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Abstract

exposure.

Background: Little is known about the composition and function of the saliva in black flies such as Simulium
guianense, the main vector of river blindness disease in Brazil. The complex salivary potion of hematophagous
arthropods counteracts their host's hemostasis, inflammation, and immunity.

Results: Transcriptome analysis revealed ubiquitous salivary protein families—such as the Antigen-5, Yellow, Kunitz
domain, and serine proteases—in the S. guianense sialotranscriptome. Insect-specific families were also found. About
63.4% of all secreted products revealed protein families found only in Simulium. Additionally, we found a novel
peptide similar to kunitoxin with a structure distantly related to serine protease inhibitors. This study revealed a
relative increase of transcripts of the SVEP protein family when compared with Simulium vittatum and S.
nigrimanum sialotranscriptomes. We were able to extract coding sequences from 164 proteins associated with
blood and sugar feeding, the majority of which were confirmed by proteome analysis.

Conclusions: Our results contribute to understanding the role of Simulium saliva in transmission of Onchocerca
volvulus and evolution of salivary proteins in black flies. It also consists of a platform for mining novel anti-
hemostatic compounds, vaccine candidates against filariasis, and immuno-epidemiologic markers of vector

Background

Onchocerciasis (river blindness) is a disease caused by
Onchocerca volvulus, a filarial worm transmitted by the
bite of black flies. Onchocerciasis ranks fourth among
the causes of blindness and visual impairment in devel-
oping countries [1]. InBrazil, about 1.8% of the popula-
tion needs treatment, all of whom reside in a vast single
focus (Amazonas-Roraima focus), bordering Venezuela
[2].

Simulium guianense appears to be the main vector in
this focus [3,4], but its biology is not well studied. Saliva
of hematophagous arthropods contains a vast array of
pharmacologically active compounds that act as anticlot-
ting, antiplatelet, vasodilatory, anti-inflammatory, and
immunomodulatory compounds. Some functional and
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biochemical characterizations have been previously
obtained with salivary gland homogenates (SGHs) of
Simulium vittatum, such as anti-fXa [5,6], antithrombin
[7], apyrase [8], hyaluronidase [9], vasodilators [10] and
immunomodulators [11-13].

Recently, sialotranscriptomes (from the Greek Sialo =
saliva) of Nearctic and Neotropical black flies have
revealed transcripts related to the functions previously
described [14,15]. Analysis of salivary transcriptomes of
bloodfeeding arthropods—including different genera of
mosquitoes [16-26], sand flies [27-31], biting midges
[32-34], black flies [14,15], ticks [35-45], bed bugs [46],
triatomines [47-50], tse tse flies [51] and fleas [52]-have
found a great diversity of protein families in different
arthropods and suggested a fast evolution of several of
these salivary protein families, possibly resulting from
their host’s immune pressure. Thus, because of this
great diversity, many salivary proteins do not show
sequence similarities to other known proteins. This also
reflects the independent evolution of blood feeding
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within insects, which occurred approximately 30 times
within this group [53].

Evidence suggests that the infraorder Culicomorpha
originated from a single bloodfeeding ancestor during
the Triassic, over 200 million years ago (MYA), with
some families having lost this lifestyle [53]. Black flies
appear as more basal of the Culicomorpha with regard
to the medical importance in this clade. In contrast, the
infraorder Psychodomorpha, which includes sand flies,
probably had a very early origin and isolated phyloge-
netic position [53]. Data suggest that, alternatively, the
blood feeding behavior could have evolved indepen-
dently in each family of the Nematocera [54-56].

The Simuliidae family contains 2,025 named species,
12 of which are fossil, and is widely distributed to all
biogeographic regions [57]. Their meal source is based
on warm-blooded animals including man, cattle, and
birds, but also reptiles [58]. In this work, we compare
the sialotranscriptome of female S. guianense with those
of other black flies available in the non-redundant (NR)
protein database of the National Center for Biotechnol-
ogy Information (NCBI, National Library of Medicine,
NIH) database: Simulium vittatum (Neartic, autogenous,
and zoophilic) and Simulium nigrimanum (Neotropical,
anautogenous, and anthropophilic, but also zoophilic).

We present the analysis of a set 1,722 c¢cDNA
sequences out of 1,974 that yielded good sequence qual-
ity, 74.7% of which were associated with secreted pro-
ducts. We describe 174 coding sequences—mostly full
length—the majority of which were confirmed by tryptic
digestion/mass spectrometry (MS). Most salivary pro-
teins found have no known function. Our results should
help to understand the molecular evolution of black flies
to blood feeding, characterize the role of some protein
families associated with sugar feeding, and contribute to
our understanding of the role of the Simulium saliva in
the transmission of O. volvulus. It also consists of a plat-
form for mining novel antihemostatic compounds and
vaccine candidates against filariasis.

Results and discussion

cDNA Library Characteristics

A total of 1,772 clones out of 1,974 that were sequenced
yielded good quality sequences and were used to assem-
ble a database that yielded 752 clusters of related
sequences, 491 of which contained only one EST. The
consensus sequence of each cluster is named either a
contig (deriving from two or more sequences) or a sin-
gleton (deriving from a single sequence). As indicated
before [14,15], this paper uses “cluster” or “contig” to
denote sequences derived from both consensus
sequences and singletons. The 752 clusters were com-
pared using the program blastx, blastn, or rpsblast [59]
to the NR protein database of the NCBI, a gene
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ontology database (GO) [60], the CDD of the NCBI [61]
and a custom-prepared subset of the NCBI nucleotide
database containing either mitochondrial or rRNA
sequences.

As indicated in our previous work [14,15], “because
the libraries used are unidirectional, three-frame transla-
tions of the dataset were also derived, and open reading
frames starting with a methionine and longer than 40-
AA residues were submitted to the SignalP server [62]
to help identify putatively secreted (S) proteins. The
EST assembly, BLAST, and signal peptide results were
loaded into an Excel spreadsheet for manual annotation
and are provided in additional File 1.”

Four categories of expressed genes derived from the
manual annotation of the contigs were created (Table 1
and Figure 1). The S category contained 56.9% of the
clusters and 74.7% of the sequences, with an average of
3.1 sequences per cluster. This value is 46% larger (Xy>
= 44.2; p = 2.9E™") than that seen in S. vittatum, where
only 51% of ESTs encode S proteins, and 21.4% larger
than in S. nigrimanum (Ly*> = 14.4; p = 0.00014).

The housekeeping (H) category had 22.9% and 16.2%
of the clusters and sequences, respectively, and an aver-
age of 1.7 sequences per cluster. One singleton was clas-
sified as a transposable element (TE), constituting less
than 0.1% of the ESTs or contigs. TEs are a common
finding in hematophagous sialotranscriptomes and most
probably reflect regulatory transcripts repressing trans-
position rather than active transposition [63]. Tran-
scripts with matches to TE were also found in S.
nigrimanum sialotranscriptome [15]. Finally, 20.1% of
the clusters, containing 9.0% of all sequences, were clas-
sified as unknown (U), because no functional assign-
ment could be made. This category had an average of
1.1 sequences per cluster, and most of these consisted
of singletons. A good proportion of these transcripts
could derive from 3’or 5 untranslated regions of genes
of the previous two categories, as was indicated for a
sialotranscriptome of Anopheles gambiae [64].

Table 1 Functional classification of salivary transcripts
originating from the salivary glands of Simulium
guianense

Class Number of Number of ESTs/
ESTs Contigs Contig
Secreted products 1324 428 3.1
Housekeeping 288 172 1.7
Transposable 1 1 1.0
element
Unknown products 159 151 1.1
Total 1772 752
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Figure 1 Functional class distribution of expressed sequence tags (EST) or assembled contigs (Contigs) deriving from a salivary gland

S Class of Expressed Genes

Inspection of Additional File 1 indicates 1,324 ESTSs asso-
ciated to secreted products that were characterized to sev-
eral families, including ubiquitous proteins families such
as Antigen-5, Kunitz domain-containing polypeptides,
trypsin, amylase/maltase, apyrase, hyaluronidase, and lyso-
zyme. Insect-specific families, such as Aegyptin and D7/
OBP superfamily, were also found. About 63.6% of all
secreted products revealed exclusively Simulium-specific
families, where the SVEP family contained 22.5% of the
sequences. Others Simulium-specific families were found
such as collagen-like peptide, poly-Q mucin, and glycine
histidine-rich. Some of these families (Table 2) were found
in previous transcriptomes from black flies [14,15]. Novel
putative families were deorphanized in S. nigrimanum.

H Genes

The 172 clusters (comprising 288 EST's) attributed to H
genes expressed in the salivary glands of S. guianense
were further divided into 15 subgroups according to
function (Table 3). Not surprisingly for an organ specia-
lizing in the secretion of polypeptides, the two larger sets
within the H category were associated with protein synth-
esis machinery (71 clusters containing 113 ESTs; 39.2%)
and energy metabolism (28 clusters containing 33 ESTs;
11.4%). This pattern was also observed in other sialotran-
scriptomes of hematophagous insects [22,65].

Exceptionally, the protein synthesis class revealed a
significant increase of 38% more ESTs in S. guianense
compared with S. vittatum (Iy* = 18.9; p = 1.35E%).
This increase was also observed in relation to S. nigri-
manum (15.3%), but it was not significant statistically
(Zx? = 0.76; p = 0.38).

We have arbitrarily included a group of 93 ESTs
(32.3%) with 28 clusters in the H category that represent
highly conserved proteins of unknown function, presum-
ably associated with cellular function. Previously, sia-
lomes of S. vittatum and S. nigrimanum described 24%
and 27% of ESTs to this category, respectively. Here, S.

guianense also revealed an increase of 34.5% and 19.6%
more ESTs than the species described above, respec-
tively, which was statistically significant only in reference
to S. nigrimanum (x> = 18.4; p = 1.77E°°%). They are
named “unknown conserved” in Additional File 1. These

Table 2 Functional classification of putative secreted
transcripts originating from the salivary glands of
Simulium guianense

Family Number of  Contig ESTs/
ESTs Cluster
Ubiquitous protein families
Antigen-5 family 5 2 25
Yellow family 1 1 1.0
ML domain family 1 1 1.0
Lipocalins 2 2 10
Immunity related products 36 12 30
Protease inhibitor domains
Serpin 1 1 1.0
Kunitz-domain protease 19 9 2.1
inhibitor
Enzymes
Trypsin 69 28 2.5
Hyaluronidase 5 1 50
Apyrase 14 4 35
Amylase 61 14 44
Adenosine deaminase 1 1 1.0
Destabilase 1 1 1.0
Insect-specific families
Aegyptin family 23 11 2.1
D7 family (OBP superfamily) 242 72 34
Simulium-specific families
SVEP vasodilator family 190 56 34
Other Simulium-specific 427 146 29
families
PolyQ mucin family 51 16 32
GH repeat family 127 33 38
Collagen-like family 48 17 28
Total 1324 428
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Table 3 Functional classification of housekeeping
transcripts originating from the salivary glands of
Simulium guianense

Function Number of  Contig ESTs/
ESTs Cluster

Protein synthesis 113 71 1.6
Energy metabolism 33 28 1.2
Signal transduction 18 14 13
Transporters and storage 5 5 1.0
Proteasome machinery 1 1 1.0
Protein modification 6 6 1.0
machinery
Protein export machinery 4 4 1.0
Nuclear regulation 2 2 1.0
Nucleotide metabolism 2 2 1.0
Transcription machinery 2 2 1.0
Carbohydrate metabolism 3 3 1.0
Amino acid metabolism 1 1 1.0
Detoxification metabolism 3 3 1.0
Cytoskeletal 2 2 1.0
Unknown conserved 93 28 33

Total 288 172

sets may help functional identification of the “conserved
hypothetical” proteins as previously reviewed by Galperin
and Koonin [66]. The complete list of all 288 gene clus-
ters, along with further information about each, is given
in Table 3 and Additional File 1.

Analysis of the S. guianense Sialome

Several clusters of sequences coding for H and S poly-
peptides indicated in Additional File 1 are abundant and
complete enough to extract novel consensus sequences.
A total of 174 novel sequences—164 of which code for S
proteins— are grouped together in Additional File 2.
With this database, we characterized the proteome via
analysis of SDS-PAGE separated proteins that were tryp-
tic digested and submitted to MS/MS analysis (Figure
2). The results of this experiment are integrated within
the description of the deduced proteins from the tran-
scriptome analysis. Here, we used proteome analysis to
confirm 28 of the 32 protein families found in this sialo-
transcriptome (Additional File 2), which are described in
more detail below. The reader is here informed that the
introduction of the diverse protein families may contain
text previously used in our publications on Simulium
sialomes [14,15] and such text will appear in “quotes”.

Functional Classification of S Families from S. guianense
Ubiquitous families or domains

Enzymes

Several transcripts found in the sialotranscriptome S.
guianense encode proteins with sequence similarity to
several secreted enzymes such as glycosidase, serine
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proteases, hyaluronidases, apyrase, adenosine deaminase
(ADA), and destabilase. They can be associated with
blood feeding, sugar feeding, or both, as follows:
Glycosidases “Amylases and maltases are ubiquitous
enzymes that help digestion of carbohydrates and are
commonly found in sialotrancriptomes from Nemato-
cera including mosquitoes, biting midges, sand flies, and
black flies [67]. These enzymes can be recognized by the
KOG motif 0471, named Alpha-amylase.” The proteome
of the mosquito An. gambiae has 17 members of this
family, one of which (AGAP002102) is expressed in the
SGs [64]. The proteome of Ae. aegypti contains 24 such
enzymes, at least two of which are expressed in their
SGs [25] while Culex quinquefasciatus has 35 such
enzymes, with two also expressed in their SGs [68].
Additional File 2 presents two truncated gene products
coding for glycosidases (Sg-214 and Sg-296). Glycosi-
dases of S. guianense have 79% sequence identity to
other described black fly enzymes (blastp comparisons
can be seen in Additional File 2). Phylogenetic analysis
of the S. guianense protein sequences together with
their closest BLAST matches against the NR database
indicates that the two S. guianense proteins group into
different clades with strong bootstrap support (Figure
3). Sg-296 groups to other Simulium enzymes, to a sali-
vary sand fly enzyme, and to drosophilids, as indicated
by clade I (Figure 3). Sg-214, on the other hand, groups
with a second set of Simulium enzymes and, with 76%
bootstrap support, to Culicine mosquitoes and salivary
biting midge enzymes,[34,69] as shown by clade II (Fig-
ure 3). Notice that the mosquitoes, black flies, and Culi-
coides sequences each group within subclades having
strong bootstrap support, as expected. A third clade of
mosquito-only enzymes (including anophelines and culi-
cines) is also obtained, which merges without strong
bootstrap support to Clade II. Interestingly, the mos-
quito enzymes in both clades II and III have all been
previously described in salivary transcriptomes, suggest-
ing a common origin of these sugar-hydrolyzing
enzymes in the ancestral fly originating mosquitoes,
black flies, and biting midges. These results indicate that
the two S. guianense sequences appear to be a product
of ancient gene duplication, Sg-296 from Clade I being
the most ancient, as it groups with enzymes of Brachy-
cera, while the two salivary gene products from Culicine
mosquitoes appear to derive from a gene duplication
after the split of the Culicidae. The sequences of the gly-
cosidases Sg-214 and Sg-296 found in the sialotranscrip-
tome of S. guianense were confirmed by proteome
analysis within the fractions 16 and 17, respectively, just
above the 49-kDa standard (Figure 2 and Table 4).
Serine proteases “Serine proteases are commonly found
within hematophagous insect sialomes [70] except in
sand flies, where it was only found in the Phlebotomus
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Figure 2 1-D gel electrophoresis of Simulium guianense salivary
gland homogenates. The numbers at the left indicate the mol wt
of the protein standards (kDa), shown in the left lane. The right gel
lane shows the separation of the salivary gland proteins. The grid at
the right (F1-32) represents the gel slices submitted for tryptic

digest and tandem mass spectrometry identification.

ariasi sialome [30]. This family has an important role in
the immune system, acting as prophenoloxidase activa-
tors or in digesting skin matrix components such as in
an elastase function, or hydrolyzing host blood-clotting
components such as fibrinogen/fibrin, or activating plas-
minogen [71,72]. In Ae. aegypti, transcripts coding for

Page 5 of 25

serine protease with the CUB domain were reported,
indicating specialized substrate recognition [73].” The
sialotrancriptome of S. guianense allowed the identifica-
tion of transcripts coding for three secreted serine pro-
teases varying with predicted mol wt between 25.4 and
27 kDa, which may derive from three polymorphic
genes. Alignment of representative members of these
three gene products from S. guianense (Sg-416, Sg-138,
and Sg-244) with their best BLAST matches (only Dip-
tera sequences were included) produces a phylogram
indicative of one clade that is related to mosquito and
fruit fly sequences with strong bootstrap support (Figure
4) and one additional Simulium-specific clade, the latter
containing two sub clades. This Simulium-specific clade
is quite divergent, having only 27% or less identity to
their best Diptera match, indicating fast evolution of
this clade. The sub-clades (marked as Simulium 1, 11,
and III in Figure 4) each contain one enzyme from each
of the Simulidae thus far analyzed for their sialotran-
scriptome, indicating conservation of these threee sali-
vary expressed genes in black flies. An additional S.
nigrimanum sequence is also found in this Simulium-
specific clade, indicating that a fourth gene may be
expressed in this fly. The serine protease proteins found
in the sialotranscriptome of S. guianense were confirmed
by proteome analysis within the fractions F24 and F25,
located near the 28-kDa marker, consistent with its pre-
dicted (25 to 27 kDa) mature weight of these proteins
(Figure 2 and Table 4).

Hyaluronidases Hyaluronidases are enzymes that cleave
hyaluronic acid, which is a main component of the
extracellular matrix in vertebrates. This enzyme was
first described in saliva of New World Lutzomyia longi-
palpis [74] and thereafter in the SGs of several other
Old and New sand fly species [75,76]. It was also
reported in S. vittatum [77]. Hyaluronidases also have
been described in the sialotranscriptome of C. quinques-
faciatus [68] and Glossina morsitans morsitans [51].
Interestingly, although Phlebotomus papatasi and Phle-
botomus dubosqui SGHs displayed hyaluronidase activ-
ity, no such transcripts were found in their cDNA
libraries [75]. Hyaluronidase transcripts were also absent
from S. vittatum and S. nigrimanum sialotranscripomes
[14,15]. Here, we found one full-length sequence (with
five ESTs) coding for a protein with 37.8 mol wt and pl
9.2 matching the pfam01630 domain named “Glyco_hy-
dro_56, Hyaluronidase” with an e value of 1e®'. The NR
database of the NCBI revealed identities above 43% to
hyaluronidases from Lu. longipalpis and Phlebotomus
arabicus in addition to matching other insect enzymes
from Pediculus humanus and some vespids; however,
these non-dipteran sequences were only 34% identical at
the AA sequence level. Fourteen tryptic peptides
obtained by MS/MS had matches to hyaluronidase
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protein within fraction 20, just above the 38-kDa stan-
dard and consistent with the predicted 37-kDa mature
mol wt of this protein (Figure 2 and Table 4).

Apyrase “This enzyme hydrolyzes ATP and ADP to
AMP and orthophosphates and has been commonly
found in blood feeding arthropods, where it has been
suggested as a typical case of convergent evolution [67].
Because ADP and ATP are important activators of pla-
telet and neutrophils, apyrase activity removes these
agonists of hemostasis and inflammation [78]. Different
genes have been described for this activity such as mem-
bers of the 5’-nucleotidase family in mosquitoes and
triatomines [79-82], the Cimex-type apyrase family in
bed bugs and sand flies [83,84] and the type CD-39 pro-
tein family in fleas [52]. Expression of this enzyme in
mosquitoes has helped to understand the feeding prefer-
ence in Anopheles, Aedes, and Culex genus [85]. As
Culex has birds as the primary source of blood and does
not face the platelet barrier, members of this genus
reveal little or absent expression of this enzyme [72].” In
black flies, this enzyme activity was previously described
in SGHs from several species with different degrees of
anthropophy or zoophilic, gonotrophic cycle and vector
or non-vector status, revealing dependence on Ca*? or
Mg*? ions for activation and with positive association to
species with confirmed vector status for O. volvulus
[8,86]. While we do not know the origin of black fly
salivary apyrases, transcripts coding for members of the

5’-nucleotidase family have been previously described in
S. vitattum and S. nigrimanum [14,15]. Studies in black
fly sialotrancriptomes also revealed an increase in the
expression of putative apyrase transcripts in S. nigrima-
num when compared with S. vittatum, with statistically
significant difference (p = 0.00337) [15]. The 5’-nucleoti-
dases are ubiquitous enzymes usually found bound to
the extracellular face of biologic membranes through a
glycophosphatidyl-inositol phosphate anchor [87,88].
However, salivary secreted enzymes of mosquitoes [80]
and triatomine bugs [81] lack the carboxyterminal
domain where the glycolypid is anchored, allowing their
secretion. Here, we found 14 transcripts coding for the
putative salivary apyrase of S. guianense (Additional File
1). Alignment of the putative apyrase of S. guianense
with their simulid homologs plus vertebrate sequences
known to be membrane anchored reveals the lack of the
carboxyterminal site for the glycolipid anchor in S. guia-
nense (Figure 5), as was also found for other Simulium
putative apyrases [14,15], indicating the S. guianense
enzyme to be secreted. Fifty-eight tryptic peptides were
deducted by MS/MS with matches to apyrase protein
(Sg-354) originated from fraction 16, located just below
the 62-kDa standard (Figure 2 and Table 4).

Adenosine deaminase (ADA) ADA transcripts,
although previously found in sialotranscriptome of mos-
quitoes and sand flies,[16,26,29,73,74,89,90] here appear
for the first time in black fly sialotranscriptomes. Ae.
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Table 4 Putative secreted proteins deduced from the sialotranscriptome analysis and indication of expression by

proteomic analysis

Description Protein name | Fraction — number of peptides
Laminin-like Sg-431|F14— 2

Amylase/maltase Sg-214|F16—>116, Sg-296|F17—32

Apyrase 6—58

Simulium mucin

Hyaluronidase
Diptera secreted protein from conserved insect

Simulium collagen-like
Acid 28-kDa

Long D7

Serine proteases
Antigen-5

Aegyptin

Simulium basic 28-kDa
Deorphanized 19-kDa
Sv 7.8-kDa

D7 16-kDa

Simulium basic 13 kDa
Deorphanized Sn 8-10 Cys W
Lysozyme

Kunitz domain

SVEP

5-Cys Simulium

Basic 7-13 Simulium
Cecropin

Ultra-short D7

Simulium basic 7.4 kDa
Deorphanized 8 kDa basic
Similar to Kunitoxin

Sg-126|F16—12, Sg-129|F16—>12, Sg-121|F16—>12,
Sg-120F 1611, Sg-127|F16—>11, Sg-117|F16—>10,
Sg-128|]F16—10, Sg-119|F16—9, Sg-125|F9—7
Sg-414|F20—>14

Sg-215|F21—134, Sg-216|F21—133, Sg-292|F17—49,
Sg-347|F14—36, Sg-256|F13—>28

Sg-152|F23—87, Sg-149|F23—84

Sg-320|F23—45, Sg-321|F23—41, Sg-319|F23—23
Sg-261|F26—42, Sg-220|F23—24, Sg-218|F23—14
Sg-244|F24—48, Sg-138|F25—28, Sg-416| F24—6
Sg-457|F24—30

Sg-276|F24—37

Sg-136|F24—34

Sg-303|F27—17, Sg-309|F27—9

Sg-356|F27—>11, Sg-372|F30—9, Sg-227|F32->4, Sg-
205|F31—>3

Sg-331|F29—14, Sg-350|F30—9

Sg-446|F29—>2

Sg-340|F29—22, 5g-324|F29—12

Sg-263|F30—7

Sg-395|F30—2

Sg-1|F30—>164, Sg-8|F30—>149, Sg-92|F30—»53, Sg-
102|F30—43, Sg-94|F30—34, Sg-93|F30—33, Sg-
100|F30—32, Sg-95|F30—26, Sg-90|F30—25, Sg-
99|F30—25, Sg-103|F30—22, Sg-101|F30—20, Sg-
344|F30—>14

5g-282|F30—3

5g-403|F30—8, Sg-420|F31—3

Sq-368|F31—2, Sg-369|F31—3

Sg-383|F31->3

Sg-422|F31—4

Sg-258|F31-5

Sq-375|F31—4

1
1
Sg-354F 1
1
1

aegypti salivary homogenates hydrolyze adenosine (Ado)
to inosine, and then to hypoxantine plus ribose, with
enzymatic activities in saliva and SGHs [91,92]. Recom-
binant ADA from P. dubosqi was shown to have potent
activity [93]. Here, we found a singleton EST producing
one truncated sequence with 68% identity with Ae.
aegypti ADA. Puzzlingly, Ado is a powerful antiplatelet
and vasodilator, and the presence of a salivary ADA
should be considered non-adaptative; however, Ado is
also a potent inducer of mast cell degranulation, and for
this reason it may be in the insect’s interest to remove
this product. Interestingly, P. papatasi does not codify

transcripts to ADA but contains Ado and AMP in its
saliva, which acts as the main salivary vasodilator [94].

Destabilase “This enzyme is an endo-g-(y-Glu)-Lys iso-
peptidase, which cleaves isopeptide bonds formed by trans-
glutaminase (Factor XIIla) between Gln glutamine y-
carboxamide and e-amino groups of lysine and was first
described in the saliva of leeches. Its activity leads to disso-
lution of stabilized fibrin [67]. Destabilases are members of
the lysozyme superfamily of proteins [95,96].” A 3’ trun-
cated singleton EST is 86% identical to S. nigrimanum
destabilase (Additional File 1). It is still unknown whether
salivary homogenates of black flies have destabilase activity.
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Protease inhibitor domains

Serine protease inhibitors (serpins) Serpins were pre-
viously reported in sialomes of Ae. aegypti, Ae. albopic-
tus, Ochlerotatus triseriatus and Lu. longipalpis. The
gene coding for the protein gi|3411116 in Ae. aegypti
represents the main salivary anticlotting protein in this
mosquito with specificity to fXa [97,98], having as
homologue the protein gi|56417456 in Ae. albopictus.
Targets of others serpins found in mosquito sialotran-
scriptomes are unknown [16]. Here, we found one sin-
gleton EST (Sg-500) coding for a 3’ truncated serpin
with 60% identity to a homologous serine protease inhi-
bitor from Ae. aegypti and An. gambiae. Serpins have
not been found in black fly sialotranscriptomes, possibly

because these flies use Kunitz-domain proteins as antic-
lotting agents.

Kunitz-domain protease inhibitors “Kunitz domain-
containing proteins are associated with protease inhibi-
tors and so far have been found in sialotranscriptomes of
Nematocera black flies and biting midges but not in mos-
quitoes, sand flies, or bloodsucking Hemiptera. Kunitz
domain-containing proteins, however, are abundant in
tick sialotranscriptomes.” Hematophagous arthropods
secrete protease inhibitors that can act in specific points
of the coagulation cascade, mainly against thrombin or
factor Xa (or both). This activity has been previously
described in SGHs of several black fly species such as
S. vittatum, S. ochraceum, S. argus, and S. metallicum
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[5-7,99] and Culicoides midges [100]. The sialotranscrip-
tome of S. guianense contains a typical single Kunitz pro-
tein deducted from three ESTs (Sg-395). This protein has
its best blastp match to its homologous S. nigrimanum
(72% of identity) and S. vittatum (58%) proteins. Pre-
viously, S. vittatum salivary homogenates were shown to
have potent fXa inhibitory activity, but its molecular nat-
ure remains unknown [5]. Salivary homogenates of S.
guianense also inhibited the same target of the coagula-
tion cascade (data not published). It is possible that the
fXa inhibitor of Simulium resides in a Kunitz domain-
containing protein. Two tryptic peptides obtained by MS/
MS matching Kunitz-domain protein (Sg-395) were
found within fraction 30, located just below the 6-kDa
standard (Figure 2 and Table 4).

Ubiquitous protein families

Immunity-related products In this group, we found full
coding sequences to two ubiquitous antimicrobial pep-
tides: lysozyme and cepropin. These families are com-
monly found in hematophagous arthropods, and their
presence was previously reported in black fly sialotran-
criptomes [14,15].

The S. guianense sialotranscriptome revealed 25 ESTs
coding for members of the lysozyme family (Additional
File 1), where several possible alleles of the same gene
were identified. S. guianense salivary lysozyme is 79%
identical to S. migrimanum salivary lysozyme and 52%
identical to its closest mosquito relative (Additional File
2). Lysozyme activity in S. guianense was confirmed to
exist in SGHs (unpublished, Chagas). This activity was
described in both male and female mosquitoes
[101,102]. Seven tryptic peptides deducted by MS/MS
had matches to lysozyme protein (Sg-263) within frac-
tion 30, located just below the 6-kDa standard (Figure 2
and Table 4).

Cecropins are small secreted basic proteins of 3 kDa
mol wt, rich in aliphatic AAs, mainly Val, with highest
conservation in its carboxy terminal region. Ten ESTs
from the S. guianense sialotranscriptome code for two
closely related, possibly allelic, cecropins. These cecro-
pins, as expected, have their best matches to other
Simulium and mosquito cecropins. The cecropin pep-
tides (Sg-368 and Sg-369) found in the sialotranscrip-
tome of S. guianense were confirmed by proteome
analysis within the fraction 31, located just above the 3-
kDa marker, consistent with the predicted 3-kDa mature
mol wt of this protein (Figure 2 and Table 4).
Antigen-5 family “This ubiquitous family belongs to
the wider CAP superfamily [103]. Most members have
no known function, but a few have been related to
pathogen defenses in plants, as toxins in snake and
lizard venoms [104,105], as a platelet aggregation inhibi-
tor in a tabanid fly [106], and as a possible inhibitor of
the classical pathway of complement activation in the
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stable fly [107,108].” Members of this family are found
in all nematoceram sialotranscriptomes [67]. The anno-
tated An. gambiae proteome reveals 21 proteins for this
family, 2 of which are expressed in the SGs [64]. Simi-
larly, the Ae. aegypti and C. quinquefasciatus proteome
have over 30 members of the family, of which at least 2
are expressed in their SGs [25,68]. The S. guianense sia-
lotranscriptome reveals two clusters coding for CAP
family members. The phylogram resulting of the align-
ment of the two S. guianense proteins with their 25 best
blastp matches from the NR protein database (excluding
drosophilid proteins) reveals one clade of bloodsucking
Nematocera with relatively strong bootstrap support
(70%), and strong bootstrap support for the sub-clades
containing each of the four families. Interestingly, all
members of this clade (marked as “Salivary” in Figure 6)
were found in sialotrancriptomes, suggesting a common
salivary ancestor for this particular CAP-coding gene
within Nematocera. The S. guianense protein Sg-453 is
outside this clade and may represent an additional
Simulium gene member of the CAP family that has
been recruited for a salivary function. Thirty tryptic pep-
tides deducted by MS/MS had matches for an Antigen-5
protein (Sg-457) within fraction 24, located just above
the 28-kDa marked, near the predicted 30-kDa mature
mol wt of this protein (Figure 2 and Table 4).

Yellow family This family is insect-specific in eukar-
yotes and received this name due to mutation of a gene
that induces a yellow phenotype in Drosophila, resulting
from the disruption of melanin formation. In Nemato-
cera, this family is abundantly expressed in sand flies
and has been suggested as important markers of vector
exposure [109]. S. guianense reveals only one EST to
Yellow protein with a match to Yellow of C. quinquesfa-
ciatus (64% identity). Interestly, S. vittatum also reveals
one transcript to the Yellow family [14]. The function of
this protein in Simulium remains unknown.

ML domain family S. guianense contains one transcript
coding for a protein containing the ML domain, which
was not previously reported in black fly sialomes. This
domain is implicated in lipid recognition, particularly in
the recognition of pathogen-related products, but could
also have a lysosomal function [110] and thus have a
housekeeping function. It has an immunoglobulin-like
B-sandwich fold similar to that of E-set. The blast to NR
database suggests similarity to Niemann-Pick Type C-2
putative from An. aegypti (also known as Epipidymal
secretory protein E1) and similarities to MPA2 allergen
from Nasonia vitripennis (Hymenoptera). The function
of this protein in S. guianense remains unknown.
Lipocalins Lipocalins are proteins widely distributed in
animals and plants. This protein family is highly
expressed in triatomines, such as Rhodnius prolixus,
Triatoma infestans [47], Triatoma brasiliensis [111] and
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Dipetalogaster maxima [112]. In triatomines, lipocalins
are reported as carriers of nitric oxide, kratagonists (bin-
ders of agonists) of biogenic amines, Ado nucleotides,
and thromboxane A,, as well as inhibitors of collagen-
induced platelet aggregation and thrombin and as aller-
gens [70,113-116]. We found two ESTs coding for dif-
ferent lipocalins (Sg-671 and Sg-568). The deducted AA
sequence of both transcripts matches human apolipo-
protein in the Swissprot database. If secreted in saliva,
these proteins are candidates for agonist lipid binding.
Insect-specific families

Aegyptin family This protein family, commonly found
in sialotranscriptomes of mosquitoes, was first named as
30-kDa Aedes allergen [117] and as GE-rich protein
[89]. It has revealed high levels of expression in the sia-
lotranscriptome of Anopheles funestus [18]. Functional
analyses of an Ae. aegypti family member, named
Aegyptin, as well as a member from An. stephensi, have
demonstrated its function as an antagonist of collagen-
induced platelet aggregation and as a useful tool for
inhibiting platelet-collagen interaction in vitro and in
vivo [18,72,118]. Previous black fly sialotranscriptomes
have revealed proteins similar to Aegyptin, supporting
the common origin of hematophagy in mosquitoes and
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black flies as proposed by Grimaldi and Engel [53].
Here, we found 23 ESTs of the S class (Additional File
1) coding for what appear to be alleles of a single gene
similar to Aegyptin-like proteins, showing 60% identity
to Aegyptins from sialotranscriptomes of black flies and
35% to mosquito homologs. The alignment revealed
GE-rich regions mainly in the middle of the sequences
(not shown). Thirty-seven tryptic peptides obtained by
MS/MS had matches to Aegyptin protein (Sg-276)
within fraction 24, located just above the 28-kDa mar-
ker, consistent with predicted (28 kDa) mature weight
of this protein (Figure 2 and Table 4).

Diptera Secreted Protein from Comnserved Insect
Family Five proteins found in sialotranscriptome of S.
guianense were similar to secreted protein from insects.
This family was previously described in S. nigrimanum
sialotranscriptome. They vary between 37 and 57 kDa
mol wt with pI 6.1 to 9.6. The best matches to the NR
database showed similarities to several families of Dip-
tera (Culicidae, Ceratopogonidae, Drosophilidae) and
Hymenoptera (Pteromalidae and Formicidae) maintain-
ing a low degree of conserved AA. The phylogram sug-
gests at least four different genes to exist in S.
guianense. Pattern-initiated PSI-BLAST (PHI-BLAST)
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algorithm. For other details, see Figure 3.
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using the initiation pattern G-x-[MLI]-x(6)-[WF]-x
(7,12)-[KNE]-x-[IMFL]-x(37,40)-[VIL]-x-[YF]-x(3)-
[QKR]-x(14)-[IL]-x(5,6)-[NDE]-x(5)-[ILV]-[AS] shows
the diversity of this protein family within insects (Addi-
tional File 3).

Laminin-like Secreted Salivary Protein Found in
Simulium and Culicoides Laminin-like proteins have
been suggested to be extracellular matrix proteins [34].
The S. guianense sialotranscriptome revealed one trun-
cated protein (Sg-431) with four ESTs coding to a S. vit-
tatum homolog (76% identity) and to a Culicoides
nubeculosus protein with 32% identity. Two tryptic pep-
tides obtained by MS/MS had matches for laminin-like
protein within fraction 14, just above the 62-kDa stan-
dard (Figure 2 and Table 4).

D7/0BP superfamily “The odorant-binding protein
family is ubiquitous in insects. The D7 protein family,
specific to bloodsucking Nematocera, is recognized as a
member of the OBP superfamily [119,120] but it con-
tains two additional a-helices [121,122]. Short and long
forms of the D7 family exist in which one or two D7
domains exist in the same protein, producing proteins
with mature mol wt of ~18 or ~28 kDa. In Simulium,
an extra-short family with ~12 kDa is also found, remi-
niscent of sand fly salivary proteins, which also have an
ultra-short form but bear no similarities to the black fly
proteins at the AA level [67]. “The S. guianense OBP/D7
sequences were grouped in the three subfamilies
described below.

Long D7 family: Two proteins with two OBP domains
are recognized in the S. guianense sialotranscriptome.
When searched against the NR database using blastp,
these proteins only produce significant matches to other
Simulium proteins, but all three produce two matches
each to the PFAM PBP_GOBP domain when using the
tool rpsblast, one in the first half and the other in the
second half of the protein. A third truncated protein has
only one OBP domain but matches long D7 proteins of
S. nigrimanum. Long D7 proteins had tryptic peptides
deducted by MS/MS within fractions F23 and F26 near
the 28-kDa standard, consistent with the predicted (28
kDa and 24 kDa) mature weight of these proteins (Fig-
ure 2 and Table 4).

D7 16-kDa family: Two S. guianense proteins contain-
ing one OBP domain were found. Sg-331 produces sig-
nificant similarities only to other Simulium proteins, but
Sg-350 additionally retrieves OBP from C. quinquefas-
ciatus. Tryptic peptides were deducted by MS/MS
matches to D7 16-kDa proteins within the fractions 29
and 30, just above the 6-kDa marker (Figure 2 and
Table 4).

Ultra-short D7 proteins (10-12 kDa mature weight):
This was the most expressed family within the D7/OBP
superfamily, encompassing 80 ESTs (Additional File 1).
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All clusters contain signal peptide, suggesting secreted
proteins. These data suggest the existence of at least
four genes coding for ultra-short D7 proteins (Sg-75,
Sg-190, Sg-363, and Sg-383) and several possible alleles.
Only Sg-383 was deducted by MS/MS within fraction
31, just below the 6-kDa marker (Figure 2 and Table 4).
Simulium-specific families

Of the 1,324 ESTs of the S class, 843 ESTs are specific
to Simulium, encompassing 18 specific families. Some
families from S. nigrimanum were deorphanized, and a
new family coding to Kunitoxin-like proteins was first
found in insect sialotranscriptomes. More details of
these families are described below.

SVEP vasodilator family “This family is specific to
black flies and was originally described in SGHs of S.
vittatum, when it was named Simulium vasodilator
erythema protein (SVEP) because it produced a pro-
longed vasodilation when tested in rabbit skin [10]. A
recombinant protein (rSVEP) was expressed and func-
tionally characterized as a potent vasodilator, possibly
activating ATP-dependent K+ channels [123]. This
property has an important role during blood feeding
and was suggested as one key compound of the compe-
tence vector of these flies in the transmission of Oncho-
cerca parasites [124].” Sialotranscriptomes of two black
fly species identified SVEP to belong to a diverse multi-
gene family with at least five genes for each species
[14,15]. The sialotranscriptome of S. guianense also
revealed proteins homologous to SVEP, totaling 190
ESTs with identities to other Simulium SVEPs varying
from 50 to 70%. Alignment of members of this family
showed sequences with similar sizes but with few con-
served AAs. Comparative phylogenetic analysis of all
SVEP proteins, after 10 000 bootstraps grouped the
majority of the members of S. vittatum in a specific
clade (I) with 80% bootstrap support (Figure 7). The
phylogram indicates at least three genes and several
either recent gene duplications and/or alleles coding to
members of this family (clade IV on Figure 7). The pro-
tein Sg-13 shares clade II, with 92% of bootstrap sup-
port, with its homologous S. nigrimanum proteins. EST's
coding for Sg-13 or very closely related proteins repre-
sent more than 50% of the sequences coding for SVEP
members in this sialotranscriptome. Clade III groups
only SVEPs from S. vittatum and S. nigrimanum with-
out bootstrap support. Clade IV reveals a possible case
of gene duplication or expression (or both) of a very
polymorphic gene from S. guianense, and the last clade
(V) groups two clusters (Sg-344 and Sg-343) of S. guia-
nense with its homologous S. nigrimanum (with 100%
bootstrap support), which appear completely distinct
from other SVEP proteins. This scenario indicates that
at least two genes (Sg-13 and Sg-344) have common
ancestors with S. nigrimanum and a third gene could
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have given rise to the increased of expression of this
protein family, shown in clade IV, possibly with many
recent gene duplications. Interestingly, S. guianense has
190 ESTs coding for SVEP (14.4% of the transcripts of
the S class), more than double those of S. nigrimanum
(6.8% of its ESTs from the S class) and more than three
times those of S. vittatum (which codes 4.5% of its EST's
from the S class to SVEP). These increases are highly
significant, having scores of x> = 16.72 (p = 2.3E®) and
x> =725 (p = 1.6E™") to S. nigrimanum and S. vitta-
tum, respectively. All sequences of SVEP proteins found
in the sialotranscriptome of S. guianense were confirmed
by proteome analysis within fraction 30, located just
above the 14-kDa marker, consistent with the predicted
(14 kDa) mature weight of SVEP protein (Figure 2 and
Table 4).

H-rich, acid proteins of Simulium This protein family
is known by its repeats of histidine, proline, glutamine,
and glutamic acid residues. The repeat nature of these
proteins had been suggested to interact with matrix pro-
teins—possibly collagen—and function in a manner analo-
gous to mosquito Aegyptins, which inhibit collagen-
induced platelet aggregation [88]. It is also possible that
the His repeats act as antimicrobials by chelating Zn or
other trace element ions [125-127]. The black fly S. vit-
tatum revealed this family to be the most abundant pro-
tein family expressed in its sialotranscriptome, with four
repeat regions in its sequences (arginine-rich, HG
repeat, HPH repeat, and QPE repeat) [14]. Similarly,
mosquito and Culicoides sialotrancriptomes also contain
proteins with Pro-His and Gly-His repeats, but no other
sequence similarities. The S. guianense sialotranscrip-
tome has 9.6% of all its secretory ESTs coding for mem-
bers of this family, having above 70% identity to their
homologous S. nigrimanum proteins. Alignment (Figure
8) shows that the S. guianense sequences, together with
their homologous S. nigrimanum proteins, contain one
repeat region coding for Pro-Lys-Pro residues, whereas
in S. vittatum, the Lys residue is substituted by Gln.
The phylogram of this protein family (Figure 8), when
added to mosquito and Culicoides sequences, reveals
that all Simulium sequences indicate (as expected) a
common ancestor with 93% bootstrap support, with S.
guianense sharing the same branch with S. nigrimanum
(also as expected).

Mucins “Mucins are low-complexity proteins rich in
serine and threonine residues. They are frequently
found in sialotranscriptomes of bloodsucking arthropods
such as mosquitoes [72,73,128], biting midges [69], bed
bugs [46] and black flies [14,15]. While these proteins’
biologic function is not completely known, they have
been suggested to provide protection to internal parts of
the salivary ducts and also to have antimicrobial func-
tions. They are commonly expressed in moist epithelia,
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where they offer protection [129,130] In addition,
mucins are modified post-translationally, and their
mature forms have N-acetyl-galactosamine residues
[130].” Two types of Simulium-specific mucins are
found in the sialotranscriptome of S. guianense, as
follows.

Simulium mucin family Nine proteins (with 40 ESTSs)
in the S. guianense sialotranscriptome code for Simu-
lium mucin. Their coding sequences have high amounts
of Ser + Thr residues, varying from 34.6 to 42.6%, and
from 40-144 galactosylation sites are predicted by the
NetOglyc server [131]. Although similar sequences were
found in the sialotranscriptome of S. nigrimanum, mem-
bers of this family were absent in S. vittatum. Alignment
of the S. guianense and S. nigrimanum sequences reveals
extensive similarities and identities along the whole
sequence, but the phylogram clearly distinguishes S.
guianense and S. nigrimanum specific clades (Figure 9).
The variation among the S. guianense sequences may
result from splice variants, polymerase slippage on
nucleotide repeats, or multiple genes. Several tryptic
peptides were deduced by MS/MS with matches for
Simulium mucin within fraction 16 (just below the 62-
kDa marker) and to fraction 9 (just above the 96-kDa
marker) (Figure 2 and Table 4).

Acid mucins proteins similar to Basic 7-13 Simulium
family The sialotranscriptome of S. nigrimanum
reported small basic proteins (pI 8.1-10.6) with mature
weight varying from 7 to 13 kDa and above 65% identity
to orphan proteins found in the sialotranscriptome of S.
vittatum [15]. The sialotranscriptome of S. guianense
revealed 13 proteins (with 39 ESTs) with best matches
to members of this family—from both S. vittatum and S.
nigrimanum—at a 50% identity level; however, these
sequences code for acid, not basic, proteins (pl 4.1-4.4)
(Figure 10), with 0 to 19 potential galactosylation sites.
Notably, the S. guianense proteins have an extended
central domain containing Gly-Ser repeats that vary in
size among the proteins, which may reflect polymerase
slippage among closely related genes (Figure 10). The
phylogenetic tree cluster produces monospecific
branches indicative either of single polymorphic genes
or, alternatively, of multiple genes that possibly interact,
producing gene conversions (Figure 10).

Simulium collagen-like family Previous sialotranscrip-
tomes of black flies reported specific proteins named as
Simulium collagen-like that are rich in Pro-Gly residues
[14,15]. Homologs to this family were found in the sialo-
transcriptome of S. guianense, with 17 clusters contain-
ing 48 ESTs (Table 2). These 17 clusters are variations
of only three sequences, which were aligned with their
Simulium homologs (having ~ 40% identity) to produce
the phylogenetic tree shown in Figure 11. Alignment
revealed relatively conserved AAs in the length of the
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bottom represents 10% amino acid substitution. Protein sequences were aligned by the Clustal program, and the dendogram was made with
the Mega package after 10 000 bootstraps with the neighbor-joining algorithm. For other details, see Figure 3.

sequence, with some gaps due to the longer sequences
from S. vittatum. The phylogram maintains monospeci-
fic clades, as seen before for the mucin families (Figure
11). Several tryptic peptides were deducted by MS/MS
within fraction 23, just above the 28-kDa standard,
above the predicted (22 kDa) mature weight of these
proteins (Figure 2 and Table 4).

Sv 7.8 kDa family Members of this family were first
found in the sialotranscriptome of S. vittatum coding
for proteins with 7.8 kDa mol wt [14]. Later, sialotran-
scriptome of S. nigrimanum added six more transcripts
to this family, suggesting it to be a divergent multifamily
gene from Simulium [15]. Sequences from S. guianense
maintain 60% identity to its homologous S. nigrimanum
protein and 50% to the S. vittatum protein, coding for

basic proteins (pI 9-10.4) with mature weight varying
from 7.1 to 13.4 kDa. Alignment revealed low levels of
conserved AAs and at least four genes to S. guianense
proteins of this family, marked as clades I-IV on Figure
12. Several tryptic peptides were deducted by MS/MS in
the fractions F27, F30, F32, and F31. These fractions are
located in the gel just above the 14-kDa marker and just
above the 3-kDa marker. These results are consistent
with the predicted (7 to 13 kDa) mature weight of these
proteins (Figure 2 and Table 4).

Basic 7-13 Simulium family The S. guianense sialo-
transcriptome added two more proteins (Sg-420 and Sg-
403) with six ESTs to this family coding to basic pro-
teins (pI 11) and 8 kDa, with more than 59% similarities
to their homologous S. nigrimanum and S. vittatum
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proteins. Tryptic peptides were found by MS/MS within
fractions 30 and 31, just below the 6-kDa standard (Fig-
ure 2 and Table 4). Their function remains unknown.
Simulium 4.8-kDa family Five more transcripts were
added to this family, which appears highly conserved in
sialotranscriptomes of Simulium. Their sequences code
to acidic proteins (pI 4.4) with 5 kDa of mature weight
and are devoid of cysteines. These peptides have
unknown function.

Simulium Basic 7.4-kDa family The cluster Sg-422
(with four ESTs) codes to a basic peptide of 7 kDa mol
wt and above 50% identity to their homologous proteins
from S. vittatum and S. nigrimanum. This protein family
also does not contain any Cys residues on the mature
peptide. Four tryptic peptides originated from Sg-422
were deduced by MS/MS within fraction 31, just below
the 6-kDa standard, consistent with the predicted (6.8

kDa) mature weight of this protein (Figure 2 and Table
4).

Simulium Basic 13-kDa Sg-446 added three more
ESTs to this family, and has ~ 40% identity to other
Simulium proteins. They do not match other known
proteins in any of the NR, GO, KOG, CDD, PFAM, or
SMART databases. Two tryptic peptides were deduced
by MS/MS within fraction 29, just below the 14-kDa
standard and consistent with the predicted (13.7 kDa)
mature weight of this protein (Figure 2 and Table 4).
5-Cys Simulium family This family received this name
because it contains five Cys in their sequences. One pro-
tein with nine ESTSs is here reported in the S. guianense
sialotranscriptome coding to an acid protein (pl 5.7)
with 14-kDa mol wt and above 60% of identity to homo-
logs found in Simulium sialotranscriptomes. Three tryp-
tic peptides were deduced by MS/MS within fraction
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sequences were aligned by the Clustal program, and the dendogram was made with the Mega package after 10 000 bootstraps with the

F30, just below the 6-kDa standard (Figure 2 and
Table 4).

Families deorphanized from S. nigrimanum. Six addi-
tional protein families were characterized in common
between S. nigrimanum and S. guianense, and no other
known protein. They do not produce significant matches
to others proteins in the NR database, and have thus
deorphanized these S. nigrimanum proteins.

Deorphanized S. nigrimanum 8-10 Cys W family. This
family is so named because their members contain from
8 to 10 conserved Cys and Trp in their mature
sequences. The sialotranscriptome of S. nigrimanum
revealed two distinct subfamilies, one containing 10 Cys

and 5 conserved Trp and other containing 8 Cys and 6
Trp. This last group was suggested as a candidate pro-
tein in the etiology of pemphigus foliaceus due its simi-
larity to proteins annotated as junctional adhesion
molecules [15]. The S. guianense sialotranscriptome
added two more proteins to this family (11 ESTs),
which contain 9 Cys and 5 or 6 Trp. These proteins
were confirmed by MS/MS within fraction 29, just
below the 14-kDa standard, near their predicted (16.9
kDa) mature weights (Figure 2 and Table 4). The func-
tion of this protein family remains unknown.

The sialotrancriptome of S. guianense added three
more proteins (Sg-319, Sg-320, and Sg-321) with 12
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ESTs to the Acid 28-kDa family. PAGE MS/MS results
reported many tryptic peptides for these proteins within
fraction F23, just above the 28-kDa marker (Figure 2
and Table 4), in accordance with the predicted (22 to 27
kDa) mature mol wt of these proteins. One protein (Sg-
136) with nine ESTs was added to Simulium Basic 28-
kDa family. This protein (Sg-136) had several tryptic
peptides deducted by MS/MS within fraction 24, consis-
tent with a mass near 28 kDa (Figure 2 and Table 4).
The protein family named as 19-kDa family, first seen
in S. nigrimanum, was deorphanized with two proteins
(Sg-303 and Sg-309) with 10 ESTs coding for basic pro-
teins of 16.8 MW and signal peptide in their sequences.
Tryptic peptides were found by MS/MS within the frac-
tion 27, located just above the 14-kDa standard and
consistent with the predicted (16.8 kDa) mature weight
of this protein (Figure 2 and Table 4). Other putative

secreted peptides were also deducted from the S. guia-
nense sialotranscriptome, such as the cluster Sg-258 (22
ETS) coding to basic protein of 8-kDa mol wt that has
70% identity to the orphan protein of the S. nigrimanum
sialotranscriptome previously named 8-kDa basic protein
family. Five tryptic peptides were deducted by MS/MS
within fraction 31, just below the 6-kDa marker (Figure
2 and Table 4). The smaller peptide found in this cDNA
library also represents one case of deorphanization with
two ESTs in cluster Sg-438 matching members of the
Sn basic 4.4-kDa family.

Proteins currently unique to S. guianense

Novel peptide similar to kunitoxin The S. guianense
has two clusters (Sg-375 and Sg-409) coding to novel
peptide distantly similar (32% identity) to the snake pep-
tide kunitoxin [132]. They are Cys-rich and were sug-
gested as protease and serine protease inhibitors in
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snake venom glands [133]. Although the snake peptides
have a typical Kunitz domain, this domain is not identi-
fied in the black fly protein. Kunitoxin inhibits plasmin
and thrombin, blocks L-type calcium channels, and
forms part of the neurotoxic complexes with PLA,
molecules [133]. No similar sequences have been found
so far in any previously described sialotranscriptome.
Together, the black fly family grouped eight ESTs cod-
ing for this secreted basic peptide with 8-9 kDa. The
PAGE/MS/MS run reported four tryptic peptides for the
Kunitoxin-like protein at fraction 31, coincident with a
well-stained band between 3 and 6-kDa standards (Fig-
ure 2 and Table 4).

Conclusions

Sialotranscriptomes of hematophagous insects have
revealed a large number of putative novel proteins, help-
ing to understand the role of saliva in blood feeding,
sugar feeding, and transmission of distinct parasites. In
the last 2 years, two black fly sialotrancriptomes were
described. The sialome of S. guianense represented the
first from a species with confirmed vectorial status for
onchocerciasis. Black flies had their origin ~180 MYA
(Middle Jurassic), based on the fossil record [58], and
currently are among the best studied Diptera, with 2,025
species named, 12 of which are fossil [57]. Their blood
feeding mode has been proposed as a plesiomorphic
character in the Culicomorpha appearing during the
Triassic ~250 MYA and diverging in the Late Jurassic.
Based on tectonic plate movement, we believe that Neo-
tropical black flies share a distant common origin with
Neartic species, because union of the Americas only
occurred during the Cenozoic, after the irradiation of
mammals. Thus, it is probable that this common black
fly ancestor originated before the irradiation and expan-
sion of mammals 60 MYA and probably had birds or
reptiles as their blood source, and this origin has indeed
been maintained in some species; however, others could
have diverged to feeding on mammals, including
humans, conferring a level of plasticity (zoophilic or
anthropophilic behavior) inside the Simulidae family.
For example, S. nigrimanum was found to have both
feeding behaviors in different places. Conversely, S. guia-
nense has a high degree of anthropophily and was incri-
minated as the main vector of river blindness in the
focus that includes Brazil and Venezuela (Yanomami
Indians) [4]. This plasticity seen in the choice of host
could be accompanied by gene duplications and fast
evolution in several protein families.

Here, we performed a phylogenetic analysis of protein
families found in the sialomes of three black flies from
different subgenera: S. vittatum (Neartic, zoophilic,
autogenous, and non-vector of onchocerciasis), S. nigri-
manum (Neotropical, zoophilic and anthropophilic,
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anautogenous, and potential vector) and S. guianense
(Neotropical, anthropophilic, anautogenous, and vector
of onchocerciasis). Notice that the last two are more
closely overlapping in their characteristics. It is also
important here to clear the taxonomic status of these
species, mainly because S. nigrimanum shares the same
geographic distribution as S. guianense, except for S.
nigrimanum absence within the Amazon region. Cur-
rently, some authors [134] group both species into the
Trichodagmia subgenus of Simulium, while-based on
phylogenetic analysis—others have determined [135] that
S. guianense belong to a different subgenus, Thyrso-
pelma, and elevated the subgenus to genus (thus Tricho-
dagmia nigrimanum and Thyrsopelma guianense, which
are cited in this work as S. nigrimanum and S. guia-
nense, respectively).

Independent of this taxonomic confusion, it is clear
from the phylogenetic analysis containing the black fly
species that, in the majority of cases, proteins from S.
nigrimanum grouped with strong bootstrap support
with those of S. guianense while excluding from the
same sub clade the S. vittatum homologs, an expected
result from the biogeography of the species. On the
other hand, the number of families that were found
exclusive of Neotropical flies is entirely shared except
for the S. guianense Kunitoxin family, suggesting a rela-
tively recent common ancestor between these South
American flies.

It is important to note the increased expression in S.
guianense of some proteins families such as D7, SVEP,
and other protein families specific to Simulium (which
contain 32% of all transcripts), suggesting it to be asso-
ciated with the anthropophilic and vectorial status of S.
guianense in the transmission of onchocerciasis. Indeed,
the autogenous S. vittatum has the least expression of
salivary secreted proteins and lacks many of the families
found in the Neotropical flies. S. nigrimanum was
recently suggested as a potential vector of onchocercia-
sis [136].

From a conservative perspective, we confirmed the
presence of ubiquitous salivary protein families such as
Antigen-5, Yellow, ML domain, lipocalin, lysozyme,
cecropin, serpin, Kunitz domain, serine protease, hyalur-
onidase, apyrase, glycosidase, ADA, and destabilase
within the Simulium genus; however, four of these pro-
tein families (ML domain, serpin, hyaluronidase, and
ADA) were exclusive to the S. guianense sialotranscrip-
tome. Kunitz-domain proteins were seen in all black fly
sialotranscriptomes. Probably this family is responsible
for the anticoagulant activity previously related to SGHs
in S. guianense [137].

Insect-specific protein families such as Aegyptin, D7
family (which include D7 ultra-short, D7 16-kDa, and
long D7), and Diptera secreted protein from conserved
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insect family and were found in all black fly sialotran-
scriptomes. The protein laminin-like was found only in
S. guianense and S. vittatum sialotranscriptomes.

As expected, S. guianense contained several protein
families previously found only in the sialotranscriptomes
of S. nigrimanum and also S. vittatum such as the
SVEP, H-rich acid proteins, acid mucin proteins similar
to basic 7-13 Simulium family, Simulium collagen-like,
Sv 7.8-kDa family, 5-Cys Simulium family, basic 7-13
Simulium family, Simulium 4.8-kDa family, Simulium
basic 7.4-kDa family, and Simulium basic 13-kDa family.
Except for SVEP, a vasodilator, none of these proteins’
function is known. It is possible that some of these
families share the same function. Additionally, the S.
guianense sialotranscriptome revealed protein families
previously found exclusive to S. nigrimanum such as the
Simulium mucin, 28-kDa basic Simulium family, acid
28-kDa family, 19-kDa family, Sn 8-10 Cys W family, 8-
kDa basic protein, and Sn basic 4.4-kDa family, none of
which have a known function. We also identified pro-
teins currently unique to S. guianense such as a novel
peptide similar to kunitoxin commonly found in venom
of snakes. Transcripts associated with sugar feeding,
such as glycosidases, show a common ancestor in the
Diptera (fruit flies and mosquito); however, immune-
related products such as trypsins appear phylogeneticaly
more expanded relative to dipterous and non-dipterous
insects such as lepidopterans. In mosquitoes, trypsin
activity was suggested as the first line of defense against
microorganisms during feeding [101]. S. guianense also
has this activity confirmed by in-gel protein digestion
assays from SGHs (data not published) and possibly
could conserve the same function in black flies. Finally,
our results contribute to understanding the role of
Simulium saliva in the transmission of O. volvulus and
in the evolution of the salivary proteins in black flies. It
also consists of a platform for mining novel antihemo-
static compounds, epidemiologic markers of vector
exposure, and vaccine candidates against filariasis.

Methods
Chemicals
Standard laboratory chemicals were purchased from
Sigma Chemicals (St. Louis, MO) if not specified
otherwise.

Black Flies

Female adult S. guianense were obtained from pupae
collected in waterfalls with aquatic plants of the Podos-
temaceae family. The breeding sites are located in the
Jauaperi River, Rorainopolis municipality, Roraima state,
Brazil. Identification of the black fly species followed the
standard keys from Shelley et al.[138].
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Insects were kept with free access to 10% Karo®™ honey
diluted solution. SGs from recently emerged and 1- to-
2-day-old adult female (25 of each age) were dissected
in 150 mM sodium chloride pH 7.4, immediately trans-
ferred to 50-pL of RNAlater (Ambion, Inc., Austin, TX),
and kept refrigerated until use.

Library Construction

SG RNA, extracted from 75 intact glands, was isolated
using the Micro-FastTrack mRNA isolation kit (Invitro-
gen, San Diego, CA). Other procedures were as
described before [14,15] and are reproduced here for
easiness of access to the reader: “The PCR-based cDNA
library was made following the instructions for the
SMART (switching mechanism at 5’end of RNA tran-
script) cDNA library construction kit (Clontech, Palo
Alto, CA). This system uses oligoribonucleotide
(SMART IV) to attach an identical sequence at the 5’
end of each reverse-transcribed cDNA strand. This
sequence is then utilized in subsequent PCR reactions
and restriction digests.

First-strand synthesis was carried out using Power-
Script reverse transcriptase at 42°C for 1 h in the pre-
sence of the SMART IV and CDS III (3’) primers.
Second-strand synthesis was performed by a long-dis-
tance PCR-based protocol using Advantage Taq poly-
merase (Clontech) mix in the presence of the 5 PCR
primer and the CDS III (3’) primer. The cDNA synthesis
procedure resulted in creation of Sfil A and B restriction
enzyme sites at the ends of the PCR products that are
used for cloning into the phage vector (A TriplEx2 vec-
tor; Clontech). PCR conditions were as follows: 95°C for
1 min; 26 cycles of 95°C for 15 sec, 68°C for 6 min. A
small portion of the cDNA obtained by PCR was ana-
lyzed on an E-Gel® 1.2% with SYBR Safe (Invitrogen) to
check quality and range of cDNA synthesized. Double-
stranded cDNA was immediately treated with proteinase
K (0.8 pg/mL) at 45°C for 20 min, and the enzyme was
removed by ultrafiltration though a Microcon YM-100
centrifugal filter device (Amicon Inc., Beverly, CA). The
cleaned, double-stranded cDNA was then digested with
Sfil at 50°C for 2 h, followed by size fractionation on a
ChromaSpin-400 column (Clontech) into small (S),
medium (M), and large (L) transcripts based on their
electrophoresis profile on an E-Gel® 1.2% with SYBR
Safe. Selected fractions were pooled and concentrated
using a Microcon YM-100.

The concentrated cDNA mixture was ligated into the
A TriplEx2 vector, and the resulting ligation mixture
was packaged using the GigaPack® III Plus packaging
extract (Stratagene, La Jolla, CA) according to the man-
ufacturer’s instructions. The packaged library was plated
by infecting log-phase XL1-Blue Escherichia coli cells
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(Clontech). The percentage of recombinant clones was
determined by blue-white selection screening on LB/
MgSO, plates containing X-gal/IPTG. Recombinants
were also determined by PCR, using vector primers
PT2F1 (AAG TAC TCT AGC AAT TGT GAG C) and
PT2R1 (CTC TTC GCT ATT ACG CCA GCT Q)
flanking the inserted cDNA, with subsequent visualiza-
tion of the products on an E-Gel® 1.2% with SYBR
Safe.”

cDNA Sequencing

This was done as described before [14,15] and is repro-
duced here for easiness of access to the reader:“Twenty
96-well plates were prepared for cyclo sequencing, each
containing 94 clones and two DNA controls, as follows:
The ¢cDNA library was plated on LB/MgSO, plates con-
taining X-gal/IPTG to an average of 250 plaques per
150 mm Petri plate. Recombinant (white) plaques were
randomly selected and transferred to 96-well microtiter
plates (Nunc, Rochester, NY) containing 75 pL of ultra-
pure water (KD Medical, Columbia, MD) per well. The
plates were covered and placed on a gyrating shaker for
30 min at room temperature. The phage suspension was
either immediately used for PCR or stored at 4°C for
future use.

To amplify the cDNA using a PCR reaction, 5 pL of
the phage sample was used as a template. The primers
were sequences from the A TriplEx2 vector and named
PT2F1 (AAG TAC TCT AGC AAT TGT GAG C) and
PT2R1 (CTC TTC GCT ATT ACG CCA GCT @), posi-
tioned at the 5’ end and the 3’ end of the cDNA insert,
respectively. The reaction was carried out in a 96-well
PCR microtiter plate (Applied Biosystems, Inc., Foster
City, CA) using FastStart Taq polymerase (Roche Diag-
nostics, Mannheim, Germany) on a GeneAmp PCR sys-
tem 9700 (Perkin Elmer Corp., Foster City, CA). The
PCR conditions were 1 hold of 75°C for 3 min; 1 hold
of 94°C for 4 min, 30 cycles of 94°C for 1 min, 49°C for
1 min; 72°C for 4 min. The amplified products were
analysed on an E-Gel® 1.2% with SYBR Safe. Clones
were PCR amplified, and those showing a single band
were selected for sequencing. Approximately 200-250 ng
of each PCR product was transferred to a 96-well PCR
microtiter plate (Applied Biosystems) and frozen at -20°
C. Samples were shipped on dry ice to the Rocky Moun-
tain Laboratories Genomics Unit (NIAID, NIH, Hamil-
ton, MT) with primer (PT2F3: TCT CGG GAA GCG
CGC CAT TGT) and template combined together in a
96-well optical reaction plate (P/N 4306737; Applied
Biosystems) following the manufacturer’s recommended
concentrations. Sequencing reactions were set up as
recommended by Applied Biosystems BigDye®
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Terminator v3.1 cycle sequencing kit by adding 1 pL
ABI BigDye® Terminator ready reaction mix v3.1 (P/N
4336921), 1.5 uL 5x ABI sequencing buffer (P/N
4336699), and 3.5 pL of water for a final volume of 10
pL. Cycle sequencing was performed at 96°C for 10 sec,
50°C for 5 sec, 60°C for 4 min for 27 cycles on either a
Bio-Rad Tetrad 2 (Bio-Rad Laboratories, Hercules, CA)
or ABI 9700 thermal cycler (Applied Biosystems). Fluor-
escently labeled extension products were purified follow-
ing Applied Biosystems’ BigDye® XTerminator™
purification protocol and subsequently processed on an
ABI 3730xL DNA Analyzer (Applied Biosystems).”

The EST sequences described in this article were
deposited in NCBI's DBEST database under accessions
HS415024 - HS416811. Coding sequences and their pro-
tein translations were submitted to GenBank under
accessions J1626169-]162634:2.

Bioinformatic Tools and Procedures

This was done as described before [14,15] and is repro-
duced here for easiness of access to the reader: “Expressed
sequence tags (EST) were trimmed of primer and vector
sequences. The BLAST tool [59], CAP3 assembler [139]
and ClustalW [140] software were used to compare,
assemble, and align sequences, respectively. Phylogenetic
analysis and statistical neighbor-joining bootstrap tests of
the phylogenies were done with the Mega package [141].
For functional annotation of the transcripts, we used the
tool blastx [59] to compare the nucleotide sequences to
the NR protein database of the NCBI and to the Gene
Ontology (GO) database [60]. The tool, reverse position-
specific BLAST (rpsblast)[59] was used to search for con-
served protein domains in the Pfam [142], SMART [143],
Kog [144] and conserved domains databases (CDD) [61].
We also compared the transcripts with other subsets of
mitochondrial and rRNA nucleotide sequences down-
loaded from NCBI. Segments of the three-frame transla-
tions of the ESTs (because the libraries were
unidirectional, six-frame translations were not used), start-
ing with a methionine found in the first 300 predicted
amino acids (AAs), or the predicted protein translation in
the case of complete coding sequences, were submitted to
the SignalP server [62] to help identify translation pro-
ducts that could be secreted. O-glycosylation sites on the
proteins were predicted with the program NetOGlyc
[131]. Functional annotation of the transcripts was based
on all the comparisons above. Following inspection of all
these results, transcripts were classified as either secretory
(S), housekeeping (H), or of unknown (U) function, with
further subdivisions based on function and/or protein
families. Putative sequences deriving from transposable
elements (TE) were also found.”
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Proteomic Characterization Using One-Dimensional Gel
Electrophoresis and Tandem Mass Spectrometry (MS/MS)
The soluble protein fraction from SGHs from S. guia-
nense corresponding to approximately 50 pg of protein
was brought up in reducing Laemmli gel-loading buffer.
The sample was boiled for 10 min and resolved on a
NuPAGE 4-12% Bis-Tris precast gel. The separated pro-
teins were visualized by staining with SimplyBlue (Invi-
trogen). The gel was sliced into 32 individual sections
that were destained and digested overnight with trypsin
at 37°C. Peptides were extracted and desalted using Zip-
Tips (Millipore, Bedford, MA) and resuspended in 0.1%
TFA prior to S analysis.

Nanoflow reversed-phase liquid chromatography tan-
dem MS (RPLS-MS/MS) was performed using an Agi-
lent 1100 nanoflow LC system (Agilent Technologies,
Palo Alto, CA) coupled online with a linear ion-trap
(LIT) mass spectrometer (LTQ, ThermoElectron, San
José, CA). This was done as described before [14,15]
and is reproduced here for easiness of access to the
reader: “NanoRPLC columns were slurry-packed in-
house with 5 um, 300-A pore size C-18 phage (Jupiter,
Phenomenex, CA) in a 75-um i.d. x 10-cm fused silica
capillary (Polymicro Technologies, Phoenix, AZ) with a
flame-pulled tip. After sample injection, the column was
washed for 30 min with 98% mobile phase A (0.1% for-
mic acid in water) at 0.5 uL/min, and peptides were
eluted using a linear gradient of 2% mobile phase B
(0.1% formic acid in acetonitrile) to 42% mobile phase B
in 40 min at 0.25 pL/min, then to 98% B for an addi-
tional 10 min. The liner ion-trap mass spectrometer was
operated in a data-dependent MS/MS mode in which
each full MS scan was followed by seven MS/MS scans
where the seven most abundant molecular ions were
dynamically selected for collision-induced dissociation
using a normalized collision energy of 35%. Dynamic
exclusion was applied to minimize repeated selection of
peptides previously selected for collision-induced
dissociation.

Tandem mass spectra were searched using SEQUEST
on a 20-node Beowulf cluster against an S. guianense
proteome database with methionine oxidation included
as dynamic modification. Only tryptic peptides with up
to two missed cleavage sites meeting a specific
SEQUEST scoring criteria [delta correlation (AC,) =
0.08 and charge-state-dependent cross correlation (X ;)
> 1.9 for [M + H]**, > 2.2 for [M + 2H]**, and > 3.5 for
[M + 3H]>'] were considered as legitimate identifica-
tions. The peptides identified by MS were converted to
Prosite block format [145] by a program written in
Visual Basic. This database was used to search matches
in the Fasta-formatted database of salivary proteins,
using the poorly documented program Seedtop, which is
part of the BLAST package. The result of the Seedtop

Page 21 of 25

search is piped into the hyperlinked spreadsheet to pro-
duce a text file, such as the one shown for the apyrase
proteins SV-2008. Notice that the ID lines indicate, for
example, BF18_73, which means that one match was
found for fragment number 73 from gel band 18.
Because the same tryptic fragment can be found in
many gel bands, another program was written to count
the number of fragments for each gel band, displaying a
summarized result in an Excel table. The summary in
this form of BF11—>18| BF12—18| BF13—2| indicates
that 18 fragments were found in band 11, while 18 and
2 peptides were found in bands 12 and 13, respectively.
Furthermore, this summary included protein identifica-
tion only when two or more peptide matches to the
protein were obtained from the same gel slice.”

Additional material

Additional file 1: Hyperlinked Excel file with assembled contigs. Can
be downloaded from http://exon.niaid.nih.gov/transcriptome/
S_guianense/S1/S_g-sup1-Web.xlsx.

Additional file 2: Hyperlinked Excel file with coding sequence
information, can be downloaded from http://exon.niaid.nih.gov/
transcriptome/S_guianense/S2/S_g-S2-Web.xlsx.

Additional file 3: PDF file with Phi-blast results.
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