in the same strand
and have at least one common internal exon boundary,
which means that they have at least one common exon
start site or exon end site. Novel TARs were determined
by comparison with a combination of annotated tran-
scripts from the NCBI RefSeq, UCSC, Ensembl, and

Vega database. A TAR was considered as novel if there
is no overlap of TAR with any annotated transcript
using the above definition. We also examined the exon
distributions within the TARs overlapping with anno-
tated transcripts. Because the start and end of transcript
annotations usually vary greatly, to compare the recon-
structed exons within TARs overlapping annotated tran-
scripts with the exon annotations, we only focused on
the internal exons in our analysis. To compare in all tis-
sues the expression levels of novel TARs identified in
placental tissues, we first used the exons identified in
the novel TARs, and then calculated FPKM values in
the same way as in the analysis of known gene expres-
sion for all three placental tissues and 16 HBM2.0
tissues.

Data accessibility
All data described here can be accessed from: http://
intron.healthcare.uiowa.edu/placenta/.

Additional material

Additional file 1: Tables S1 and S2 and Figures S1-3 Supplemental
Table S1. Mapping statistics of RNA-Seq data from placenta and HBM2.0
tissues. Supplemental Table S2. Distribution of gene expression level
(FPKM) of RNA-Seq data from placenta and HBM2.0 tissues. Figure S1.
Distribution of gene expression values (FPKM) for all tissues examined in
the study. Figure S2. qRT-PCR validation of placenta-enriched SFs ESRP1
and MBNL3. Figure S3. Functional interaction network analysis of genes
with enriched expression (EE) and differential splicing (DS) that intersect
all three placental tissues: module 2. Circular node: a query gene.
Diamond-shaped node: a linker gene. Node color was determined based
on whether the query gene shows EE (green), DS (pink), or both (red).
The most significantly enriched pathways were highlighted in bigger
node size: integrin signaling pathway and ECM-receptor interaction
pathway.

Additional file 2: Table S3 Enriched pathways (FDR < 0.05) in the
whole network and submodules (module size > 50) from functional
interaction network analysis.

Additional file 3: Table S4 FPKM expression levels in all tissues for
the novel TARs identified from the placental tissues.

Additional file 4: Table S5 Exon inclusion levels and primer
sequences for exons selected for RT-PCR validation.

Additional file 5: Figure S4 RT-PCR analysis of 34 exons that
showed significant differential splicing (> 10% difference in exon
inclusion level, FDR < 0.1) between placental and HBM2.0 tissues.
Figure S5. RT-PCR analysis of 21 ESRP1target exons.
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