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Abstract

Background: Taxonomic classification of metagenomic sequences is the first step in metagenomic analysis.
Existing taxonomic classification approaches are of two types, similarity-based and composition-based. Similarity-
based approaches, though accurate and specific, are extremely slow. Since, metagenomic projects generate
millions of sequences, adopting similarity-based approaches becomes virtually infeasible for research groups having
modest computational resources. In this study, we present INDUS - a composition-based approach that
incorporates the following novel features. First, INDUS discards the ‘one genome-one composition’ model adopted
by existing compositional approaches. Second, INDUS uses ‘compositional distance’ information for identifying
appropriate assignment levels. Third, INDUS incorporates steps that attempt to reduce biases due to database
representation.

Results: INDUS is able to rapidly classify sequences in both simulated and real metagenomic sequence data sets
with classification efficiency significantly higher than existing composition-based approaches. Although the
classification efficiency of INDUS is observed to be comparable to those by similarity-based approaches, the
binning time (as compared to alignment based approaches) is 23-33 times lower.

Conclusion: Given it’s rapid execution time, and high levels of classification efficiency, INDUS is expected to be of
immense interest to researchers working in metagenomics and microbial ecology.

Availability: A web-server for the INDUS algorithm is available at http://metagenomics.atc.tcs.com/INDUS/

Background
Microbial communities constitute the majority of life
forms in any given environmental niche. In order to
understand the structure of microbial communities, it is
important to first characterize (in taxonomic and func-
tional terms) the individual microbes that constitute
these communities. Laboratory culture based approaches
have been traditionally used for characterizing individual

microbes. However, recent studies have revealed that
almost 99% of microbes are difficult to culture in a
laboratory [1]. The emerging field of metagenomics
overcomes this limitation by adopting approaches that
bypass the culturing step. In a typical metagenomic
study, the entire genomic content of all microbes (irre-
spective of their culturability) in a given environmental
sample is directly extracted, sequenced and character-
ized. In this process, millions of sequences of DNA frag-
ments (originating from the genomes of diverse
microbes) are obtained. Subsequently, computational
methods are employed for predicting the taxonomic
affiliation of these DNA sequences. This obtained
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information is collated for generating the taxonomic
profile of a given microbial community.
Various approaches are available for obtaining the

taxonomic affiliation of DNA sequences constituting a
metagenomic sequence data set. These approaches can
be broadly divided into two types, namely, similarity-
based and composition-based. ‘Similarity-based’
approaches classify metagenomic sequences by compar-
ing them with known sequences present in a reference
database [2-5]. These comparisons are usually done
using the BLAST algorithm [6]. The extent of similarity
between metagenomic sequences and reference database
sequences is inferred from the BLAST output. Query
sequences are finally assigned to an organism/clade
based on the pattern and quality of the generated
BLAST hits. Similarity-based approaches are robust and
are observed to have high binning accuracy since they
infer taxonomic assignments by analyzing actual align-
ments obtained in the BLAST output. However, given
the limited sequence information available in existing
reference databases, majority of sequences in metage-
nomic data sets fail to obtain BLAST hits and are conse-
quently categorized as ‘unassigned’. Moreover,
similarity-based approaches need enormous amount of
time and computing resources for generating alignments
of millions of metagenomic sequences with existing
reference database sequences. On the other hand, ‘Com-
position-based’ approaches classify metagenomic
sequences in the following manner. Compositional fea-
tures (e.g. oligonucleotide frequency patterns) of known
genomic sequences are first captured in the form of
genome specific models. Amongst the composition-
based classification methods, while TACOA [7] builds
models based on the ratio of observed and expected fre-
quencies of all possible tetra- and penta-nucleotides,
Phylopythia [8] uses Support Vector Machines to cap-
ture patterns of oligonucleotide frequency distributions
observed in available genome sequences. Similarly, a
naive Bayesian approach is used by the NBC tool [9] for
modelling the compositional properties of genomes.
Subsequently, composition-based approaches score
query sequences against the pre-computed genome spe-
cific models, and assign them to an organism/clade
based on the pattern of scores obtained. Since the com-
position-based methods do not involve alignment of
query sequences with reference database sequences,
these methods are quicker as compared to similarity-
based methods.
In spite of being rapid in execution, the existing com-

position-based approaches have three important limita-
tions. First, none of the current composition-based
approaches take into account the inherent non-uniform
representation of the various taxonomic groups in exist-
ing reference databases. For example, approximately

60% of completely sequenced organisms (available in
NCBI database) belong to phylum Proteobacteria. In
contrast, very few organisms belonging to phyla like
Fusobacteria (0.16%) and Chlorobi (0.16%) have been
sequenced. This scenario tends to bias the scoring pro-
cess of composition-based approaches towards models
generated from genomes belonging to significantly over-
represented phyla. Consequently, sequences originating
from hitherto unknown organisms (especially belonging
to phyla which are under-represented in existing data-
bases) will tend to get incorrectly classified under taxa
having over-represented taxonomic groups. This has a
significant impact on the overall accuracy of taxonomic
assignments.
The second limitation of the existing composition-

based approaches pertains to the short lengths of the
sequences being generated by next generation sequen-
cing technologies. The typical length of metagenomic
sequences is much below 1,000 base pairs. The statisti-
cal significance of oligonucleotide frequency values
derived from such short sequences is thus low, and the
taxonomic discrimination capability of binning algo-
rithms using such low frequency values is also expected
to be limited. Consequently, existing composition-based
approaches have low binning specificity. In other words,
a majority of metagenomic sequences are classified at
non-specific taxonomic levels such as phylum or super-
kingdom. Moreover, it is observed that existing classi-
fiers like NBC tool or PhymmBL [10] only provide the
score of all query sequences with pre-computed organ-
ism specific models. The task of interpreting these
scores and appropriately reducing individual query
assignments to corresponding higher taxonomic levels is
left to the end user. Due to the absence of a linear cor-
relation between the score and the correct taxonomic
level of the predicted assignment, this interpretation is
infeasible. This severely limits the utility of composition-
based approaches in a metagenomic context, since a
majority of sequences originate from hitherto unknown
organisms/taxonomic groups, and it is necessary to clas-
sify each sequence at an appropriately higher taxonomic
level (including genus, family, order, class and phylum,
as well as, those lying at the tip of the taxonomy tree, i.
e. ‘root’, cellular organisms and super-kingdom levels).
The third limitation of the existing composition-based

approaches is due to the underlying premise of ‘one
genome-one composition model’. In other words, a sin-
gle oligonucleotide usage pattern is assumed for any
given genome. In practice, distinct trends of oligonu-
cleotide usage are generally observed within a single
genome [11]. For instance, in Mycobacterium tuberculo-
sis and related species, approximately 4-10% of the gen-
ome codes for two different types of protein families,
namely PE and PPE. Gene sequences coding for these
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proteins, although specific to the Mycobacterium genus,
are highly repetitive and display an entirely different oli-
gonucleotide composition as compared to the rest of the
genome [12,13]. Assuming a single oligonucleotide com-
position model (based on a uniform oligonucleotide
composition) for such genomes is thus expected to
affect the accuracy and specificity of taxonomic classifi-
cation of sequences originating from such composition-
ally distinct regions.
In spite of the above mentioned limitations, composi-

tion-based approaches are rapid in execution compared
to similarity-based approaches, since the former
approaches do not involve any alignment of individual
query sequences to reference database sequences. They
are thus well suited for binning metagenomic data sets
(typically having millions of sequences) provided they
exhibit binning efficiency comparable to that of similar-
ity-based approaches.
As described above, binning algorithms are either simi-

larity-based or composition-based. In contrast, the recently
published SPHINX algorithm [14] utilizes the principles of
both composition and similarity based binning algorithms.
The SPHINX algorithm employs a unique (two-step)
hybrid binning approach. In the first step, compositional
characteristics of a given query sequence are utilized for
identifying a subset of database sequences, that have com-
positional similarity with the query sequence. The second
step involves aligning the query sequence with the identi-
fied subset of database sequences, analysing the aligned
output, and finally assigning the query sequence to an
appropriate taxon based on this analysis. The first step
adopted by SPHINX (i.e reduction of search space using
compositional features) is observed to reduce the binning
time to a reasonable extent (without a significant loss in
binning specificity/accuracy). However, given that the sec-
ond step of SPHINX is still alignment based, the overall
binning time is still dependant on the time taken for this
alignment step.
In this study, we present INDUS - a novel algorithm

which can taxonomically classify sequences at a rate
which is significantly better compared to any of the bin-
ning approaches (including SPHINX) described above.
Besides this, INDUS has binning accuracy and specificity
comparable to alignment based approaches. Similar to
the SPHINX algorithm, INDUS also adopts a two-step
approach to binning. To some extent, the first step (i.e
reduction of search space using compositional features)
of both methods is similar. However, the INDUS algo-
rithm incorporates several novel features in the second
step, that make it an entirely alignment free (thereby
drastically reducing the overall binning time) process.
The second step also incorporates several new features
that attempt to address various limitations of existing
composition-based binning approaches.

Results
Algorithm
The steps associated with the phylogenetic assignment
of metagenomic sequences by INDUS are graphically
depicted in Figure 1 and described below:
Step A – identification of compositionally similar

genome fragments: The first step of INDUS involves
identification of a subset of ‘genome fragments’ (gener-
ated from known prokaryotic genomes) whose composi-
tion is closest to that of the query sequence. For this
purpose, known genome fragments (of length 1,000 bp)
were generated by splitting 952 genome sequences
downloaded from NCBI database (ftp://ftp.ncbi.nih.gov/
genomes/Bacteria/). The compositional similarity
between a given query DNA fragment and the generated
genome fragments is calculated by finding the Manhat-
tan distance between the tetra-nucleotide frequency vec-
tors corresponding to the query sequence and each
genome fragment. In order to overcome the enormous
time required for comparing individual query vectors
with each of the (2.6 million) genome fragment vectors,
we utilized the SPHINX approach for reducing the
search space [14]. In this approach, genome fragment
vectors are initially clustered using the k-means cluster-
ing approach [15], and vectors corresponding to indivi-
dual cluster centroids are stored. At run time, instead of
performing 2.6 million comparisons, the distance of a
given query sequence (represented in form of a vector)
to each precomputed ‘cluster centroid’ is calculated. As
in SPHINX, this step helps in first identifying a cluster
having the least distance to the query vector. Till this
step, INDUS and SPHINX adopt a similar strategy for
reducing the initial search space. INDUS further identi-
fies a subset of genome fragments within the composi-
tionally closest cluster. For this purpose, the distance of
the query vector to genomic fragments belonging only
to the closest cluster is calculated and genome fragment
(s) having a distance greater than or equal to 99% of the
distance of the closest genomic fragment are retained. A
subset of genome fragments closest in composition to a
given query sequence are thus identified at the end of
this step.
Step B - identification of appropriate taxonomic

levels of assignments: The second step in the work-
flow followed by INDUS algorithm involves identifica-
tion of an appropriate taxonomic level (TL) at which
the final assignment of the query sequence is to be
restricted. Identification of this level is based on the pre-
mise/principle which has been adopted in earlier studies
namely SOrt-ITEMS [4] and SPHINX [14]. A brief out-
line of the principle is as follows. Sequences from differ-
ent organisms have diverged (evolved) from common
ancestors. Consequently, as the level of taxonomic diver-
gence between organisms increases, the compositional
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similarity between their sequences is expected to
decrease progressively. It is implicit from this observa-
tion that the compositional similarity between two
sequences, belonging to organisms that have diverged
from relatively higher levels in the taxonomic tree, will
be low. As a result, the ‘distance’ between tetra-nucleo-
tide frequency vectors (a metric used for measuring
compositional similarity) corresponding to sequences
diverged from relatively higher levels in the taxonomic
tree will be high. Assuming a uniform rate of evolution,
the distance between any two sequences would thus
indicate (to a large extent) the probable taxonomic level
from where the sequences have diverged. It is logical to
limit the assignment of the sequence at this taxonomic

level, since this level would not only be conservative
(thus avoiding false positives), but also the most specific
level at which the assignment can be made. Keeping this
principle in mind, using a large number of training
sequences, patterns of distances were observed between
sequences (diverged at various levels in the taxonomic
tree), and corresponding thresholds were determined
empirically. The detailed methodology used for obtain-
ing threshold values (Table 1) is given in section A of
Additional File 1.
Using the obtained threshold values, an appropriate

taxonomic level (TL) is identified, where the assignment
for each query sequence needs to be restricted. Subse-
quently, the taxonomic names of the identified subset of

Figure 1 Work-flow of the INDUS algorithm. A schematic work-flow depicting the various steps followed by the INDUS algorithm for
taxonomic assignment of query sequences.
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(compositionally closest) genomic fragments are
replaced with corresponding taxon names that occur at
TL.
Step C - normalization of the proportions of indivi-

dual taxa in the identified subset of genome frag-
ments: The proportions of individual taxa in the
identified subset of genome fragments are first calcu-
lated. Normalization of these proportions is then carried
out based on the relative abundance of these taxa in
current reference databases using an empirically derived
logarithmic normalization function given below:
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where,
’Ni’ represents the normalized percentage of a particu-

lar taxon ‘i’ within the subset of genome fragments iden-
tified as closest to the given query sequence,
’Pi’ represents the percentage of a particular taxon ‘i’

within the subset of genome fragments identified as clo-
sest to the given query sequence,
’Ri’ represents the percentage of a particular taxon ‘i’

with respect to its representation in the reference data-
base, and
’a’ represents an integer with a value of 2 for query

sequences generated using Sanger (read lengths around
800 bp), 454-Titanium (400 bp) and 454-Standard (250
bp) sequencing technologies and 0 for query sequences
generated using 454-GS20 (100 bp) sequencing
technology.
The methodology used to determine the optimal

values of integer ‘a’ in the above logarithmic normaliza-
tion function, for different query sequence lengths, is
explained in section B of Additional File 1. A justifica-
tion for using this logarithmic normalization function is
provided in section C of Additional File 1.
Step D - assignment of taxa to sequences: The

query sequence is associated to the taxon whose (nor-
malized) proportion (within the set of closest genome

fragments) exceeds a predetermined threshold value.
The detailed methodology used for fixing the predeter-
mined threshold value is given in section D of Addi-
tional File 1. If the normalized proportion of any of the
taxa (within the set of closest genome fragments) does
not exceed the predetermined threshold, INDUS reduces
the taxon names to successively higher taxonomic levels.
INDUS iteratively checks for a taxonomic level at which
the proportion of a taxon (within the set of closest gen-
ome fragments) exceeds the predetermined threshold. If
the normalized proportion does not exceeds the prede-
termined threshold even after reducing all taxon names
(within the set of closest genome fragments) to the
taxonomic level of super kingdom, the query sequence
is categorized as unassigned.

Validation
INDUS algorithm was validated by querying test
sequences (constituting four simulated test data sets)
against a reference database that was appropriately
‘modified’ to simulate realistic metagenomic scenarios. It
is to be noted that these four simulated data sets and
the modified reference database were identical to those
used for evaluation of SPHINX algorithm [14]. A brief
description of the four simulated data sets and the com-
position of the ‘complete/modified’ reference database
are described below.
The four simulated test data sets, namely Sanger, 454-

400, 454-250 and 454-100 were generated using Meta-
Sim [16] software. As in SPHINX, each data set con-
sisted of 35,000 query sequences originating from 35
taxonomically diverse prokaryotic genomes listed in
Additional File 2. Sequences in these data sets simulated
the sequencing lengths and error models of four com-
monly used sequencing technologies namely ‘Sanger’
(read length centered around 800 bp), ‘454-Titanium’
(400 bp), ‘454-Standard’ (250bp) and ‘454-GS20’ (100
bp).
As in SPHINX, the ‘complete reference database’ (con-

sisting of 2.6 million genome fragments from 952 pro-
karyotic genomes) was modified by completely removing
fragments corresponding to 300 genomes. This resulted
in a scenario wherein a majority of the sequences from

Table 1 Range of thresholds for determining an appropriate taxonomic level of assignments (TL)

Lowest taxonomic level where the query
sequence can be assigned

Distance range between query sequence and nearest genome fragment in reference
database

Sanger (800 bp) 454-Titanium (400 bp) 454-Standard (250 bp) 454-GS20 (100 bp)

Genus < 0.28 < 0.35 < 0.43 < 0.6

Family 0.28 – 0.32 0.35 – 0.41 0.43– 0.51 > 0.6

Class > 0.32 > 0.41 > 0.51

Range of distance values (between vectors corresponding to a query sequence and the closest genome fragment in reference database) to be used for
determining an appropriate taxonomic level (TL) of assignment for a given query sequence.

Mohammed et al. BMC Genomics 2011, 12(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/12/S3/S4

Page 5 of 14



each test data set originated from genomes, whose
sequences are not represented in the reference database.
Moreover, it was observed that the taxonomic level to
which individual test sequences (originating from gen-
omes of test organisms) were not represented in the
reference database also varied. For instance, when (test
sequences from) a given test organism was labeled as
‘Class Unknown’, genome fragments originating from all
other genomes belonging to its class were removed
from the reference database. Thus the ‘modified refer-
ence database’ along with the ‘simulated test data sets’
closely mimicked a real metagenomic scenario wherein
majority of the sequences (in metagenomic data sets)
are derived from unknown microbes. The representation
status of each test data set organism with respect to
modified database is also given in Additional File 2.
To maintain consistency of evaluation, parameters

used in SPHINX were used for evaluating the perfor-
mance of INDUS. Performance was characterized in
terms of ‘assignment accuracy’ and ‘assignment specifi-
city’. Assignment accuracy demonstrates the ability of
the algorithm to assign a given query sequence to its
correct taxonomic lineage (till super kingdom level) irre-
spective of the phylogenetic level at which the assign-
ment has been made. Assignment accuracy was
determined by first grouping all assignments into ‘Cor-
rect Assignments’ and ‘Wrong Assignments’ and analyz-
ing the respective percentages. On the other hand,
assignment specificity indicates the ability to make cor-
rect assignments at specific taxonomic levels (species,
genus, family, class, order and phylum) rather than at
non-specific taxonomic levels (above the taxonomic
level of phylum). Therefore, correct assignments were
further grouped into ‘Specific Assignments’ and ‘Non-
specific Assignments’ to evaluate the performance of
INDUS with respect to assignment specificity. Results,
both in terms of accuracy and specificity were compared
with those obtained using composition-based i.e.
TACOA [7], similarity-based i.e SOrt-ITEMS [4],
MEGAN [2] and hybrid i.e. SPHINX [14] binning algo-
rithms. To maintain consistency of evaluation, assign-
ments of all five binning algorithms (used in the present
study) were obtained with a ‘minimum bin size’ setting
of 1 (i.e bins with a single sequence assignment were
also considered for analysis).

Comparison of execution time of taxonomic classification
methods
The average computational time required by INDUS for
taxonomic classification of 35,000 sequences (of each of
the four validation data sets) was determined and com-
pared with those by TACOA, SOrt-ITEMS, MEGAN
and SPHINX. All calculations were performed on a

desktop computer (Intel Xeon quad core processor, 4
GB RAM).

Performance of INDUS on FAMeS (Fidelity of Analysis of
Metagenomic Samples) metagenomic data sets
Given our limited knowledge of the true taxonomic
composition of real metagenomes, it is difficult to evalu-
ate the taxonomic classification efficiency of any binning
algorithm using a real metagenomic data set. Keeping
this in mind, the performance of INDUS was evaluated
using three synthetically generated data sets [17], which
nevertheless simulate true metagenomic scenarios.
These data sets are considered as ‘gold standard data
sets’ that can be used for benchmarking algorithms
developed for analyzing metagenomics data [17]. Based
on the level of taxonomic complexity, these data sets
are referred to as simLC (low complexity), simMC
(medium complexity), and simHC (high complexity).
Taxonomic assignments of all sequences constituting
these three data sets were obtained against two variants
(referred to as ‘complete’ and ‘partial’) of the reference
database. These variants are identical to those used ear-
lier for evaluating validation data sets. While the ‘com-
plete’ reference database consisted of genome fragments
corresponding to 952 organisms, the ‘modified’ reference
database’ consisted of genome fragments from only 652
organisms. The latter database was created with the
objective of replicating a realistic test scenario, wherein
majority of the sequences (in the three metagenomic
data sets) are derived from unknown microbes. The
representation status of each test data set organism (in
all three data sets) with respect to ‘complete’ and the
‘modified’ reference database is given in Additional File
3 and is explained below.
All three FAMeS data sets contained sequences

sourced from 112 distinct genomes. Genomic fragments
from these 112 genomes were also available in the ‘com-
plete’ reference database. However, it is important to
note that genomic fragments in the reference database
are not exact copies of sequences constituting the three
real metagenomic data sets. Besides containing typical
sequencing errors (and stretches of low quality regions),
the latter sequences originate from random positions in
the respective genomes. In contrast to the complete
reference database, the modified reference database had
genomic fragments representing only 69 out of the 112
genomes constituting the FAMeS metagenomic data
sets. Consequently, test sequences originating from 43
genomes had no representation (at various taxonomic
levels) in the modified reference database. While 8 of
these 43 genomes represented a ‘species unknown’ sce-
nario, the ‘genus unknown’, ‘family unknown’, ‘order
unknown’ and ‘class unknown’ scenarios were
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represented by 16, 14, 3 and 2 genomes, respectively. As
done for the simulated test data sets, results of INDUS
obtained with FAMeS data sets were compared with
those obtained using TACOA, SOrt-ITEMS, MEGAN
and SPHINX.

Performance of INDUS on a real metagenomic data set
The performance of INDUS was further evaluated on
the Sargasso sea data set [18]. This reasonably large
(and taxonomically diverse) metagenomic data set con-
taining 644,551 sequences was first evaluated using
INDUS. Besides observing the binning time taken by
INDUS for evaluating the complete data set, the cumu-
lative percentage of assignments obtained at various
taxonomic levels was noted down. Furthermore, a subset
of 10000 sequences from the same data set, was ana-
lyzed using all 5 binning methods (INDUS, TACOA,
SOrt-ITEMS, MEGAN and SPHINX). It should be
noted that the same subset of sequences (referred to as
Sargasso data set sample 1) were earlier used for evalu-
ating the taxonomic binning efficiency of MEGAN [2]
and SOrt-ITEMS [4]. Taxonomic assignments obtained
by all five binning methods were compared at the level
of phylum, class and order. This was done by first col-
lapsing the obtained assignments (by a given method) at
or below the desired taxonomic level of comparison and
subsequently enumerating the same. The time taken for
binning this subset of sequences was also noted down
for all the methods.

Validation results
Results with simulated test data sets
Metagenomics data sets typically consist of millions of
sequences, majority of which originate from hitherto
unknown organisms. The interpretation of results was
therefore done keeping the following aspects in mind.
First is the time taken for binning. Given the huge size
of typical metagenomic data sets, this aspect naturally
becomes a very significant factor. Assignment accuracy
and specificity are the second and third aspects. The
objective was to interpret the obtained results (Figure 2
and Additional File 4) and identify a method that ana-
lyzes a million sequences within a few hours with rea-
sonable levels of assignment accuracy and specificity.
With respect to the time taken for binning, results in

section A of Additional File 4 indicate that INDUS is
23-33 times quicker than similarity-based methods
(SOrt-ITEMS and MEGAN). Furthermore, INDUS is
observed to be 6-12 times faster, even with respect to
TACOA (a composition-based classifier). With respect
to SPHINX (a composite method), INDUS is seen to be
quicker by 1.5 to 1.6 times. In summary, these results
indicate that amongst various available binning methods,
INDUS is the quickest. Furthermore, our experiments

with data sets of varying sizes (in terms of number of
sequences and the length of sequences) also indicated
that the execution time of INDUS increases linearly
with the increase in the number of sequences in a given
data set (Additional File 5). Given these results (with
respect to binning time), it was logical to check the bin-
ning accuracy and specificity of INDUS. The overall pat-
tern of results (Figure 2, Additional File 4) in this
respect indicate that INDUS, in spite of being a compo-
sition-based method, is able to achieve comparable (and
in some cases significantly better) results than other bin-
ning methods. Results with respect to binning accuracy
and specificity are discussed below in detail.
Results obtained using all four methods (across all

four data sets) indicate a positive correlation between
the percentage of correct assignments and the length of
the query sequences. For the 454-400, 454-250 and the
Sanger test data sets, it is seen that assignment accuracy
(with respect to the percentage of correct assignments)
is observed to be more or less comparable for INDUS,
TACOA and SPHINX. Though, the assignment accuracy
of SOrt-ITEMS is observed to exceed the values
obtained with all other methods, it is observed that
SOrt-ITEMS requires enormous amounts of time
(approximately 30-40 minutes per 1000 reads) for bin-
ning a given data set. At this rate, more than 10 days
would be required by SOrt-ITEMS for binning even a
small sized data set (500,000 reads each of length
approximately 250 bp). Analysis of the same data set
using INDUS is expected to be completed in less than
12 hours. Interestingly, for the 454-100 data set (having
short sequences of length around 100 bp), the percen-
tage of correct assignments by INDUS and TACOA
(composition-based methods) is observed to be relatively
higher compared to that obtained using similarity-based
methods (i.e SOrt-ITEMS and MEGAN) as well as the
composite method (i.e. SPHINX). However, it should be
noted that a significant proportion of correct assign-
ments by TACOA (41-57%) are at non-specific taxo-
nomic levels (super kingdom or above) as compared to
that by INDUS (18-24%), SOrt-ITEMS (5-16%),
MEGAN (5-18%) and SPHINX (11-14%). With respect
to ‘wrong’ assignments, results indicate that while the
percentage of wrong assignments obtained with INDUS
(10-12%) is significantly lower than that of TACOA (22-
31%) and MEGAN (23-35%), it is slightly higher than
SPHINX (7-12%) and SOrt-ITEMS (4 -10%).
The above results (correct and wrong assignments) cap-

ture the ‘assignment accuracy’ of each of the five evaluated
methods. Overall, reasonable levels of assignment accuracy
are seen to be obtained with INDUS (a composition-based
method), SOrt-ITEMS (a similarity-based method) and
SPHINX (a hybrid binning approach). The marginally
higher misclassification rate of INDUS (as compared to
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that of SPHINX and SOrt-ITEMS) is possibly due to the
following reason. Both SOrt-ITEMS and SPHINX algo-
rithms employ BLAST, a relatively robust algorithm, for
quantifying the similarity between query sequences and

reference database sequences. However, the enormous
binning time (and the compute resources) needed by simi-
larity-based methods limits their practical utility in
resource poor settings.

Figure 2 Results of validation on simulated test data sets. Graphical representation of the obtained pattern of assignments and the time
taken by INDUS, TACOA, SOrt-ITEMS, MEGAN and SPHINX on the (A) Sanger, (B) 454-400 (C) 454-250 and (D) 454-100 test data sets.
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Correct assignments were further categorized into
‘specific’, ‘non-specific’ and ‘unassigned’ categories. The
percentage of test sequences assigned to these categories
would help in comparing the ‘assignment specificity’ of
each algorithm. As expected, it is observed that assign-
ment specificity increases with increasing length of
query sequences. Furthermore, results indicate that the
average assignment specificity of INDUS (35.9%) is sig-
nificantly higher than that of TACOA (6.9%) and
MEGAN (26.5%), and lower than that of SOrt-ITEMS
(48.8%) and SPHINX (40.7%). Results also indicate that
the percentage of assignments made by INDUS (21.3%)
at non-specific levels is significantly lower than that by
TACOA (48.7%) and slightly higher than that by SOrt-
ITEMS (12.3%), MEGAN (13.6%) and SPHINX (13.3%).
The above results indicate that the assignment accu-

racy of INDUS is not at the cost of assignment specifi-
city. With respect to the percentage of sequences
categorized as ‘unassigned’, results (with all four test
data sets) indicate a negative correlation between the
percentage of ‘unassigned’ sequences and the length of
the query sequences (irrespective of the method used).
As in the case of correct assignments, the percentage of
sequences categorized as ‘unassigned’ by INDUS (19-

49%) is observed to be comparable to that obtained
using similarity-based methods i.e. SOrt-ITEMS (16-
59%), MEGAN (13-57%), and the hybrid method
SPHINX (24-55%). The corresponding percentage of
unassigned sequences by TACOA (13-23%) appears to
be lower than the other three methods. However, as
mentioned previously, 41-57% of assignments made by
TACOA are at non-specific levels. Such non-specific
assignments have little practical significance.
Results with FAMeS metagenomic data sets
For each FAMeS metagenomic data set, the percentage
of assignments (in various categories) obtained by
INDUS, TACOA, SOrt-ITEMS, MEGAN and SPHINX
is given in Additional File 6. A summary of these results
is given in Table 2. Results indicate that 79-93% of
sequences are correctly assigned by INDUS in both
complete and modified reference database scenarios.
These values are comparable to that obtained using
SOrt-ITEMS (77-95%), SPHINX (78-93%) and MEGAN
(70-95%), and are relatively better compared to TACOA
(67-83%). These results indicate the robustness of the
overall INDUS classification approach and the ability of
INDUS to generate results comparable to similarity-
based approaches. With respect to assignment

Table 2 Results of validation on FAMeS Data sets

FAMeS Data set Taxonomic assignment
category

Results with complete database Results with modified database

INDUS TACOA SOrT-
ITEMS

MEGAN SPHINX INDUS TACOA SOrT-
ITEMS

MEGAN SPHINX

SimLC (96732) Correct 89.6 79.3 94.9 95 93.1 81.6 74.4 78.1 72.6 83.7

Wrong 2.6 9 2 2.7 2.8 7.1 13.9 9.2 23.6 11.5

Specific 81.3 24.4 94.9 93.9 82.8 66.7 21 78.1 65 71

Non-specific 8.3 54.9 0 1.1 10.3 14.9 53.5 0 7.6 12.7

Unassigned 7.9 11.6 3.1 2.3 4.1 11.4 11.6 12.6 3.7 4.8

SimMC (113373) Correct 92.8 82.5 93.7 94 92.6 86 79 79.1 69.9 81.8

Wrong 1 7.3 3.1 3.5 3.6 4.6 10.8 9.1 26.6 13.5

Specific 84.1 23.7 93.7 93.1 81.1 71.9 23 79.1 63.2 70.1

Non-specific 8.7 58.8 0 1 11.5 14.1 56 0 6.7 11.6

Unassigned 6.2 10.2 3.2 2.4 3.8 9.4 10.2 11.8 3.5 4.7

SimHC (115592) Correct 89.6 72.1 92 91.9 86 78.9 67 76.6 77.9 77.6

Wrong 1.9 11.4 3.6 4.9 7.1 5.7 16 9.5 17.6 10.1

Specific 76.4 18.7 92 90.3 79.6 63.4 18.2 76.6 69.5 71.2

Non-specific 13.2 53.4 0 1.5 6.4 15.5 48.8 0 8.4 6.4

Unassigned 8.6 16.5 4.3 3.2 6.9 15.5 17 13.9 4.5 12.3

Average for FAMeS
data sets

Correct 90.6 78 93.5 93.6 90.6 82.2 73.5 77.9 73.5 81

Wrong 1.8 9.3 2.9 3.7 4.5 5.8 13.6 9.3 22.6 11.7

Specific 80.6 22.3 93.5 92.4 81.2 67.3 20.7 77.9 65.9 70.8

Non-specific 10.1 55.7 0 1.2 9.4 14.8 52.8 0 7.6 10.2

Unassigned 7.6 12.8 3.5 2.6 4.9 12.1 12.9 12.8 3.9 7.3

Summary of the results obtained with the FAMeS metagenomic data sets. The complete and modified reference database contained genome fragments from
952 and 652 prokaryotic genomes respectively. The number of sequences in each data set is indicated in parenthesis.
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specificity, it is observed that SOrt-ITEMS has the high-
est average value of specificity (78-94%) in both database
scenarios. The average assignment specificity of INDUS
(67-81%), MEGAN (66-92%) and SPHINX (71-81%) is
observed to significantly exceed that obtained by
TACOA (21-22%). The overall misclassification rate
(irrespective of reference database status) of INDUS is
significantly low and ranges between 2-6%. This reaf-
firms that the assignment specificity obtained by INDUS
is not at the cost of assignment accuracy (as observed
for MEGAN). The marginally high misclassification rate
of INDUS with the simLC data set (7.3%) as compared
to the simMC data set (4.51%) and the simHC data set
(5.8%) is due to the following reason. Approximately
37.3% of sequences in the simLC data set have a ‘genus
unknown’ status with respect to the modified reference
database. This is significantly higher than that compared
to 26.1% in the simMC and 14.8% in the simHC data
set (Additional File 3). Overall, all the above results indi-
cate that the influence of taxonomic complexity on the
assignment accuracy of INDUS is minimal. This is
expected given that INDUS (as well as other existing
binning algorithms used in the present study) indepen-
dently process each query sequence. The taxonomic
assignment obtained for a given query sequence is inde-
pendent of the taxonomic complexity of the sample to
which the sequence belongs. In line with this observa-
tion, results indicate an absence of correlation between
algorithmic performance and taxonomic complexity of
the sample.
Results with real metagenomic data set
The summarized results obtained with INDUS for the
Sargasso sea metagenomic data set [18] are provided in
Table 3. INDUS was able to assign 545277 out of
644551 sequences (approximately 85%) constituting this
data set. Around 78% of these assignments (429056 out
of 545277) were made at specific taxonomic levels (i.e
phylum and below). The cumulative number of assign-
ments at phylum, class and order levels is indicated in
Table 3. Besides assigning approximately 4% of
sequences to phylum Cyanobacteria (normally expected
in sea samples), it is observed that INDUS assigns a
high proportion of sequences (approximately 60%) to
various taxa under phylum Proteobacteria. These results
are in concordance with earlier reported marker gene
based analyses of this data set [18]. However, as pre-
viously mentioned, given our limited knowledge of the
true taxonomic composition of real metagenomes, it is
difficult to comment on the classification accuracy of
any binning algorithm using result of analysis from a
real metagenomic data set. Furthermore, it is significant
to note that the total time taken by INDUS (on a mod-
est desktop with 2GB RAM, 2.33 GHz dual-core proces-
sor) for analysing the 644,551 sequences of this real

metagenomic data set was approximately 36 hours.
Using the same desktop, an estimated 2-3 weeks would
be required by existing similarity-based methods for
analysing the same data set.
Table 4 shows a comparison of the performance of

INDUS, TACOA, SOrt-ITEMS, MEGAN and SPHINX
on the Sargasso sea sample 1 data set. Results in Table
4 indicate that all five binning methods assign approxi-
mately 81-90% of the 10000 sampled sequences consti-
tuting this data set. As observed in the results obtained
with the simulated test data sets, INDUS (58%) is
observed to have more specific level assignments (phy-
lum and below) as compared to SPHINX (53%) and
TACOA (35%). SOrt-ITEMS and MEGAN (both simi-
larity-based methods) are observed to assign more than
80% of sequences at phylum or below levels. However,
with respect to the overall binning time, INDUS (13
minutes) is observed to be 25 times faster than SOrt-
ITEMS (347 minutes) and MEGAN (321 minutes), and
approximately 1.7 times faster than SPHINX (23 min-
utes). Furthermore, results at finer taxonomic levels
(class and order) indicate that all methods (except
TACOA) assign more or less similar proportion of

Table 3 Validation results of INDUS with Sargasso sea
metagenomic data set.

Order (308709) Class (361653)

Burkholderiales 31.02 Betaproteobacteria 33.93

Alteromonadales 10.64 Gammaproteobacteria 20.07

Prochlorales 1.81 Alphaproteobacteria 0.9

Aeromonadales 1.22 Bacilli 0.34

Chroococcales 1.06 Clostridia 0.29

Enterobacteriales 0.53 Actinobacteria (class) 0.26

Pseudomonadales 0.52 Mollicutes 0.25

Rhizobiales 0.26 Spirochaetes (class) 0.03

Clostridiales 0.21 Deltaproteobacteria 0.02

Actinomycetales 0.11 Epsilonproteobacteria 0.02

Rickettsiales 0.11

Mycoplasmatales 0.09 Phylum (429056)

Bacillales 0.07 Proteobacteria 60.98

Xanthomonadales 0.06 Cyanobacteria 3.67

Lactobacillales 0.04 Firmicutes 1.15

Nitrosopumilales 0.04 Actinobacteria 0.3

Spirochaetales 0.03 Tenericutes 0.29

Thiotrichales 0.02 Thaumarchaeota 0.06

Campylobacterales 0.02 Spirochaetes 0.04

Rhodobacterales 0.02 Bacteroidetes 0.02

Vibrionales 0.02 Euryarchaeota 0.02

- - Thermotogae 0.02

- - Planctomycetes 0.02

Taxonomic profile, indicating the cumulative percentage of sequences
assigned at various taxonomic levels. The cumulative number of sequences
assigned at each taxonomic level is indicated in parenthesis.
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sequences to taxa under phylum Proteobacteria. How-
ever, in contrast to SOrt-ITEMS and MEGAN, it is
observed that INDUS and SPHINX do not assign any
sequences to class Alphaproteobacteria. Our analysis
revealed that more than 95% of these sequences
(assigned by SOrt-ITEMS and MEGAN to Alphaproteo-
bacteria) were assigned by INDUS and SPHINX to rela-
tively higher taxonomic levels (either to proteobacteria
or bacteria) and not to other unrelated taxa.

Discussion
The basic principle of existing composition-based
approaches, i.e. ‘the magnitude of compositional similar-
ity is indicative of phylogenetic proximity’, is the pre-
mise on which the INDUS algorithm is built. However,
INDUS incorporates major modifications in its classifi-
cation approach in order to overcome the following

known limitations of existing composition-based
approaches.
First, INDUS discards an important assumption used

by existing composition-based approaches, namely, ‘one
genome-one composition’ model. This model is based
on the assumption that any fragment derived from a
given genome is, more or less, a compositional fractal of
that genome. By first identifying a subset of ‘genome
fragments’ (and not genomes) whose composition is clo-
sest to that of the query sequence, INDUS algorithm
ensures elimination of this fractal bias. Moreover, in this
step, comparison of compositional properties is fair
since it is performed between roughly equal sized frag-
ments. This is better than previous approaches, wherein,
comparisons were performed between compositional
properties of short query sequences (less than 1,000 bp)
and compositional models generated using whole

Table 4 Comparison of results of INDUS with other binning methods for Sargasso sea sample 1* metagenomic data
set.

Binning
method

Total number of
sequences

Time taken for analysis
(minutes)

Total number of sequences
assigned

Cumulative number of
sequences assigned at

different taxonomic levels

Phylum Class Order

INDUS 10000 13 8167 5793 4416 3748

TACOA 10000 180 8870 3518 2739 2545

SOrt-ITEMS 10000 347 8528 8173 6921 5506

MEGAN 10000 321 8866 8417 7559 7461

SPHINX 10000 23 9116 5346 3702 2726

Taxonomic
level

Taxon name Percentage** of sequences assigned

INDUS TACOA SOrt-
ITEMS

MEGAN SPHINX

Order Burkholderiales 22.79 16.75 25.6 28.63 20.31

Alteromonadales 12.81 5.57 17.24 18.65 5.57

Rickettsiales - - 5.58 12.78 -

Prochlorales 1.88 - 3.01 2.94 -

Enterobacteriales - 1.75 - - -

Class Betaproteobacteria 24.31 16.76 28.2 28.89 20.31

Gammaproteobacteria 19.85 9.48 22.91 24.6 16.71

Alphaproteobacteria - - 15.55 18.41 -

Flavobacteria - - - 2.12 -

Phylum Proteobacteria 52.54 32.1 73.6 75.71 47.78

Cyanobacteria 3.73 0.53 4.84 4.83 -

Firmicutes 1.66 1.25 0.27 0.25 4.17

Bacteroidetes - 0.01 1.97 2.19 -

Tenericutes - 0.47 - - 1.51

The cumulative percentage of sequences assigned by INDUS, TACOA, SOrt-ITEMS, MEGAN and SPHINX at order, class and phylum levels

* Sample 1 refers to the subset of 10000 reads from the Sargasso sea data set [18] earlier analysed using MEGAN [2] and SOrt-ITEMS [4]

** Percentages shown are with respect to the total number of sequences (i.e 10000) in the Sample 1 data set. Only those taxa are shown for which at least one
of the methods assigned a minimum of 1.5% of the sequences in the data set.
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genomes generally having lengths in excess of a million
base pairs.
Second, INDUS uses compositional similarity as a

metric to identify an appropriate taxonomic level (TL)
of assignment for every query sequence. This step helps
INDUS in achieving significantly low misclassification
rates. The TL indicates a ‘safe’ (yet specific to the extent
possible) taxonomic level at which the subsequent phy-
logenetic assignment process (based on taxonomic con-
vergence) can commence. Identifying an appropriate
taxonomic assignment level is important given that a
majority of sequences in a typical metagenome originate
from hitherto unknown organisms having little or no
representation in existing reference databases. It is logi-
cal to assign such sequences at appropriately higher
taxonomic levels.
Third, the phylogenetic assignment process (based on

taxonomic convergence) used by INDUS helps in
imparting high levels of accuracy. Considering a subset
of fragments for every query sequence (instead of just
one closest fragment), and subsequently identifying a
taxonomic level (at or above TL) where these fragments
achieve taxonomic convergence helps in further enhan-
cing the accuracy of the entire procedure. Assignment
of each (novel) sequence directly at an appropriately
higher taxonomic level eliminates the need for the end
user to interpret any scores and globally reduce assign-
ments at a single taxonomic level (as required for results
generated using classifiers such as Phymm, NBC classi-
fier, etc.). The output of INDUS thus helps one in
obtaining an unambiguous picture of the taxonomic
profile of any given metagenome.
Fourth, existing reference databases are dominated

with sequences corresponding to organisms/taxonomic
clades that are amenable to culture techniques. Besides,
reference databases are also biased with sequences
belonging to specific organisms/taxonomic clades that
have high scientific/commercial utility. For a query
sequence originating from a sparsely represented taxon,

such representation bias may get reflected in the identi-
fied subset of compositionally closest genome fragments.
The identified subset may therefore contain genomic
fragments from phylogenetically unrelated taxa with
high representation in the reference database. In this
scenario, the normalization function used by INDUS
attempts to down-weigh the proportions of abundant
taxa in order to achieve accurate assignments. At the
same time, INDUS ensures that the abundant taxa pro-
portions are not reduced to inappropriately low levels in
scenarios wherein the query sequences originate from
taxonomic clades having a high database representation.
The normalization function used in INDUS therefore
works optimally with sequences from any organism,
irrespective of its proportion in existing reference
databases.
In addition to overcoming the limitations of existing

composition-based approaches, the quick execution time
of INDUS confers it a great advantage over other bin-
ning methods. INDUS is able to analyze approximately
1000-1500 reads per minute. This rate of execution is
significantly high compared to the execution rate
(around 25-30 reads per minute) of similarity-based
approaches such as SOrt-ITEMS or MEGAN. An esti-
mate of binning time needed by INDUS (and other bin-
ning approaches) for analyzing real metagenomic data
sets [18-23] is provided in Table 5. Results in this table
reaffirm the utility of INDUS in experimental labs hav-
ing limited access to huge computational resources. For
example, it is observed that the analysing the 7,521,215
sequences (average length around 800 bp) constituting
the Global Ocean Sampling Expedition Microbial Meta-
genomic data sets [18-20] using INDUS (on a desktop
having an Intel Xeon-Quad core processor and 4 GB
RAM) would have taken approximately 7 days. In con-
trast, analyzing the same data set using TACOA, SOrt-
ITEMS, MEGAN and SPHINX would have taken
approximately 90, 221, 200 and 11 days respectively.
Analysis of even a smaller data set, for e.g. 1,744,283

Table 5 Estimates of time required for taxonomic binning of some real metagenomic data sets

Metagenome Total number of
sequences

Sequence
length range

Approximate estimate of time (in minutes) need for binning Reference
(s)

INDUS TACOA SOrt-ITEMS MEGAN SPHINX

Global Ocean Survey 7521215 ~800bp 10530
(~ 7 days)

129580
(~90 days)

319330
(~221 days)

287095
(199 days)

15901
(11 days)

[18-20]

Lean and obese mouse
metagenome

1744283 ~100bp 1544
(~ 1 day)

8771
(6 days)

52097
(36 days)

48390
(33 days)

2093
(1.5 days)

[21]

Malnourished child
metagenome

1496170 ~250bp - 400bp 1795
(1.2 days)

17526
(12 days)

51297
(~36 days)

44885
(~31 days)

2308
(1.6 days)

[22]

Acid Mine Drainage 180713 ~800bp 252 3113 7672 6898 382 [23]

Approximate time (in minutes) estimated to be taken by INDUS, TACOA, SOrt-ITEMS, MEGAN and SPHINX for binning some of the real metagenomic data sets
(on a desktop with an Intel Xeon-Quad core processor and 4 GB RAM)
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sequences (with average read length around 100 bp) of
the mouse gut metagenome [21] using SOrt-ITEMS or
MEGAN would require at least a month for completing
the analysis. In contrast, INDUS would complete the
taxonomic analysis of this data set within a day. It is to
be emphasized here that INDUS is able to achieve this
binning rate without a significant loss of binning accu-
racy and specificity.
In spite of the advantages described above, one of the

computational challenges for the INDUS approach (and
also for ‘one genome-one composition model based
approaches) is the accurate taxonomic classification of
metagenomic sequences originating from horizontally
transferred (HGT) regions. Sequences originating from
HGT regions generally have an unusual composition as
compared to the sequences originating from the rest of
the genome. The pattern of taxonomic assignment of
such sequences depends to a large extent on their origin
as well as the presence/absence of the donor/recipient
genomes in the reference database. Additional File 7
summarizes the probable assignment patterns for such
sequences. However, it is to be noted that for such
cases, the interpretation of taxonomic assignment (as
correct/incorrect) is subject to debate. The pattern of
assignments (with respect to assignment specificity) is
also likely to change as more and more genomes are
sequenced and added to the reference database. More-
over, given that the proportion of HGT regions in a
majority of known genomes is found to be around 10%
[24], the impact of such assignments on the overall
accuracy and specificity of INDUS (and other binning
algorithms) is expected to be minimal.
A careful examination of the taxonomic classification

methodology of INDUS indicates procedural similarities
(albeit at a generic level) with that adopted by SPHINX.
Additional File 8 summarizes these high level similari-
ties. However, it is to be noted that the finer methodol-
ogy and the similarity metrics used by both methods are
significantly different. Though both methods utilize
compositional features for reduction of search space, the
procedural similarity is limited only till the identification
of a cluster that shows composition similarity with the
composition of the query sequence. While INDUS pro-
ceeds to further identify a ‘subset’ of ‘compositionally
closest’ genome fragments within the identified cluster,
SPHINX performs a ‘alignment based search’ of the
query with ‘all’ sequences belonging to this cluster.
Furthermore, INDUS in its subsequent steps, utilizes
‘compositional distance’ and ‘taxonomic convergence’ as
the criteria for the final assignment of the query
sequence. SPHINX, in contrast, relies on sequence align-
ment and on the generated alignment parameters.
Despite these differences in methodology, INDUS and
SPHINX display similar levels of binning efficiency. This

is interesting in itself, as it indicates that ‘sequence com-
position’ as a feature for binning can be as effective as
‘sequence similarity’. Moreover, it should be noted that
the overall execution time of composition-based algo-
rithms is significantly less than pure sequence similarity-
based methods. This assumes significance given that
metagenomic sequence data sets typically contain mil-
lions of sequences and using similarity-based methods
for taxonomic assignment will require enormous time
and compute power for analysis.

Conclusions
The overall taxonomic assignment efficiency of INDUS
is observed to be comparable to that of similarity-based
methods and considerably superior to composition-
based methods. At the same time the processing times
required by INDUS for taxonomic classification is signif-
icantly low, a characteristic of composition-based meth-
ods. Moreover, the high assignment accuracy and
assignment specificity of INDUS with metagenomic data
sets (simLC, simMC and simLC having varying levels of
taxonomic complexity) in database scenarios simulating
real metagenomic conditions, reaffirm the utility and
applicability of INDUS for performing a taxonomic clas-
sification of real-world metagenomic data sets.

Additional material

Additional file 1: Threshold determination and parameter
optimization A document describing the following: a. The methodology
used for obtaining distance threshold values for identifying an
appropriate taxonomic level of assignment. b. The methodology adopted
for characterization of parameters for the logarithmic normalization. c.
Validation of the efficiency of normalization procedure. d. The
methodology for the assignment of taxa to query sequences.

Additional file 2: List of organisms constituting the four test data
sets A document containing the list constituting the four simulated test
data sets and their status with respect to the modified reference
database.

Additional file 3: List of organisms constituting the FAMeS data
sets. A document containing the list constituting the simHC, simMC and
the simLC data sets and their status with respect to the modified
reference database.

Additional File 4: Detailed results of validation on the simulated
test data sets A document summarizing the pattern of taxonomic
assignments and the time taken by INDUS, TACOA, SOrt-ITEMS, MEGAN
and SPHINX on the four simulated test data sets.

Additional file 5: Time performance of the INDUS algorithm A
document containing the time taken by INDUS for binning 10000, 20000,
100000 and 500000 sequences.

Additional File 6: Detailed results of validation on the FAMeS data
sets A document containing the summarized results of (A) INDUS (B)
TACOA (C)SOrt-ITEMS (D) MEGAN and (E) SPHINX obtained for the simLC,
simMC and simHC data sets.

Additional File 7: Probable taxonomic assignment patterns for
Horizontal Gene Transfer (HGT) regions A document summarizing the
probable pattern of taxonomic assignment (obtained using INDUS and a
‘one-genome-one-composition’ model based method) for sequences
that originate from genomic regions involved in lateral gene transfer
events.
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Additional File 8: Similarities/dissimilarities between INDUS and
SPHINX A document summarizing the similarities/dissimilarities in the
overall taxonomic assignment procedure adopted by INDUS and SPHINX.
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