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Abstract

Background: WD40 proteins represent a large family in eukaryotes, which have been involved in a broad
spectrum of crucial functions. Systematic characterization and co-expression analysis of OsWD40 genes enable us to
understand the networks of the WD40 proteins and their biological processes and gene functions in rice.

Results: In this study, we identify and analyze 200 potential OsWD40 genes in rice, describing their gene structures,
genome localizations, and evolutionary relationship of each member. Expression profiles covering the whole life
cycle in rice has revealed that transcripts of OsWD40 were accumulated differentially during vegetative and
reproductive development and preferentially up or down-regulated in different tissues. Under phytohormone
treatments, 25 OsWD40 genes were differentially expressed with treatments of one or more of the phytohormone
NAA, KT, or GA3 in rice seedlings. We also used a combined analysis of expression correlation and Gene Ontology
annotation to infer the biological role of the OsWD40 genes in rice. The results suggested that OsWD40 genes may
perform their diverse functions by complex network, thus were predictive for understanding their biological
pathways. The analysis also revealed that OsWD40 genes might interact with each other to take part in metabolic
pathways, suggesting a more complex feedback network.

Conclusions: All of these analyses suggest that the functions of OsWD40 genes are diversified, which provide
useful references for selecting candidate genes for further functional studies.
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Background

Proteins characterized by conserved motifs may belong
to a gene family, which were represented by structural
or functional similarity and evolutionary relationships.
WD40 proteins are a group of proteins that are highly
conserved in evolution and are extremely abundant
across a wide range of eukaryotic organisms [1]. Struc-
turally, these proteins are characterized by the presence
of approximately 40 amino acids core region, which
contains a glycine-histidine (GH) dipeptide at the N
terminus and a tryptophan-aspartate (WD) dipeptide at
the C terminus separated by a region of variable lengths
[2]. Usually, the WD40 protein contains several
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tandemly repeated units of such motif, which are
required to form the secondary structure [3]. The struc-
ture of several WD40 proteins has been determined,
suggesting that the WD40 domain folds into a second-
ary structural of beta propeller despite large levels of
sequence diversity. For example, the mammalian G
subunit of heterotrimeric GTPases involved in signal
transduction forms a beta propeller structure containing
seven WD40 repeats [2].

WD40 gene family shows low level of sequence conser-
vation with functional diversity in diverse pathways, and
many WD40 proteins possess additional domains with
other functional activities. Biochemical and structural
studies have recognized WD40 proteins to be a broader
spectrum of components in cytoplasm and nucleoplasm.
They participate in important cellular pathways, includ-
ing signal transduction, RNA processing, cytoskeleton
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dynamics, vesicular trafficking, nuclear export, regulation
of cell division, and are especially prevalent in chromatin
modification and transcriptional regulation [2,4,5]. In the
model plant Arabidopsis thaliana, the WD 40 proteins
have been identified and analyzed comprehensively [5].
The results suggested that these proteins played key roles
in plant-specific processes, with diversity in function con-
ferred at least in part by divergence in upstream signaling
pathways, downstream regulatory targets and/or struc-
ture outside of the WD 40 regions [5].

A common characteristic feature of the WD40 proteins
is that, the WD40 domain mediates diverse protein-
protein or protein-DNA interactions, thus interplays with
multiple proteins to form dynamic complexes and func-
tions as scaffolding protein [4,6]. WD40 domain can
mediate molecular recognitions with diverse partners
through different sides of its surface. The same WD40
proteins can either recruit different substrates in a similar
mode or in distinct ways [6]. Considering the multiple
interaction modes and the complex roles in cellular pro-
cesses, it is difficult to identify the partners and pathways
in relationship with WD40 proteins. The availability of
high-throughput interactomes from different species
enables us to understand the networks of the WD40 pro-
teins more comprehensively [7-10]. For instance, WD40
domains were found to take part in more interaction
pairs than any other domain in yeast, and being as the
one of the most interacting domains in human interac-
tome datasets [7-10]. Meanwhile, WD40 proteins can
also act as a component of protein complexes involved in
a variety of pathways [11-14], or offer binding sites for
other proteins [15,16], demonstrating that they can inter-
act with the appropriate partner in different processes.
The expression profiles in genome-wide scale provide
essential data for building the co-expression network,
thus allowed us to identify biological processes and gene
functions [17]. The comprehensive expression data in
CREP database encompassing the entire life cycle of rice
(Oryza sativa) provided rich information for associating
the WD40 genes in different pathways by co-expression
analysis [18]. And deeper understanding of their struc-
tures, expression profiles, interactions and functional
diversity will be essential for our study in the detailed cel-
lular processes mediated by WD40 proteins.

Rice is one of the major staple foods for world popula-
tion. It is also an ideal model species for functional
genomic analysis and represents an evolutionary lineage
within the monocotyledons. In this study, we discuss
three important questions through the genome-wide
scan and systematic characterization of OsWD40 gene
family during the whole life cycle in rice. First, how
many members belong to this family and what about
their localizations, gene structures and other characteris-
tics? Second, what are the expression patterns of the

Page 2 of 15

OsWDA40 genes, and what is the connection between the
expression levels and their gene functions? Third, how
does this gene family evolve or what are the evolution-
ary relationships between these OsWD40 genes? There-
fore, the answers would provide a solid base for future
functional genomic studies of the OsWD40 genes in rice.

Results

Collection and identification of the OsWD40 genes in rice

In order to identify the OsWD40 genes in the rice, the
consensus protein sequence which is characteristic of
WD40 genes in eukaryotes, GECKXVLXGHTSTVTC-
VAFSPDGPLLASGSRDGTIKIWD, was generated by
hmmemit from HMM profile (PF00400). We carried out
BLASTP analysis using this sequence as a query in MSU
database http://rice.plantbiology. msu.edu/index.shtml,
with a threshold E value of < 10. A total of 342 sequences
were identified as putative OsWD40 genes. By removal of
different transcripts of the same gene, we identified 234
putative OsWD40 genes. These candidates were examined
by SMART and Pfam searching for the presence of WD40
domain. Thus, 159 genes with the presence of WD40
domain were confirmed by SMART, and additional 41
genes were identified as containing such domain in Pfam.
Therefore, there were a total of 200 OsWD40 genes in the
rice genome. For convenience, the 200 OsWD40 genes
were named from OsWD40-1 to OsWD40-200 according
to their positions on pseudomolecules. As the table con-
taining the accession numbers of each OsWD40 gene is
too large within one printed page, these data were exhib-
ited as the additional file (Additional file 1: Table S1). The
detailed information of OsWD40 genes were also listed in
Additional file 1: Table S1.

Except for the presence of a conserved WD40 domain,
the OsWD40 genes vary substantially in the size and
sequences of their encoded proteins, and their physico-
chemical properties (Additional file 1: Table S1). The posi-
tion of the WD40 domain within the protein also varies.
The length of OsWD40 proteins varied from 91 to 3787
amino acids. EXPASY analysis suggested that the
OsWD40 protein sequences had large variations in iso-
electric point (pI) values (ranging from 4.0839 to 10.3354)
and molecular weight (ranging from 9.997 kDa to 420.65
kDa) (Additional file 1: Table S1). Only 61 of the 200
OsWD40 genes were predicted to be stable proteins, while
the rest were unstable. Details on other parameters of pro-
tein sequences were shown in Additional file 1: Table S1.

Classification and phylogenetic analysis of OsWD40
proteins

The 200 OsWD40 proteins were classified into 11 subfa-
milies according to their domain compositions (Figure 1).
One hundred and forty-five members merely with WD40
domain belonged to subfamily A. Besides WD40 domain,
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Figure 1 Structure of representative OsWD40 proteins from each subfamily. The protein structure is based on the presence of WD40 and
other additional domains as identified by SMART. Subfamily name of each corresponding protein belonged to and MSU locus ID are given on
the left. Domain abbreviations are: WD, WDA40 repeats domain; BCAS3, breast carcinoma amplified sequence 3; COP1, coatomer (COPI) alpha
subunit C-terminus; TUP1-like, TUP1-like enhancer of split; dDENN, this region is always found associated with PF02141(DENN); NLE, NLE domain
located N-terminal to WD40 repeats; UTP, WD40 associated putative domain; F-box, the F-box domain has a role in mediating protein-protein
interactions; ZF, Zinc finger; WDAD, coatomer WD associated region; PK, Protein kinase domain; BEACH, the BEACH domain is usually followed
by a series of WD repeats; DENN domain, DENN is a domain involved in Rab- mediated processes or regulation of MAPK signalling pathways;

uDENN, this domain is always found associated with DENN; LISH, LisH domain mediates protein dimerisation and tetramerisation; RBBP4,
Histone-binding protein RBBP4 or subunit C of CAF1 complex. The length and order of domains represent actual situation in each protein.

OsWD40 proteins containing several other known func-
tional domains were classified into the following subfami-
lies. Seven members containing the LisH domain were
identified as subfamily B; Five members containing the
Utpl2, Utpl3, Utpl5, and Utp21 domain were identified
as subfamily C; Four members with the Coatomer WD
associated region(WDAD)and/or Coatomer (COPI) alpha
subunit C-terminus were identified as D subfamily; E sub-
family (4 members) had histone-binding protein RBBP4 or
subunit C of CAF1 complex domains before WD40 repeats;
F subfamily (3 members) contained NLE (NUC135)
domain N terminal to WD40 repeats; G subfamily (4 mem-
bers) had protein kinase domain or HEAT repeat; H sub-
family (3 members) contained the Beige/BEACH domain; I
subfamily (2 members) had zinc finger domain; ] subfamily
(2 members) contained breast carcinoma amplified
sequence 3 (BCAS3); K subfamily (21 members) contained
other domains including F-BOX, U-BOX and domains
with unknown function (Figure 1).

To explore the evolutionary relationships of the WD40
genes in rice and Arabidopsis, an unrooted phylogenetic
tree was generated from alignments of their full-length
protein sequences. The phylogenetic analysis revealed
that all WD40s were clustered into five distinct groups

(Cluster I to Cluster V), comprising 151, 26, 66, 68, and
122 proteins, respectively (Additional file 2: Figure S2).
WD40 proteins from rice and Arabidopsis are present in
all groups. The OsWD40 members were more closely to
those in the same clade in Arabidopsis than to other
OsWD40 proteins in the same species (Additional file 3:
Table S3), which indicated synteny and conservation
between rice and Arabidopsis proteins. Most members
in the same groups or subgroups shared one or more
domains outside the WD40 domain, thus was consistent
with the subfamily definition revealed above.

Expression profiling of OsWD40 genes during the whole
life cycle of rice

To study the transcript accumulation of OsWD40 genes
in the entire life cycle of rice, the expression profiling
covering 24 developmental stages (Additional file 4:
Table S4) in Minghui 63 were analyzed by Affymetrix
rice microarray data in CREP database [18]. Probes for
184 of the 200 OsWD40 genes could be identified in the
Affymetrix microarray. Thirty-six genes had two probe
sets and the higher signal value of the probe sets was
used for analysis. Two pairs of genes, OsWD40-28 and
OsWD40-42, as well as OsWD40-182 and OsWD40-193,
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shared the same probe sets, respectively. Only 182 genes
showed a “present” detection call at p value of 0.05 in at
least one of the investigated tissues, whereas two low
expressing genes (OsWD40-151 and OsWD40-127) were
either “absent” or “marginal” under these developmental
stages. The transcripts of these two genes were at almost
undetectable levels in all the stages analyzed, but it is
possible that these genes might respond to specific
stimuli or their expressions might be limited to specia-
lized cell types that have not been analyzed in this
investigation.

A hierarchical cluster displaying the logarithm of aver-
age signal values for the 184 OsWD40 genes were gener-
ated. Based on which the expression patterns of OsWD40
genes could be classified into two major groups (Figure 2).
One hundred and nineteen genes belonged to Group I,
most of which (79%) showed high transcript accumula-
tions (average expression signal higher than 1000) in all
the tissues analyzed (Figure 2). These OsWD40 genes
might play roles in housekeeping functions and gene
OsWD40-21 had the highest average expression level in
the entire life cycle. These 119 genes could be further
divided into three subgroups. Subgroup IA consisted of
50 genes, with the average expression signal from 579.5 to
3132.9 (Figure 2). Subgroup IB of 37 genes showed rela-
tively high expression level in a serious of reproductive
tissues or vegetative tissues (Figure 2). Notably, the expres-
sion levels of 32 genes in subgroup 1C were extremely
high, with the average expression signal from 2255 to
10856.5 (Figure 2). Group II consisted of 65 genes, which
showed relatively low expression signals or preferential
expressions in some tissues (Figure 2). This group can also
divide into two subgroups. Subgroup IIA contained 42
genes showing tissue-specific/preferential expressions, e.g.,
OsWD40-25, 48, 98, 169 with predominant expression in
stamen, and OsWD40-70 and 135 as endosperm preferen-
tial expression genes. Interestingly, the expression of eight
genes (OsWD40-4, 20, 33, 51, 109, 152, 166 and 173)
which was high in panicles decreased in panicle 2 and
then increased gradually as the panicles matured. These
genes might play essential roles in panicle developing.
Subgroup IIB comprised 23 genes, and genes in this sub-
group showed almost negligible expressions (Figure 2).

In order to reveal more information in OsWD40 expres-
sion pattern, genes that showed differential expression
during various stages of development in comparison to
seed were analyzed. Detailed p values and fold change
values were given in Additional file 5: Table S5. Genes
considered as preferential expression in a given stage
showed tremendous differences (Figure 3, Additional file
5: Table S5). Up-regulated genes mainly accumulated in
panicles and stamen, suggesting that OsWD40 genes parti-
cipate in various molecular pathways in flowering develop-
ment. Surprisingly, although down-regulated genes
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accumulated in seedlings, they were activated in stamen,
either (Figure 3, Additional file 5: Table S5). This result
suggested that OsWD40 genes might control stamen regu-
lation. They might also play important roles in early devel-
opmental stages in seedlings.

Responses of OsWD40 genes under NAA, KT, and GA3
treatments

Phytohormones play a critical role in plant growth and
development. To investigate the OsWD40 genes in
response to phytohormone treatment, microarray analysis
was performed. We identified a total of 25 OsWD40 genes
that were differentially expressed with treatments of one
or more of the phytohormone NAA, KT, GA3 in seed-
lings. The control indicated the expression level of corre-
sponding OsWD40 genes in rice seedlings in trefoil stage
without treatment (Figure 4). The fold change values with
respect to control are given in Additional file 5: Table S5.

Four OsWD40 genes showed differential expression
under all three phytohormone treatments, among which
three genes (OsWD40-25, 138, and 147) were up-regulated,
whereas OsWD40-186 was down-regulated. The expression
profile of the remaining genes in response to NAA, KT,
and GA3 was different. For instance, three genes
(OsWD40-33, 116 and 132) were up-regulated under NAA
and GA3 treatments, two genes (OsWD40-7 and 77) were
differentially expressed under NAA and KT treatments,
and six genes (OsWD40-46, 76, 90, 98, 142 and 173) were
up-regulated to KT and GA3 treatment, respectively.
Meanwhile, ten OsWD40 genes showed differential expres-
sion specifically to one phytohormone treatment. Amongst
the ten genes, OsWD40-15, 58, 69, 71 and 174 were up-
regulated specifically to GA3 treatment. We also found
that OsWD40-5, 22, 84 and 88 were up-regulated, whereas
OsWD40-67 was down-regulated specifically to KT
treatment.

The induction of OsWD40 genes by phytohormones
prompted us to check their promoter sequence (2 kb
upstream the transcript start site) by searching against
the PLACE database http://www.dna.affrc.go.jp/PLACE/
signalscan.html. The results suggested that all promoter
regions of these 25 OsWD40 genes contained various
elements of auxin, gibberellin, and cytokinin (Additional
file 6: Table S6).

Chromosomal localization and gene duplication

The genomic distribution of OsWD40 genes were deter-
mined by their chromosomal positions on rice chromo-
some pseudomolecules. Totally, all 200 OsWD40 genes
were dispersed on the 12 chromosomes, presenting
unevenly in all regions of the chromosomes. A diagram-
matic representation of chromosomal distribution of
OsWD40 genes was depicted in Figure 5 (the exact posi-
tion on rice chromosome pseudomolecules was given in
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Figure 2 Expression patterns of OsWD40 genes during the life cycle of the rice plant. Hierarchical cluster display the expression profile for
184 OsWD40 genes with probes in the Affymetrix microarray. (Color bar at the base represents log2 expression values: green, representing low
expression; black, medium expression; red, high expression). The detailed information of the samples is listed in Additional files 4: Table S4.
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Figure 3 Differential expressions of OsWD40 genes in different stages in Minghui 63 based on microarray analysis. The detailed
information of the samples is listed in Additional files 4: Table S4.

Additional file 1: Table S1). Certain chromosomes had a Segmental duplication and tandem duplication play
relatively high density of OsWD40 genes, e.g., a maxi- important roles in generating the members of a gene
mum of 39 genes were present on chromosome 3, fol-  family during the evolution [19]. Therefore, both seg-
lowed by 33 genes on chromosome 1. On the other hand, mental and tandem duplication events were investigated
only six OsWD40 genes were present on chromosome 10.  for elucidating the potential mechanism of evolution of
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OsWD40 gene family. Analysis of the MSU RGAP rice
segmental duplication database revealed only 24 (12
pairs) OsWD40 genes could be assigned to MSU RGAP
segmental duplication blocks at a maximal length dis-
tance permitted between collinear gene pairs of 500 kb.
The overall similarity of the cDNA sequences of these
genes ranged from 32.7% to 96.7% and all of them were
found to have their counterparts on duplicated segments
(Figure 5, Additional file 7: Table S7). Nineteen OsWD40
genes (nine groups) seemed to be produced from tandem
duplications according to the criterion adopted in our
analysis (Additional file 8: Table S8). They were separated
by a maximum of five intervening genes. Three group of
the gene pairs were placed juxtaposed with no interven-
ing gene. The distance between these genes ranged from
3 kb to 35 kb (Additional file 8: Table S8). Interestingly,
not all the tandemly duplicated genes in the same cluster
had the same direction of transcription. This might sug-
gest the complex behavior of tandem duplications in this
family. All these results suggested that much of the diver-
sity of the OsWD40 gene family in rice is due to both tan-
dem duplication and segmental genome duplication
events.

The expression patterns of OsWD40 genes for segmen-
tally duplicated and tandemly duplicated genes were
examined by Affymetrix rice microarray data. Probe sets
were available for 19 out of 24 segmental duplication
genes and 16 out of 19 tandemly duplicated genes in
microarray data. A comparison of expression level
revealed that two segmental duplicated genes in one pair
always showed similar expression pattern, although one
of the duplicated genes showed low expression level, or
was not expressed at significant levels in most of the tis-
sues (Figure 6A). We could therefore infer that immedi-
ately after segmental duplication, the two copies of genes

might be functionally redundant. However, it is possible
that only one of the gene copies retains its function while
the other one degenerates into a pseudogene [20,21].
Two tandemly duplicated genes in Group 2 shared the
same probe and OsWD40-187 in Group 9 did not have
probe sets on Affymetrix microarray. Therefore, we ana-
lyzed the rest 16 tandemly duplicated genes in 9 groups.
The expression pattern for tandem duplicated genes was
more complicated (Figure 6B). The expression pattern was
quite similar for four pairs of genes (Group 4, 5, 6, 8).
Therefore, the gene copies might have maintained their
functions during evolution, as evidenced by the similar
expression pattern. Four pairs of genes (Group 1, 3, 7, 9)
showed divergent expression profiles in most of the inves-
tigated tissues, as one of the genes was not expressed at
significant levels in most of the tissues. This indicated that
one of the members changed its function during the
course of evolution. Group 7 containing OsWD40-153 and
OsWD40-154 have already been elucidated. As reported
by Luo et al. [22], OsFIE1 (OsWD40-154) and OsFIE2
(OsWD40-153) were likely to have duplicated in the ances-
tor of the grasses. OsFIEI was expressed only in endo-
sperm with imprinted effect [23], while OsFIE2 was not
imprinted in endosperm and was expressed constitutively.
OsWD40-18 in Group 1 was not expressed at significant
levels in all tissues, which might be induced by pseudo-
functionalization after duplication [20,21].

Expression correlation and gene ontology (GO) analyses

By using a permutation test, we set the threshold of the
Pearson’s correlation coefficients (PCCs) at 0.8 and
extracted 2594 genes whose expression tightly correlates
with 93 of the members in OsWD40 family (Additional
file 9: Table S9). Using the functional annotation and
web-based GO analysis, four networks were constructed
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obtained from microarray. The detailed information of the samples is listed in Additional files 4: Table S4.
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regarding correlations between OsWD40 genes and their
co-expressed genes, reflecting functional bias and possible
molecular pathways that they involved in (Figures 7, 8,
Additional file 10: Table S10).

The network in Figure 7A contained 33 rice genes
(nodes) and 54 co-expression links, including 16 OsWD40
genes, 14 MYB related genes and three basic helix-loop-
helix (bHLH) genes. Compared with the whole rice gen-
ome annotation, these OsWD40 genes seem to affect the
regulation of multiple biological processes, such as cellular
biosynthetic/metabolic process, transcription, nucleobase,
nucleoside, nucleotide and nucleic acid metabolic process,
gene expression, biosynthetic process, nitrogen compound
metabolic process, macromolecule biosynthetic process
and so on. Besides, the molecular functions related to
DNA binding and nucleic acid binding were significantly
enriched (Figure 8A). The network in Figure 7B contained
only 9 rice genes (nodes) and 7 co-expression links. This
network suggested the possibility that five OsWD40 genes
might play roles in different molecular pathways with the
participation of four MADS-box genes. Complex network
has also been constructed in Figure 7C, containing
46 rice genes (nodes) and 69 co-expression links. The
co-expression genes in this group were associated with
histone-related proteins such as histone-lysine N-methyl-
transferase, histone deacetylase, single myb histone, jmjC
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domain containing proteins and so on. Analysis of their
GO terms identified functional modules enriched for chro-
mosome organization, chromatin organization, organelle
organization, and chromatin modification. These genes
also acted as important cellular components in nucleus
and membrane-bounded organelle, and might take part in
methyltransferase and transferase activities (Figure 8B).
Our analysis also indicated that the expression of some
OsWD40 genes was co-expressed with that of other
OsWD40 genes. We found that 58 OsWD40 genes might
therefore correlate with or interact with each other, thus
forming a more complex feedback network (Figure 7D).
However, no significant GO terms were identified.

Discussion

OsWD40 evolution and classification

Gene duplications are one of the primary driving forces
during the evolution, and the variations in family size
and distribution of a gene family were related to either
tandem or segmental duplications [19,21]. As stated pre-
viously, OsWD40 family expanded from both tandem
and segmental duplications, and the number of
OsWD40 genes arranged in segmental duplications con-
tributes to the 12% birth of new genes, while tandem
duplication events contribute to the 9.5% birth of new
genes.
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Figure 7 Co-expression network composed of OsWD40 proteins and correlated genes. (A) MYB and bHLH related genes. (B) MADS-box
genes. (O) Histone-related genes. (D) OsWD40 genes. SET:Su (var) 3-9-Enhancer-of-zeste-Trithorax domain gene. HACHistone acetyltransferase.
MADS-box:MADS-box transcription factor. MYB:MYB family gene. bHLH:Basic helix-loop-helix transcription factorHDACHistone deacetylase. HRMT:




Ouyang et al. BMC Genomics 2012, 13:100
http://www.biomedcentral.com/1471-2164/13/100

Page 10 of 15

GO00815)
bialogical_process

]

primary mataboic
procass

GO00MzIT
calllar metabslic

GO0008Te
malecular_ function
GOmo0stea
binding

(GO:0003058 (000154}
bicsyrihetic process
11133 | 44a7/54871

GO0MTO
mAcromolecs metsbol
procsss

process

~ < I
v
GOOOA263 (0:0189)
celluler macromalecue.
et process
1238 | T3

GO:0M4219 00009121
celular Hosyrthetic

preess
11733 | 4134154871

600008575
cellular_compenznt

 [[comoossza onsany | .
¢ cell ;
| 66| 7s5054971 ¥

0008150
biciagical process
GO0eET
callar process

.

5

-
1386 | 4170/54071

Figure 8 Significant GO annotations for genes indicated in the

term (P < 0.05).

graph list the GO identifier, the statistical significance, and the description of the GO term. The color of the box indicates the significance of the

G000
molecular_functian
60000824 GO:0005488
catalytic ativity binding
GO/0D16740 Goro0Aa 157
ransterase activty fon tinding
' i
a0.00a1E
ation binding
GO0
metal ion bircig

Significance levels and Arrow types Diagram

5e-10
5e-09

— i5_3
) part_of

T — DOSitive_regulate
¥ gor —- regulate
5G00%014 (00158) 5e-07
ransition meral w—- negative_regulate
{on tinding 5e-06 _
100418 | S06BART 1 50.05 = = mp two significant nodes
suauamp One significant node
Se-04
600008270 (0.0012)
2 o g -5e-03
1048 | 242054871 L 0 DS

co-expression network in Figure 7A (A) and C (B). The boxes in the

It was interesting that different subfamilies of
OsWD40 genes expanded in distinct manners: all seg-
mental duplicated genes were favor for subfamily A,
except OsWD40-49 that belonged to subfamily I. How-
ever, tandem duplications were belonged to various sub-
families, including subfamily A, B, D, G, and K.

We also noticed that the expression level of three tan-
demly duplicated genes, OsWD40-77, 84, and 186 were
lower than that of their corresponding copies, suggesting
they might lose their functions during the evolution.
However, these three genes were differentially expressed
under phytohormone treatments. Whereas another copy

of these tandemly duplicated genes did not show differ-
ential expression under phytohormone treatments.
Therefore, one would tentatively suppose that while
OsWD40-77, 84, and 186 slowly lost their ancestral
functions, they might evolve new functions in phytohor-
mone pathways during the evolution.

OsWD40 genes may initiate their diverse functions by
performing protein complex with MYB and bHLH
transcription factors

The multiple metabolism pathways in plants must be
regulated by coordinated expression of different genes.
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The co-expression networks reflect the correlation of
the expression pattern of different genes, and are sug-
gestive in tracing the genes in the same pathway. Here,
our co-expression analysis has revealed that the function
of OsWD40 proteins might require the participation of
various members of MYB and bHLH transcription fac-
tors (Figure 7A).

OsWD40-13 was found to be co-expressed with five
MYB factors, Os12g13570, Os06g19980, Os01g12860,
0502g34630 and Os06g40710, as well as two bHLH fac-
tors Os06g16400 and Os08g42470. OsWD40-13 was
homologous to plant SMU genes, which appeared to be
involved in splicing of specific pre-mRNAs that affected
multiple aspects of development [24]. Thus, whether
transcription factors could serve as a link to mRNA pro-
cess was a suggestive direction in further study. We also
noticed that OsWD40-23 was found to be co-expressed
with these transcription factors. Compared with the co-
expression genes of OsWD40-13, four MYB factors
0s02g42870, Os08g25820, Os08g25799, and Os08g41480
might be the potential interaction factors of OsWD40-23
in addition. OsWD40-71 might be a homolog of Arabi-
dopsis LIS, which restricted gametic cell fate in female
gametophyte [25,26]. OsWD40-71 was found to be co-
expressed with three MYB factors, Os02g34630,
Os01g51154 and Os06g19980, as well as a bHLH factor
0Os06g16400. These three OsWD40 genes were co-
expressed with the same group of MYB and bHLH tran-
scription factors, suggesting that they may take part in
correlated molecular pathways by interaction with these
partners.

Previous genetic analyses found that ectopic expression
of maize WD40 protein PACI in an Arabidopsis ttgl
mutant was able to complement the mutant phenotypes
[27], suggesting that WD40 proteins can interact with
similar partners. We might speculate that some OsWD40
genes might be in relation with each other by controlling
the expression of these transcription factors. Another
OsWD40 gene that attracted our attention was Os WD40-
20, which was co-expressed with another group of MYB
and bHLH transcription factors that were different from
the co-expression genes mentioned above. We also found
that OsWD40-20 might be related with other partners
such as genes in SET family, HDAC family, and HAC
(Figure 7C). This result suggested that OsWD40-20 might
participate in the regulation of another pathway.

A general WD/Myb/bHLH complex for regulation of
the anthocyanin biosynthetic pathway was also found in
Antirrhinum majus, Petunia hybrida and Arabidopsis
thaliana [28-34]. Meanwhile, a bHLH protein Lc in maize
was found to interact with MYB transcription factors to
activate anthocyanin expression [35]. Another Lc-like
bHLH protein was also found to require a MYB protein to
perform its function [31,34,36,37]. Results suggested that
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many MYBs interacted directly with Lc-like bHLH pro-
teins and the WD40 repeat protein [34,36]. Therefore, it
seems that WD40 proteins allow protein-protein interac-
tions between the bHLH and MYB proteins, and WD40
proteins in rice might also require MYBs and bHLHs to
form a transcription complex to participate a range of
pathways.

OsWD40 genes may be involved in histone-related
functions with members in SET family

Histone expression and histone post-translational modifi-
cations play pivotal roles in chromatin remodeling and
epigenetic regulation in plant development [38-40]. Our
co-expression analysis has revealed that OsWD40 genes
may function with histone-related proteins. Although the
exact pathways mediate by these genes are still unclear,
one might speculate that these OsWD40 genes play impor-
tant roles in histone modification.

An important group of enzymes involved in histone
modification is the histone-lysine N-methyltransferases.
These proteins participate in the establishment and/or
maintenance of euchromatic or heterochromatic states of
active or transcriptionally repressed sequences [41]. Here,
a total of 10 histone-lysine N-methyltransferases were
identified to be co-expressed with the OsWD40 proteins,
both of which contain the SET domain that is responsible
for the catalytic activity of the enzymes, suggesting possi-
ble interactions between the OsWD40 and SET genes in a
family level. One might also tentatively speculate that the
WD40 and SET domain must be the key functional struc-
ture for interaction by a conserved mechanism.

Functional studies of several Arabidopsis genes encoding
WDA40 proteins also suggest that they might be implicated
in histone modification in different pathways. A WD40
domain cyclophilin, CYCLOPHILIN71 (CYP71), which
functions in gene repression and organogenesis in Arabi-
dopsis, serves as a highly conserved histone remodeling
factor involved in chromatin-based gene silencing [42].
Another WD40 protein MSI1 in Arabidopsis has also been
proposed to exhibit pleiotropic phenotypes by epigenetic
regulation [43-45]. Therefore, OsWD40 genes in rice
might also involved in similar pathways by histone modu-
lation. In a word, characterization of OsWD40 proteins
function in histone modification could therefore open new
perspectives for understanding the molecular mechanism
of epigenetic regulation.

OsWD40 genes may take part in reproductive pathways
with MADS-box transcription factors

WD40 genes identified in different plant species are
involved in various developmental processes [5]. In our
study, the expression patterns of OsWD40 genes and the
co-expression analysis provide useful information for
establishing their putative functions. The available
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evidence suggests that OsWD40 genes may take part in
reproductive pathways with MADS-box transcription
factors in rice.

MADS-box transcription factors are essential for various
aspects of pathways in flower development both in dicoty-
ledon and monocotyledon [46]. Our result suggested
that OsWD40-23 was co-expressed with three MADS-box
transcription factors, 0Os03g54170, Os06g36680, and
0s01g52680 (Figure 7B). OsWD40-23 was homologous to
Arabidopsis FVE/MSI4, a key regulator that interacted
with CUL4-DDBI1 and a PRC2-like complex to control
epigenetic regulation of flowering time [47]. It was also
reported that Os03g54170 (OsMADS34) was required
for rice inflorescence and spikelet development [48].
Therefore, it would be interesting to investigate whether
OsWD40-23 play roles in rice flower development
with MADS-box transcription factors. We also found that
three OsWD40 genes, OsWD40-31, 48, and 89, were co-
expressed with a MADS gene Os04g38770. These four
genes were expressed preferentially in stamen (Figure 2),
suggesting that they may function in stamen development.
All these studies support the results that MADS-box tran-
scription factors are essential for flower developmental
processes in relationship with OsWD40 genes.

Conclusion

In conclusion, using an in silico approach, a total of 200
OsWD40 genes were found to be present in rice genome.
Genomic framework revealed the potential mechanisms
responsible for the evolution of OsWD40 genes in rice.
The expression profiling of OsWD40 gene family covering
rice life cycle could provide deep insights into their poten-
tial functions during rice growth and development. Some
genes appear to be differentially expressed in different tis-
sues/organs, vegetative and reproductive development
stages, and expression of some genes is influenced under
phytohormones. These data will provide the basis for
understanding the evolutionary history of OsWD40 mem-
bers and their roles in rice growth and development. The
findings in our work would be useful in selecting candi-
date genes for functional studies of OsWD40 members in
rice. However, future research by adopting transformation
strategies or insertion mutagenesis is required to elucidate
the precise functions of these OsWD40 genes.

Methods

Collection and database search of OsWD40 members

in rice

Hidden Markov Model (HMM) profile of WD40 domain
(PF00400) downloaded from Pfam http://pfam.sanger.ac.
uk/ was employed to identify the putative OsWD40 genes
in rice. The BlastP search was carried out using the HMM
profile on website of MSU RGAP http://rice.plantbiology.
msu.edu/, followed by removal of redundant sequences
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from the database. The Pfam http://www.sanger.ac.uk/
Software/Pfam/ and SMART database http://smart.embl-
heidelberg.de/smart/batch.pl were finally used to confirm
each predicted WD40 protein. Additional conserved
motifs or domains besides WD40 were identified in Pfam
database. Based on these domains, we classified the
OsWD40 proteins into subfamilies and the sample protein
structures of each subfamily were drawn manually.

Chromosomal localization and gene duplication

Each of the OsWD40 genes was mapped on rice chromo-
somes according to their positions available in MSU
RGAP http://rice.plantbiology.msu.edu/. The distribution
of OsWD40 genes was drawn by Maplnspect http://www.
plantbreeding.wur.nl/UK/software_mapinspect.html and
modified manually with annotation.

The duplicated genes were elucidated from the segmen-
tal genome duplication of rice http://rice.plantbiology.msu.
edu/segmental_dup/500kb/segdup_500kb.shtml, with the
maximal length distance permitted between collinear gene
pairs of 500 kb. Tandem duplicates were defined as genes
separated by five or fewer genes. The distance between
these genes on the chromosomes was calculated and the
percentage of sequence similarity between the proteins
encoded by these genes was determined by MegAlign
software 4.0.

Structural analysis of the OsWD40 genes

Information about the gene structures, transcripts, full-
length ¢cDNA, BAC accessions for each gene and charac-
teristics of corresponding proteins were procured from
MSU RGAP and KOME http://cdna0l.dna.affrc.go.jp/
cDNA/.

Protein sequences of putative OsWD40 members col-
lected from the MSU RGAP and KOME were analyzed by
EXPASY PROTOPARAM tool http://www.expasy.org/
tools/protparam.html. Information about the number of
amino acids, molecular weight, theoretical isoelectric point
(pI), amino acid composition, and instability index (instabil-
ity index of > 40 was considered as unstable [49]) were
obtained by this tool. The conserved domain of the
OsWD40 protein in rice was determined by Pfam program.

Phylogenetic analysis of WD40 genes in rice and
Arabidopsis

A total of 237 putative WD40 homologues in Arabidopsis
were extracted in van Nocker and Ludwig (2003) [5].
Among which four genes were not annotated in TAIR10,
thus we use 233 AtWD40 proteins in further phylogenetic
analysis.

Multiple sequence alignments were performed using
Clustal X version1.83 based on the full sequence of
WD40 proteins from rice and Arabidopsis with default
parameters. An un-rooted neighbor-joining phylogenetic
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tree [50] was constructed by generating 1,000 random
bootstrap replicates using MEGA 4.

Genome-wide expression analysis of OsWD40 family
Expression profile of OsWD40 gene family in 24 tissues
for Minghui 63 was extracted from the Affymetrix rice
microarray data from CREP database in our lab http://
crep.ncpgr.cn. The microarray data have been submitted
into the NCBI Gene Expression Omnibus (GEO) under
the accession number of GSE19024 [18]. The develop-
mental stages and organs of the tissues were described in
Additional file 4: Table S4. After normalization and var-
iance stabilization, the average signal value of two biolo-
gical replicates for each sample, except for samples 2, 3,
14, 15 and 16 (three biological replicates and two techni-
cal replicates) was used for analysis. Wherever more than
one probe set was available for one gene, the higher sig-
nal value of the probe sets was used for analysis. For phy-
tohormone treatments, seedlings at trefoil stage were
treated with 0.1 mM NAA, GA3 and KT, respectively.
Samples were harvested at the time points of 5, 15, 30
and 60 min after treatments. The samples under the
same phytohormone treatment of different time points
were mixed together.

Expression values of each gene were logarithmized and
cluster analyses were performed using R with euclidean
distances and hierarchical cluster method of “complete
linkage”. The expression patterns of OsWD40 genes were
estimated and grouped according to the hierarchical clus-
ter. For data analysis, expression level in each of the tissues
was compared against the expression in seed using a stu-
dent-t test. The genes that are up- or down-regulated by
more than two-fold and with p values < 0.05 were consid-
ered to be differentially expressed. The average expression
of more than two biological replicates for each sample was
used for analysis.

Identification of correlated genes and network
construction
The permutation test was done to determine the optimal
threshold of the PCC [51,52]. We computed the PCCs for
all pairwise relationships between the 1000 randomly
selected genes in two sets of transcriptomes (expression
profiles for two varieties Minghui 63 and Zhenshan 97 in
CREP database of our lab, http://crep.ncpgr.cn) compris-
ing a total of 190 microarray experiments. We estimated a
nullhypothesis pairwise correlation distribution by inde-
pendently permuting the components of each gene expres-
sion value and recomputing all correlations. The
distribution of the PCCs before and after independent ran-
dom permutation was observed to choose the optimal
thresholds.

OsWD40 genes with standard errors greater than 500
were used for further co-expression analysis, in order to
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exclude the situation that the correlation of expression
level was due to the constitutive expression pattern. The
correlated genes with PCCs higher than the optimal
thresholds were extracted from the CREP database
http://crep.ncpgr.cn[18] and considered as the putative
co-expression genes. The PCCs of these candidate genes
were recalculated for confirmation, and the statistical
significance was further determined using a student-¢-
test.

A visualization tool of Cytoscape was used to construct
the co-expression network composed of the OsWD40
genes and their co-expressed genes. We mapped the cor-
related genes to the network and identified the function
of OsWD40-correlated genes in network clusters. GO
enrichment was performed by Singular Enrichment Ana-
lysis (SEA) tool in agriGO http://bioinfo.cau.edu.cn/
agriGO/index.php[53] with default parameters using the
rice MSU6.1 genome annotation as the background. Sta-
tistical significance was determined using the Fisher’s
exact test and the Yekutieli multi-test adjustment [53].

Additional material

Additional file 1: Table S1 List of 200 OsWD40 genes identified in rice
and their sequences and protein characteristics.

Additional file 2: Figure S2 Phylogenetic analysis of WD40 proteins in
rice and Arabidopsis. The unrooted tree was generated using ClustalX by
neighbor-joining method with the alignments of the OsWD40 and
AtWDA40 protein sequences. The five classes are marked by different
colors. Scale bar represents 0.1 amino acid substitution per site. ©:
OsWD40 gene from subfamily K; ¢: OsWD40 gene from subfamily B-J.

Additional file 3: Table S3 Classification of rice and Arabidopsis WD40
proteins based on phylogenetic analysis.

Additional file 4: Table S4 The detailed information of samples used in
microarry analysis.

Additional file 5: Table S5 Additional file 5a. Results of differential
expression analysis using seed as reference in Minghui 63. Differential
expression genes have been taken p value less than 0.05 and fold
change > 2 or < 0.5. When fold change > 2, regulation is up, and when
fold change < 0.5, regulation is down. Additional file 5b. Results of
differential expression analysis under three phytohormone (NAA, GA3
and KT) treatments in Minghui 63. Differential expression genes have
been taken p value less than 0.05 and fold change > 2 or < 0.5. When
fold change > 2, regulation is up, and when fold change < 0.5,
regulation is down.

Additional file 6: Table S6 Identification of the cis-elements in the
promoter of OsWD40 genes showing response to treatments of three
phytohormones (NAA, GA3 and KT). NF indicates not found.

Additional file 7: Table S7 OsWD40 genes localized on duplicated
segments of the rice genome.

Additional file 8: Table S8 Tandemly duplicated OsWD40 genes.

Additional file 9: Table S9 Additional file 9a. The distribution of the
PCCs from 1000 randomly selected genes by the permutation test.
Additional file 9b. The putative co-expression genes from CREP database
with the Pearson's correlation coefficients higher than 0.8. Additional file
9c. The list of co-expression genes mentioned in network construction
with p value less than 0.05. Additional file 9d. All connections with the
Pearson’s correlation coefficients higher than 0.8 (p < 0.05).

Additional file 10: Table S10 Additional file 10a. GO annotations for

genes indicated in the co-expression network Figure 7A (p < 0.05), with
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the rice MSU6.1 genome annotation as background. FDR indicates false
discovery rate. P, biological_process. C, cellular_component. F,
molecular_function. Additional file 10b. GO annotations for genes
indicated in the co-expression network Figure 7C (p < 0.05), with the rice
MSU6.1 genome annotation as background. FDR indicates false discovery
rate. P, biological_process. C, cellular_component. F, molecular_function.
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