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peripheral blood leukocytes from cattle infected
with Mycobacterium bovis reveals suppression of
host immune genes

Kate E Killick', John A Browne', Stephen DE Park', David A Magee', Irene Martin', Kieran G Meade?,
Stephen V Gordon'?, Eamonn Gormley*, Cliona O'Farrelly’, Karsten Hokamp® and David E MacHugh'**

Abstract

Background: Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with
significant economic impact. Recent studies have highlighted the role of functional genomics to better understand
the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies
may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests
and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood
leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched
Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets
representing more than 23,000 gene transcripts.

Results: Control and infected animals had similar mean white blood cell counts. However, the mean number of
lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the
mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering
analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the
animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between
the infected and control animal groups (adjusted P-value threshold < 0.05); with the number of gene transcripts
showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397).
Systems analysis using the Ingenuity™ Systems Pathway Analysis (IPA) Knowledge Base revealed an over-
representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes
in the affects immune response subcategory displayed decreased relative expression levels in the infected animals
compared to the control group.

Conclusions: This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M.
bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous
investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These
data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional
markers of active M. bovis infection.
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Background

Bovine tuberculosis (BTB) poses a serious threat to the
health of domestic cattle herds worldwide. Infection is
caused by the bacterium Mycobacterium bovis, an intra-
cellular pathogen closely related to Mycobacterium
tuberculosis-the causative agent of human tuberculosis.
M. bovis infection is often slow and progressive with
limited clinical symptoms. Although improved diagnos-
tic tests and slaughter policies have done much to con-
trol and reduce the incidence of infection, BTB has
remained recalcitrant to eradication in many countries
where control programmes have been implemented
[1-3].

Failure to detect and remove all infected animals from
herds is partly due to limitations in the sensitivity of the
current diagnostic tests, which often comprise an in vivo
single intradermal comparative tuberculin test (SICTT)
performed alone, or in combination with an in vitro
enzyme-linked immunosorbent assay (ELISA)-based test
for interferon gamma (IFN-y)-an established biomarker
of mycobacterial infection [4-6]. Diagnoses can be
further confounded by exposure to environmental non-
pathogenic mycobacterial antigens, which can generate
false SICTT-positive signals in cattle [7]. Protection
from natural M. bovis infection in cattle may be
achieved through vaccination with M. bovis bacillus
Calmette-Guérin (BCG); however, the level of protection
attained is variable. In addition, current diagnostics can-
not effectively differentiate between M. bovis-infected
and BCG-vaccinated animals, thus compromising man-
agement strategies [8]. Consequently, there is a pressing
need for novel M. bovis diagnostic methods with
increased sensitivity and specificity.

The host immune response to mycobacterial infection
is a complex process that involves interaction between
the innate and adaptive immune systems. Upon initial
exposure (generally via inhalation), bacilli are phagocy-
tosed by host alveolar macrophages, which recognise
mycobacteria using a diverse range of pathogen recogni-
tion receptors (PRRs), such as the Toll-like receptors
(TLRs) and the nucleotide-binding oligomerisation
domain (NOD)-like receptors (NLRs) [9-13]. Activation
of macrophage PRR-mediated signalling pathways result
in the release of endogenous cytokines, which initiate an
adaptive immune response characterised by the secre-
tion of proinflammatory cytokines, such as IFN-y and
tumour necrosis factor (TNF-a), by activated T cells
[14]. In particular, IFN-y activates infected macrophages
and enables the formation of granulomas-collections of
inflammatory cells comprising T cells, B cells, non-
infected macrophages and neutrophils, which surround
infected macrophages and act as barriers to contain and
prevent dissemination of the infection [15]. In most
cases, the host innate and adaptive immune systems
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successfully control mycobacterial growth within granu-
lomas resulting in asymptomatic latent infection [16,17].
However, in some cases impairment of immune function
can result in the development of active tuberculosis
leading to disease progression [3,17-20].

Recently, functional genomic technologies have been
used to investigate the molecular mechanisms and cellu-
lar pathways underlying the host immune response to
mycobacterial infection [[21,22], for reviews see [23,24]].
Furthermore, results from these studies have the poten-
tial to identify molecules that are critical for host/patho-
gen survival during infection, and which may serve as
robust, reliable transcriptional markers of mycobacterial
infection [22].

Previously, we investigated the transcriptional profiles
of peripheral blood mononuclear cells (PBMC) from M.
bovis-infected and non-infected control animals using
the immuno-specific BOTL-5 microarray (containing
1,391 gene probe sets; Gene Expression Omnibus [GEO]
accession: GPL5751) and showed that suppression of
innate immune genes was associated with BTB [25]. In
the current study, we extend this earlier work by investi-
gating the transcriptional profile of peripheral blood leu-
kocytes (PBL) isolated from eight M. bovis-infected and
eight non-infected control animals using the genome-
wide high-density Affymetrix® GeneChip® Bovine Gen-
ome Array. These 16 animals were sampled specifically
for the present study and have not been used for any
previous research work. The Affymetrix® GeneChip®
Bovine Genome Array contains 24,072 gene probe sets
representing more than 23,000 gene transcripts http://
www.affymetrix.com. In addition, we have adopted a
systems biology approach using the Ingenuity™ Systems
Pathway Analysis (IPA) Knowledge Base http://www.
ingenuity.com for analysis of both over-represented cel-
lular functions and known molecular canonical pathways
from the resulting gene expression data.

The results presented in the current study contribute
a novel layer of information regarding the gene expres-
sion profile of PBL from M. bovis-infected animals and
highlight the value of high-throughput genomic technol-
ogies in understanding the host immune response to
BTB. Furthermore, these results may facilitate the devel-
opment of novel diagnostics for the detection of M.
bovis infection in domestic herds.

Methods

Experimental animals

Sixteen age-matched female Holstein-Friesian animals
from cattle herds that had not been analysed previously
were used for this study. Eight infected individuals were
selected from a panel of naturally M. bovis-infected ani-
mals maintained for on-going disease surveillance at the
Irish Department of Agriculture, Fisheries and Food,
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Backweston Laboratory Campus (Celbridge, Co. Kildare,
Ireland). These animals had a positive single intradermal
comparative tuberculin test (SICTT) result where the
skin-fold thickness response to purified protein deriva-
tive (PPD)-bovine exceeded that of PPD-avian by at
least 12 mm. All of these animals were also positive for
the whole blood IFN-y-based BoviGAM™ assay [Prionics
AG, Switzerland] (data not shown). In addition, these
cattle were confirmed for BTB following detailed post-
mortem pathological examination and/or culture.
Briefly, bronchial, mediastinal, submandibular, retro-
pharyngeal, mesenteric and hepatic lymph nodes and
lungs were examined macroscopically for tuberculosis
lesions. Suspected lesions were cultured on Stonebrinks
and Lowenstein-Jensen media at 37°C for eight weeks to
detect M. bovis [26]. Non-infected control animals were
selected from a herd with no recent history of M. bovis
infection. The control animals were shown to be nega-
tive for both the SICTT and IFN-y tests (data not
shown). All animal procedures detailed in this study
were carried out according to the provisions of the
Cruelty to Animals Act (licenses issued by the Depart-
ment of Health and Children) and ethics approval for
the study was obtained from the UCD Animal Ethics
Committee.

Blood collection

Two 8 ml vacutainers® (Becton-Dickinson Ltd., Dublin,
Ireland) of heparinised blood were collected from each
animal, approximately 12 months after positive SICTT
testing. One vacutainer” was retained for haematological
analysis using a Cell-Dyn 3500 haematology analyser
(Abbott Laboratories Ireland Ltd., Dublin, Ireland); all
haematological analysis was performed using 1 ml of
blood. The other vacutainer” was used for RNA isola-
tion from peripheral blood leukocytes (PBL); the whole
white blood cell fraction consisting of T and B lympho-
cytes, NK cells, monocytes, neutrophils, basophils and
eosinophils. The count data from the leukocyte cell
populations of infected and non-infected animals were
assessed using the two-sample, two-tailed Student’s ¢-
test, following Kolmogorov-Smirnov tests of normality
and Levene’s F-test for equality of variance using the
Minitab statistical package version 16 (Minitab Ltd.,
Coventry, UK).

RNA extraction and microarray analysis

All RNA extractions were performed within two hours
of blood collection. Briefly, 7.5 ml of whole heparinised
blood was mixed with 42.5 ml of erythrocyte blood lysis
buffer (10 mM KHCOj3;, 150 mM NH,CI, 1 mM EDTA
pH 8.0), and incubated for 5 min at room temperature
with gentle agitation. Following centrifugation (750 g for
10 min) the pelleted cells were washed once with 1x
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phosphate buffered saline (Invitrogen Ltd., Paisley, UK).
The cell pellet was then fully resuspended in 2 ml Tri-
zol® reagent (Invitrogen Ltd., Paisley, UK) and RNA was
extracted as per the manufacturer’s instructions. The
RNA was further purified using an RNeasy™ kit with
on-column DNase treatment (Qiagen Ltd., Crawley, UK)
according to the manufacturer’s instructions. RNA
quantity and quality was assessed using both the Nano-
Drop™ 1000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA) and the Agilent 2100
Bioanalyzer using an RNA 6000 Nano LabChip kit (Agi-
lent Technologies, Cork, Ireland). All samples displayed
a 260/280 ratio greater than 1.8 and RNA integrity
numbers (RIN) greater than 8.0.

cDNA labelling, hybridisation and scanning for the
microarray experiments were performed by Almac Diag-
nostics (Craigavon, Co. Armagh, Northern Ireland)
using a one-cycle amplification/labelling protocol on the
Affymetrix® GeneChip® Bovine Genome Array (Affyme-
trix UK Ltd., High Wycombe, UK).

Statistical analysis of microarray data

Affymetrix® GeneChip® Bovine Genome Array data
were analysed using Bioconductor [[27]; http://www.
bioconductor.org] contained within the R statistical
package http://www.r-project.org. Normalisation of raw
data was performed using the Factor Analysis for
Robust Microarray Summarization (FARMS) algorithm.
The FARMS algorithm uses only perfect match (PM)
probes and a quantile normalization procedure, provid-
ing both P-values and signal intensities [28]. In addi-
tion, gene expression profiles for each animal were
clustered using the Hierarchical Ordered Partitioning
and Collapsing Hybrid (HOPACH) clustering algo-
rithm in Bioconductor with Euclidean distance as the
distance metric [29].

Normalised data were then further subjected to filter-
ing for informative probes sets using the R package I/
NI-calls [30]. This defines a probe set as being informa-
tive when many of its probes reflect the same change in
mRNA concentration across arrays. Differentially
expressed genes were extracted using the Linear Models
for Microarray Data (LIMMA) package http://biocon-
ductor.org/packages/release/bioc/html/limma.html con-
tained within the R statistical package. Genes displaying
differential expression patterns between control and
infected groups were annotated using the Affymetrix®
bovine gene annotation http://www.affymetrix.com. The
Benjamini-Hochberg multiple-testing correction method
[31] was applied to all differentially expressed genes to
minimise the false discovery rate (FDR) and adjusted P-
values for differentially expressed (DE) genes were cal-
culated. For genes represented by multiple probe sets
the mean expression value is reported. Bootstrapping for
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the hierarchical clustering analysis was performed using
a custom Perl script (see Additional file 1).

Systems biology analyses

Ingenuity™ Systems Pathway Analysis (IPA, Ingenuity
Systems, Redwood City, CA, USA; http://www.ingenuity.
com) was used to identify canonical pathways and func-
tional processes of biological importance within the list
of DE genes. The Ingenuity” Knowledge Base contains
the largest database of manually-curated and experimen-
tally-validated physical, transcriptional and enzymatic
molecular interactions. Furthermore, each interaction in
the Ingenuity® Knowledge Base is supported by pre-
viously published information.

For the IPA analyses, the Affymetrix® GeneChip®
Bovine Genome Array was used as a reference gene set.
All DE genes with an adjusted P value < 0.05 were
included. For duplicate probe IDs, the average log,
expression fold change was used. Only DE genes map-
ping to molecules in the Ingenuity” Knowledge Base
were used for systems analysis. Functional analysis of
genes was performed using IPA to characterise the bio-
logical functions of the DE genes between the BTB and
control groups. For this, IPA performed an over-repre-
sentation analysis that categorises the DE genes within
the uploaded list into functional groups using the Inge-
nuity” Knowledge Base. Each category in IPA is ranked
based on the number of DE genes falling into each func-
tional group. Right-tailed Fisher’s exact tests were used
to calculate a P-value for each of the biological function
assigned to list of DE genes.

IPA contains a large library of known canonical path-
ways that were overlaid with the DE genes to identify
major biological pathways associated with M. bovis
infection in PBL. The significance of the association
between DE genes and the canonical pathway was
assessed using two methods: (1) a ratio of the number
of molecules from the DE gene data set that map to the
pathway, compared to the total number of molecules
that map to the canonical pathway based on the refer-
ence gene list; and (2) a Fisher’s exact test that generates
a P-value for the assignment of the DE genes to a parti-
cular canonical pathway compared to the reference gene
list. Canonical pathways were then overlaid with the
expression values of the DE genes.

Real time quantitative reverse transcription PCR (qRT-
PCR) validation of microarray results

cDNA was prepared using 500 ng of total RNA from
each sample from the microarray study using the High
Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Warrington, UK) in a 20 pl reaction using ran-
dom primers according to the manufacturer’s
instructions. cDNA was diluted 1:50 and stored at -20°C
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prior to performing real time quantitative reverse tran-
scription PCR (qRT-PCR).

Real time qRT-PCR reactions were performed using
Fast SYBR®™ Green Master mix (Applied Biosystems,
Warrington, UK) on a 7500 Fast Real-Time PCR System
apparatus (Applied Biosystems, Warrington, UK). Each
reaction (20 pl) contained 5 pul of the diluted cDNA
(equivalent to 2.5 ng of total RNA) and 300 nM final
concentration each of forward and reverse primer. Addi-
tional file 2, Table S1 provides a complete list of primer
sequences and the target accession numbers for each
real time qRT-PCR amplicon analysed. Real time qRT-
PCR primers were designed using the Primer3 software
[32,33] and where possible intron-spanning primers
were selected (see Additional file 2, Table S1). Negative
real time qRT-PCR controls and a six-point, four-fold
dilution series from pooled cDNA from all animals were
included on every real time qRT-PCR plate and indivi-
dual PCR efficiencies were determined from the stan-
dard curves using the qbasePLUS software package [[34];
Biogazelle NV, Zwijnaarde, Belgium)].

The PCR thermal cycling program consisted of one
cycle at 50°C for 2 min, one cycle at 95°C for 10 min,
followed by 40 cycles at 95°C for 15 s and 60°C for 1
min. A dissociation step was included to confirm ampli-
fication specificity and real time qRT-PCR products
were analysed on a 2% agarose gel to confirm the pre-
sence of a single discrete amplicon of the correct size.
All real time qRT-PCR data was analysed using the gba-
se”"US software package with efficiency correction and
normalization was performed using two reference genes:
the 60S ribosomal protein L19 gene (RPL19) and pepti-
dylprolyl isomerase A (cyclophilin A) gene (PPIA). The
two reference genes were selected using the geNorm
algorithm in the gbase"™"® package from a panel of
eight genes tested (geNorm M > 0.15).

The gbase”™ " package generated a calibrated normal-
ized relative quantity (CNRQ) of gene expression for
each of the analysed samples. Log, CNRQ values for
both the control and the M. bovis-infected animals were
used for statistical analysis for all genes. One sample
Kolmogorov-Smirnov tests, performed using the SPSS™
version 18 software package (SPSS™ Inc., Chicago, IL,
USA) were applied to the residuals of the log, CNRQ
values for each sample prior to statistical analysis to
ensure the data conformed to a normal distribution—no
significant departures from normality were observed for
any of the genes analysed (P = 0.05). Two-tailed, two-
sample Student ¢-tests were used to assess differences
between infected and control groups based on log,
CNQR values using SPSS and the statistical package
contained within Microsoft® Excel 2010 (Microsoft
Corp., Redmond, WA, USA). In addition, Levene’s F-
test was applied to the infected and control group log,
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CNRQ values to assess equality of variance within the
two groups using SPSS prior to performing the two-
sample t-tests; equality of variance was observed for
each sample group.

Geometric mean fold-changes in gene expression for
the BTB group were calculated by dividing the geo-
metric mean CNRQ value for the M. bovis-infected
group by the geometric mean CNRQ value for the con-
trol group. The negative reciprocal in fold-change is
reported where decreased gene expression was observed
in the BTB group relative to the control group.

Results
Analysis of leukocyte populations in control and M. bovis-
infected blood samples
The infected animals used in this study were chosen on
the basis of their large responses to the comparative
tuberculin skin test. The IFN-y levels measured in whole
blood of the infected animals were at least 25-fold
greater than in the healthy control cattle (P < 0.001,
data not shown), demonstrating that the infected ani-
mals were generating strong cell-mediated immune
responses. At post-mortem, each of the infected animals
displayed gross tuberculosis lesions in the lungs and
thoracic lymph nodes and were classified as being in the
advanced stage of clinical disease.

To assess potential changes in leukocyte composition
between control and M. bovis- infected samples, whole

Page 5 of 18

blood samples were subjected to haematological analy-
sis (Figure 1). No significant difference was observed
in the total white blood cell (WBC) count between
control and M. bovis-infected animals (P = 0.18). How-
ever, significant increases in the mean number of lym-
phocytes (P = 0.001) and significant decreases in the
mean number of monocytes (P = 0.002) were observed
in M. bovis-infected animals relative to the control
animals. No significant differences in the mean number
of eosinophils and neutrophils were observed between
the two sample groups (P = 0.51 and P = 0.37,
respectively).

Summary of differentially expressed genes between
control and M. bovis-infected animals identified from
Affymetrix® GeneChip® analysis

The expression data generated for the current study are
MIAME-compliant [35] and were deposited in the NCBI
Gene Expression Omnibus (GEO) repository [36] with
experiment series accession GSE33359. All array tran-
scripts that passed informative probe filtering were used
for cluster analysis to examine the grouping of samples
based on infection status (Figure 2). In total, 5,388 tran-
scripts passed the filtering process and were used for
the cluster analysis, which showed a clear partitioning of
samples based on their disease status, indicating a dis-
tinct difference in expression profile between the two
sample groups. The division of the two sample groups
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Figure 1 Mean leukocyte cell population subset counts in control and M. bovis-infected animals (n = 8 each group). Error bars represent
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Figure 2 Hierarchical clustering dendrogram generated using the complete gene expression profiles for the M. bovis-infected and
control animals. The dendrogram was generated from the complete gene expression dataset for each animal using the Euclidean distance
metric. The division between the BTB and control animal groups was supported by a bootstrap value of 100%.

was supported by a 100% bootstrap value after 1,000
permutations.

Genome-wide transcriptional profiles generated from
the PBL of eight M. bovis-infected and eight control ani-
mals were compared to assess differential gene

expression between the two sample groups. The micro-
array analysis revealed a total of 2,960 transcripts, repre-
senting 2,757 unique genes, as differentially expressed
between the M. bovis-infected and non-infected control
animals (adjusted P value < 0.05). In summary, 1,397
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transcripts (representing 1,281 unique genes) displayed
increased expression and 1,563 transcripts (representing
1,476 unique genes) displayed decreased expression in
the M. bovis-infected group relative to the control
group.

Among the DE genes with immune-related functions
were genes encoding proinflammatory cytokines and
other mediators of the host immune response also dis-
played increased relative expression in the BTB group.
These included the cluster of differentiation 83 antigen-
encoding gene (CD83) [+4.92-fold]; the chemokine (C-C
motif) ligand 2 gene (CCL2) [+2.85-fold]; the chemokine
(C-X-C motif) ligand 5 gene (CXCLS5) [+3.87-fold]; the
cytotoxic T-lymphocyte-associated protein 4 gene
(CTLA4) [+3.20-fold]; the chemokine (C-X-C motif)
receptor 4 gene (CXCR4) [+2.64-fold]; the interleukin 8
gene (IL8) [+2.15-fold] and the interleukin 1 alpha gene
(IL1A) [+1.89-fold]. The genes encoding the TNF-a
(TNF) and IFN-y (IFNG) cytokines, two recognised bio-
markers of M. bovis infection, were not differentially
expressed between the two groups.

Reduced relative expression of host immune-related
genes was also observed in the M. bovis-infected group
relative to the control group. Among these were the
antimicrobial beta-defensin 10 gene (DEFBI10) [-3.38-
fold]; the triggering receptor expressed on myeloid cells
1 gene (TREM1I) [-1.70-fold]; and the TYRO protein tyr-
osine kinase binding protein gene (TYROBP) [-1.38-
fold]. Other immune genes displaying reduced relative
gene expression in the BTB group included those
encoding proinflammatory cytokines such as the inter-
leukin 15 gene (IL15) [-1.49-fold]; the interleukin 16
gene (IL16) [-1.44-fold]; and the interleukin 18 gene
(IL18) [-1.72-fold].

Notably, several genes involved in TLR-mediated sig-
nalling displayed reduced relative expression in the BTB
group such as the Toll-like receptor 4 gene (TLR4)
[+2.41-fold]; the Toll-like receptor 2 gene (TLR2) [-1.45-
fold]; the TLR adaptor protein myeloid differentiation
primary response gene (88) [MYD88] (-1.31-fold); the
interleukin-1 receptor-associated protein kinase 4 gene
(IRAK4) [-1.11-fold] and the mitogen-activated protein
kinase 13 and 14 genes (MAPKI13 [-1.93-fold] and
MAPK14 [-1.15-fold]). The gene encoding the intracellu-
lar TLR3 protein (7LR3) also displayed reduced relative
expression in the BTB animals (-1.55-fold).

Real time quantitative reverse transcription PCR (qRT-
PCR) analysis and validation of Affymetrix® GeneChip®
results

A panel of 23 immune-related genes, including members
of the interferon signalling pathway, which was recently
shown to be the most significantly over-represented
pathway in human patients with active TB [37], were
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selected for real time qRT-PCR analysis. These were
CASP1, CD83, CTLA4, DEFBI10, IFNB, IFNARI, IFNG,
IFNGRI1, IFNGR2, IL1A, ILS8, IL15, JAK1, KIR3DS1,
MYDS88, PTPN2, STATI, STAT2, TLR3, TLR4, TREM1,
TYK2 and TYROBP. The immune-related function of
each gene and the results from these analyses are
detailed in Table 1.

Thirteen of the 23 genes analysed using real time
qRT-PCR (CASP1, DEFBI10, IFNARI, IL15, KIR3DS1,
MYDS88, PTPN2, STATI1, STAT2, TLR3, TREM1I, TYK2
and TYROBP) showed significant decreased expression
(P < 0.05) and five genes (CD83, CTLA4, IFNGRI1, IL1A
and /L8) displayed significant increased expression (P <
0.05) in the M.bovis-infected group relative to the con-
trol animals. No statistically significant differences in
expression (P > 0.05) were observed between the two
sample groups for the remaining five genes assayed
(IFNBI1, IFNG, IFNGR2, JAKIand TLR4).

Twenty-two of the 23 genes analysed by real time
qRT-PCR were represented on the microarray; only
TYK2 was not represented. Gene expression profiles for
16/22 (73%) of the genes analysed with real time qRT-
PCR were concordant with the results from the microar-
ray analysis. Two genes (IFNGR2 and TLR4) displayed
significant expression differences between the two sam-
ple groups based on the microarray results, but were
not significantly different based on real time qRT-PCR
data analysis. Three genes (IFNARI, IFNGRI and
PTPN?2) displayed significant differences between the
two groups based on real time qRT-PCR results; how-
ever, these genes were not differentially expressed
according to the microarray results. Only one gene
(STATTI) displayed directionally discordant gene expres-
sion profiles between the two methods. In the M. bovis-
infected group, STAT1 showed significant reduced rela-
tive expression (-1.27-fold) based on real time qRT-PCR
results but displayed significant increased relative
expression (+1.28-fold) according to the microarray
results. The observed discrepancies between the micro-
array and real time qRT-PCR data may reflect differ-
ences in the sensitivity of the two analytical methods
used and/or differences in the mRNA transcripts tar-
geted by the probes (microarray) and primer pairs (real
time qRT-PCR) used for the two forms of gene expres-
sion analysis.

Analysis of differential gene expression using Ingenuity®
Systems Pathway Analysis (IPA)

The total number of DE genes that could be mapped to
molecules in the Ingenuity” Knowledge Base was 1,869
from a total of 2,960 DE transcripts. IPA was used to
categorise these 1,869 DE genes based on their func-
tional annotation and to assess if a functional gene cate-
gory contained an over-representation of genes relative
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Table 1 Gene expression fold-changes between M.bovis-infected (n = 8) and control (n = 8) based on microarray and
real time qRT-PCR analyses

Gene Gene name Gene description Mean M.bovis-infected Mean M.bovis-infected vs Real
symbol vs control group control group expression  time
expression fold-change  fold-change (real time  qRT-PCR
(microarray) qRT-PCR) P-value
CASP1  Caspase 1 gene A member of the cysteine-aspartic acid -145 -1.98 0.001
protease. Plays a role in the cell apoptosis
CD83  Cluster of differentiation A cell surface protein found in antigen +4.92 +5.88 < 0.001
83 gene presenting cells. Believed to play a role in
antigen presentation or the cellular
interactions that follow lymphocyte
activation
CTLA4  Cytotoxic T-lymphocyte- A member of the immunoglobulin +3.20 +346 0.001
associated protein 4 superfamily and encodes a protein which
gene transmits an inhibitory signal to T cells
DEFB10  Beta-defensin 10 gene Host defence response to bacterial infection; -3.38 -12.21 0.018
has antimicrobial activity
IFNBT  interferon, beta 1, Cytokine activity Not DE Not DE > 0.05
fibroblast
IFNART  Interferon (alpha, beta A type | membrane protein that forms one Not DE -2.20 < 0.001
and omega) receptor 1 of the two chains of a receptor for
gene interferons alpha and beta
IFNG  Interferon gamma gene A soluble cytokine with antiviral, Not DE Not DE > 0.05
immunoregulatory and anti-tumor properties.
A potent activator of macrophages
IFNGRT  Interferon gamma Forms a heterodimer with interferon gamma Not DE +2.23 < 0.001
receptor 1 gene receptor 2. Involved in binding of interferon
gamma
IFNGR2  Interferon gamma Forms a heterodimer with interferon gamma -1.32 Not DE > 0.05
receptor 2 gene receptor 1. Involved in binding of interferon
gamma
ILTA  Interleukin 1, alpha A member of the interleukin 1 cytokine +1.89 +247 0.009
gene family produced by macrophages. Involved
in various immune responses, inflammatory
processes, and haematopoiesis
IL8  Interleukin 8 gene A chemokine that mediates the +2.15 +4.01 < 0.002
inflammatory response
IL15  Interleukin 15 gene A cytokine that regulates T and natural killer -149 -2.03 < 0.001
cell activation and proliferation
JAKT  Janus kinase 1 gene A widely expressed membrane-associated Not DE Not DE > 0.05
phosphoprotein involved in the interferon-
alpha/beta and -gamma signal transduction
pathways
KIR3DST Killer cell A transmembrane glycoprotein expressed by -144 -2.63 0.005
immunoglobulin-like natural killer cells and some T cells. Involved
receptor, three domains, in regulation of the immune response
short cytoplasmic tail, 1
MYD88 myeloid differentiation A cytosolic adapter protein that functions as -1.31 -2.55 < 0.001
primary response gene  a signal transducer in the interleukin-1 and
(88) Toll-like receptor signalling pathways
PTPN2  protein tyrosine A member of the protein tyrosine Not DE -143 < 0.001
phosphatase, non- phosphatase (PTP) family that is involved in
receptor type 2 gene a variety of cellular processes including cell
growth, and differentiation
STATT  signal transducer and A transcriptional activator protein activated +1.28 -1.27 < 0.001
activator of transcription in response to cytokines and growth factors
1, 91kDa gene
STAT2  signal transducer and A transcriptional activator protein activated -1.23 -1.86 < 0.001

activator of transcription
2, 113kDa gene

in response to cytokines and growth factors
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Table 1 Gene expression fold-changes between M.bovis-infected (n = 8) and control (n = 8) based on microarray and

real time qRT-PCR analyses (Continued)

TLR3  Toll-like receptor 3 gene An intracellular pathogen recognition
receptor (PRR) that largely recognises viral
pathogen-associated molecular patterns
(PAMPs). Mediates the production of
cytokines necessary for the development of
effective immunity

-1.55 -1.63

0.001

TLR4  Toll-like receptor 4 gene A cell-surface PRR that recognises PAMPs
expressed by infectious agents. Mediates the
production of cytokines necessary for the
development of effective immunity

+241 Not DE

> 0.05

TREM1  Triggering receptor
expressed on myeloid

cells 1 gene

A receptor expressed on myeloid cells upon
microbial infection. Amplifies neutrophil and
monocyte-mediated inflammatory responses
stimulating release of pro-inflammatory

-1.70 -2.81

0.002

chemokines and cytokines

TYK2 ~ Tyrosine kinase 2 gene A member of the tyrosine kinase. A

component of both interferon signalling

pathways

Not represented on array -1.60 < 0.001

TYROBP TYRO protein tyrosine
kinase binding protein
gene

signalling

A transmembrane protein involved in cell -1.38 -1.98

< 0.001

Gene descriptions taken from GeneCards version 3 [82] and the NCBI Entrez Gene database [83]. For the microarray data, genes with fold-change differences in
expression were significant after adjustment for multiple testing using the Benjamini-Hochberg method [31] (adjusted P < 0.05). ‘Not DE’ indicates a gene was

not differentially expressed between the two sample groups.

to the microarray reference gene list. This analysis
showed that the top functional category observed for the
DE genes used for IPA was the inflammatory response,
which contained 241 genes with P-values ranging from
1.66 x 107" to 1.64 x 102 (Table 2). The inflammatory
response category was further sub-divided with the affects
immune response subcategory containing the most mole-
cules (138 DE genes) [Figure 3]. Further inspection of the
individual genes within this subcategory revealed that
there was an over-representation of genes displaying
reduced relative expression (89 genes) compared to DE
genes showing increased relative expression in the BTB
animals (49 genes). This observation was in contrast to
the other top functional categories where similar num-
bers of genes showing increased and decreased relative
expression were reported.

Canonical molecular pathways associated with M.
bovis-infection were analysed using IPA. These canoni-
cal pathways were ranked according to P-value, which
represents the significance of the association between a
specific pathway and the genes in the input data set.
The majority of the top ranking IPA-identified canonical
pathways were involved in cell signalling and communi-
cation associated with host innate and adaptive immune
responses. Natural killer cell signalling and communica-
tion between innate and adaptive immune cells were
identified as the top ranking canonical pathways. In
addition, TREM1 signalling, dendritic cell maturation,
JAK-STAT signalling, T cell signalling, IL6 signalling,
chemokine signalling and TLR signalling were among the

top twenty IPA-identified canonical pathways (Table 3).
Based on the well-documented role of TLR signalling in
mycobacterial infection [13,38-42], this canonical path-
way overlaid with gene expression results is shown in
Figure 4.

Discussion

The implementation of surveillance and management
programmes has done much to reduce the incidence
and prevalence of BTB over the past number of decades;
however, M. bovis infection remains an important live-
stock disease worldwide. This is due, in part, to well-
documented limitations of the currently available diag-
nostics tests (such as the SICTT and IFN-y tests) lead-
ing to a failure to detect all infected animals [43,44].

In recent years, research has shifted from a focus on
protein-based diagnostics to functional genomics tech-
nologies that interrogate the host transcriptome in
response to M. bovis infection. In particular, microarray
technologies coupled with the rapid development of
more sophisticated bovine genome resources has
enabled high-resolution analyses of the genes and cellu-
lar pathways governing the host response to infection
with M. bovis [23,25,45-47]. In the present study, we
have compared the transcriptomes of PBL from non-
infected control animals with actively-infected BTB ani-
mals using a high-density genome-wide bovine microar-
ray platform.

Modulation of the host PBL transcriptome in response
to M. bovis infection was evident from the large number
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Table 2 Gene ontology (GO) categories identified using IPA

Gene ontology category P-value range Number of genes
Inflammatory response 166 x 107" - 164 x 107 241
Cellular development 895 % 10'°-157 x 107 308
Cellular growth and proliferation 165 % 10°-157 x 107 333
Haematological system development and function 165 % 109 - 164 x 107 279
Haematopoiesis 260 x 108 - 157 x 107 173
Tissue morphology 178 x 107 -1.19 x 107 114
Cellular function and maintenance 544 x 107 - 165 x107 138
Cell death 957 x 107 - 160 x 10 419
Cell-mediated immune response 106 X 10° - 1.25 x 107 109
Connective tissue disorders 172 x 10° - 594 x 107 234
Immunological disease 172 x10°-157 x 107 344
Inflammatory disease 172 x10°-128 x 107 364
Skeletal and muscular disorders 172 % 10°-122 x 107 235
Infectious disease 182 x 10°-1.17 x 107 223
Cell-to-cell signalling and interaction 833 % 10°- 164 x 107 210
Dermatological diseases and conditions 104 x 10° - 157 x 107 107
Free radical scavenging 123 %107 -123 x 10° 14
Molecular transport 123 %107 - 743 x 10° 86
Cell signalling 240 x 10° - 721 x 10” 133
Respiratory disease 286 x 107 - 124 x 107 109
Cellular compromise 3.09 x 107 - 1.57 x 107 41
Genetic disorder 339 x 107 - 164 x 107 104
Immune cell trafficking 351 % 10° - 164 x 107 163
Humoral immune response 508 % 10° - 1.19 x 107 78
Organismal injury and abnormalities 951 % 10° - 105 x 107 81
Tissue development 119 % 10% - 1.05 x 102 108
Haematological disease 178 x 10% - 135 x 107 162
Gastrointestinal disease 188 x 10% - 551 x 107 42
Hepatic system disease 188 x 10* - 164 x 107 89
Lymphoid tissue structure and development 194 x 10* - 594 x 10° 5
Antigen presentation 342 x 107 -164 x 107 83
Cellular movement 358 % 107-163 x 107 157
Vitamin and mineral metabolism 359 % 10%-721 x10° 74
Antimicrobial response 392 x 107 - 128 x 107 32
Hypersensitivity response 586 x 10 - 860 x 107 31
Infection mechanism 989 x 10 - 157 x 107 39
Gene expression 107 X 10° - 157 x 102 254
Hair and skin development and function 123 % 10°-157 x 107 22
Post-translational modification 227 x10°-978 x 10° 84
Cancer 251 %107 - 157 x 107 385
Endocrine system development and function 265 % 107 - 265 x 10° 21
Carbohydrate metabolism 377 x10°-377 x 10° 6
Cell morphology 377 107 - 128 x 107 23
Lipid metabolism 377 x 107 - 743 x 10° 17
Neurological disease 377 x 107 - 147 x 107 49
Small molecule biochemistry 377 x10° - 743 x 107 23

Metabolic disease 391 x 107 - 391 x 10° 7
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Table 2 Gene ontology (GO) categories identified using IPA (Continued)

Embryonic development 459 x 107 - 157 x 107 21
Nervous system development and function 459 % 10°-1.18 x 107 8
Reproductive system disease 584 x 107 - 754 x 107 79
Cell cycle 594 x 107 - 118 x 107 20
Endocrine system disorders 594 x 107 - 594 x 107 3
Opthalmic disease 594 x 107 - 660 x 107 7
RNA post-transcriptional modification 604 x 107 - 604 x 107 13
Cardiovascular system development and function 668 x 10° - 130 X107 19
Cell assembly and modification 668 x 107 - 128 x 107 14
Organ development 668 x 10° - 1.19 x 107 6
Renal and urological system development and function 118 x 107 - 130 x 102 11
Reproductive system development and function 118 x 107 -1.18 x 10 4

The top ranking GO categories identified by IPA are listed according to P-values. P-value ranges are based on subcategory P-values within each parent term.

of DE genes between the two experimental groups. Sta-
tistical analyses of the microarray data identified a total
of 2,757 DE genes. Of these, 1,281 (46%) showed
increased expression and 1,476 (54%) displayed
decreased expression in the BTB group compared to the
control animals. It is important to note, however, that
the differences in cell subpopulations observed between

the M. bovis-infected and control animals (Figure 1)
may have contributed to the gene expression changes
detected between the two experimental groups. Also,
the haematology analyser results only provided a general
description of the PBL cell subsets and do not provide
information concerning T lymphocyte subsets in the
infected and control animal groups. In addition, the cell
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Figure 3 Sub-categories of the top ranking IPA-identified inflammatory response gene ontology (GO) category. The numbers of genes
displaying increased and decreased relative expression for affects immune response, the top ranking subcategory, are shown. The number of
differentially expressed genes within each functional subcategory is indicated.
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Table 3 Top-ranking canonical pathways identified using IPA
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Canonical Pathway Name P-value Ratio
Natural killer cell signalling 3.06 x 107 23/112 (0.205)
Communication between innate and adaptive immune cells 411 x 107 17/89 (0.191)
TREM1 signalling 220 % 10° 15/69 (0.217)
Dendritic cell maturation 496 x 10° 29/174 (0.167)
Cysteine metabolism 743 x 107 9/90 (0.100)
JAK/STAT signalling 822 x 107 15/64 (0.234)
NRF2-mediated oxidative stress response 898 x 107 35/183 (0.191)
T cell receptor signalling 1.08 x 107 20/107 (0.187)
IL6 signalling 152 %102 20/93 (0.215)
CCRS5 signalling in macrophages 184 x 107 16/92 (0.174)
Chemokine signalling 192 x 107 15/75 (0.200)
Calcium-induced T-lymphocyte apoptosis 207 x 107 12/66 (0.182)
IL-17 signalling 221 %107 16/74 (0.216)
Prolactin signalling 221 x 1072 16/75 (0.213)
Synaptic long term potentiation 222 %107 19/113 (0.168)
Toll-like receptor signalling 263 x 1072 11/54 (0.204)
FLT3 signalling in hematopoietic progenitor cells 277 x 107 15/74 (0.203)
Systemic lupus erythematosus signalling 281 x 107 20/151 (0.132)
Renin angiotensin signalling 301 x 107 21/120 (0.175)
Phospholipase C signalling 328 x 102 39/253 (0.154)
Oncostatin M signalling 336 x 1072 9/35 (0.257)
Thyroid cancer signalling 336 x 107 9/42 (0.214)
B cell receptor signalling 3.72 x 1072 25/154 (0.162)
Interferon signalling 397 x 107 6/30 (0.200)
Production of nitric oxide and reactive oxygen species in macrophages 413 x 107 28/185 (0.151)
NF-1B signalling 417 x 107 25/152 (0.164)
Notch signalling 429 x 107 8/43 (0.186)
IL10 signalling 436 x 102 13/70 (0.186)
P38 MAPK signalling 457 x 102 17/97 (0.175)
Role of NFAT in regulation of the immune response 470 x 107 29/196 (0.148)
Parkinson’s signalling 500 x 107 5/17 (0.294)

The top ranking canonical pathways identified by IPA are listed according to P-values. The ratio indicates the number of differentially expressed genes involved
in each canonical pathway divided by the total number of genes within each pathway as per the IPA Knowledge Base.

subset results presented here differ from previous work
performed by us [25], most likely due to the different
cell sample types examined.

Analysis of the DE genes using IPA provided informa-
tion regarding the immunobiology of active BTB. The
highest ranking functional category identified using IPA
was inflammatory response and the highest ranking sub-
category within this category-affects immune response-
revealed a marked bias in the number of genes display-
ing a decrease in relative expression (64.5%) compared
to those showing an increase in relative expression
(35.5%) in PBL from the BTB group.

Previous work by our research group demonstrated
that suppression of host gene expression was associated

with active M. bovis infection in cattle [25]. This earlier
work involved the comparison of RNA isolated from
PBMC of M. bovis-infected and control animals using
an immuno-specific bovine cDNA microarray (BOTL-5).
The results presented here, based on the analysis of
PBL-derived RNA using a genome-wide microarray,
lend further support to our previous study. Indeed, pub-
lished investigations by other workers suggest that tran-
scriptional suppression is a common feature of
mycobacterial infection in mammals [48-50].

Further inspection of the inflammatory response func-
tional category in IPA identified several genes that were
previously reported to be differentially expressed in cat-
tle and other mammalian species infected with
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mycobacterial pathogens [23,40,42,51,52]. For example,
microarray analysis showed that TLR2 and TLR4 dis-
played contrasting expression patterns between PBL
from the two groups: TLR2 showed decreased expres-
sion and TLR4 showed increased expression relative to
the control animal group. We have previously observed
decreased expression of TLR2 in PBMC from actively
infected BTB cattle using the immuno-specific BOTL-5
c¢DNA microarray; however, contrary to the results of
the present study, TLR4 also showed decreased

expression with the BOTL-5 ¢cDNA microarray in
actively infected animals [25].

The gene expression results obtained by Meade and
colleagues using PBMC from M. bovis-infected and con-
trol non-infected animals were also used to identify a
panel of 15 genes predictive of disease status [25]. Four
of these genes were found to be similarly differentially
expressed in the current study: UNC84B (now SUN2),
GAN, SFPQ and NRPI. Four other of the 15 genes iden-
tified previously (TBK1, 28S [now RN28S1], GPR98 and
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an anonymous BOTL clone [BOTL0100013_F01]) were
not present on the Affymetrix® GeneChip® Bovine Gen-
ome Array. However, the seven remaining genes
(NCOR1, PPP2R5B, UCP2, ZDHHC19, NFKB1, NRM
and FGFRI) were not differentially expressed in the PBL
samples from M. bovis-infected and control non-infected
animals used for the present study. This discordance
may be due to a number of factors, including: the blood
cell sample types used (PBL versus PBMC); differences
in sensitivity between the two types of microarray (the
single-colour in situ-synthesised Affymetrix” GeneChip®
versus a dual-colour spotted cDNA array [53,54]); and
the requirement for more stringent control of the FDR
with larger numbers of genes (24,072 probe sets versus
1,391 duplicate spot features).

The role of TLR molecules in the recognition of
mycobacterial PAMPs is  well established
[11,38,39,41,42,55-57]. TLR2 and TLR4 activation sig-
nals are linked to the interleukin-1 receptor-associated
protein kinases (IRAKs) through the adaptor molecule,
myeloid differentiation primary response protein 88
(MYD88), which triggers a downstream protein signal-
ling cascade involving tumour necrosis factor receptor-
associated factor 6 (TRAF6) and mitogen-activated pro-
tein kinases (MAPKSs) [58,59]. This cascade culminates
in the expression of many NF-xB-inducible genes,
including CCL2, IL1B, IL12, IL18 and TNF, causing nat-
ural killer (NK) and T cells to release IFN-y and TNF-a,
which ultimately results in granuloma formation [60].

In the present study, several TLR-mediated proinflam-
matory cytokines and signalling molecules were differen-
tially expressed in the BTB group compared to the non-
infected control animals. These included CCL2
(increased), CXCR4 (increased), CXCL5 (increased),
ILIA (increased), IL8 (increased), ILI8 (decreased),
IRAK4 (decreased), MAPK6 (increased), MAPKI3
(decreased), MAPKI4 (decreased) and MYD88
(decreased). This was also supported by canonical path-
way analysis using IPA, which identified TLR signalling
as a molecular pathway affected by M. bovis infection.

These results suggest that genes encoding TLR-
mediated signalling pathway molecules have a role in
governing the host response to BTB and may also serve
as targets for immuno-subversion by M. bovis. For
example, genes encoding several innate immune recep-
tors and chemokines (such as TLR4, CD83, CCL2,
CXCR4, CXCLS, ILIA and IL8)—several of which parti-
cipate in the initiation of a T cell response during infec-
tion [61-64]—showed increased relative expression in
the BTB animal group. Transcriptional profiles suggest-
ing initiation of a T cell response are supported by the
comparative analysis of the PBL cell populations in the
two animal groups; a significant increase in the mean
number of lymphocytes and a significant decrease in the
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mean number of monocytes were observed in the BTB
group relative to the control animals. This difference in
the PBL cell composition may represent recruitment of
host cytotoxic lymphocytes for the destruction of
infected monocytes in the control of M. bovis infection
[3,65].

It is important to note, however, that the observed
decreased expression of host PRR genes (such as TLR2)
and the genes encoding their associated adaptor and sig-
nalling pathway molecules (such as MYD88, IRAK4,
MAPKI13 and MAPKI4) may indicate that the adaptive
response in BTB animals is inferior due to the repres-
sion of these innate immune genes. Indeed, previous
work has proposed that mycobacterial antigens, such as
the early secreted antigenic target protein 6 (ESAT-6)
protein, attenuates the host innate immune response by
inhibiting MYD88-IRAK4 binding, thus causing suppres-
sion of NF-xB-induced transcription of upstream genes
required for T cell response initiation [66]. These work-
ers also demonstrated that activation of v-akt murine
thymoma viral oncogene homolog kinases (AKTSs) is
necessary to prevent MYD88-IRAK4 complex formation.
Notably, the AKT2 gene displayed increased relative
expression (+1.22-fold) in the BTB animal group in the
present study.

Repression of host innate immune genes that elicit an
adaptive response to M. bovis infection is further sup-
ported by the analysis of genes belonging to the inter-
feron signalling pathway, which has been shown to have
a role in human tuberculosis [37,67-71]. IFN-y is
secreted by NK cells and CD4" T cells upon activation
by IL-12 produced by infected macrophages. IFN-y
recruits additional macrophages to the site of infection
while also providing the stimulus for activating microbi-
cidal functions in infected macrophages [14,71-73]. IFN-
v also induces MHC class II gene expression in infected
macrophages by signalling through its receptor (IFN-y-
receptor) [74-76]. This stimulates the JAK-STAT path-
way, resulting in induction of transcriptional activators
of MHC class genes, such as the MHC class II transacti-
vator gene (CIITA). Mycobacterial antigen presentation
via MHC class II molecules is critical for the recruit-
ment of additional CD4" T cells and the formation and
maintenance of granulomas [38].

The results from the current study support a role for
interferon signalling pathways during M. bovis infection.
The genes encoding interferon (alpha, beta and omega)
receptor 2 (IFNAR2); interferon gamma receptor 2
(IFNGR2); interferon-induced protein with tetratricopep-
tide repeats 2 (IFIT2); interferon-induced protein with
tetratricopeptide repeats 5 (IFITS); interferon-induced
transmembrane protein 3 (/[FITM3); protein tyrosine
phosphatase, non-receptor type 2 (PTPN2); and signal
transducer and activator of transcription 2 (STAT2)
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displayed differential expression in the BTB animals
based on the microarray and/or real time qRT-PCR
analyses.

These findings suggest that, in addition to the target-
ing of TLR-mediated signalling pathways, M. bovis may
also target genes involved in the IFN-signalling pathway,
resulting in an attenuated T cell response that enables
mycobacterial survival and disease progression. It is
tempting to speculate that suppression of IFN-signalling
in response to M. bovis infection may result in the
impairment of the antigen presenting process required
for adaptive immunity; however, further work is
required to investigate this possibility. Notably, the gene
encoding IFN-y (IFNG) was not differentially expressed
in the current study, despite the BTB animals having
tested positive for increased IFN-y based on the Bovi-
GAM® assay. However, it is important to note that
unlike the blood samples used for the BoviGAM®™ assay
in the current work, the PBL fraction from which the
RNA was derived in this study was not stimulated with
protein purified derivative of tuberculin (PPD), which is
required to elicit IFN-y secretion [4]. In addition, con-
trary to previous results obtained by Meade and collea-
gues [25] we did not detect differential expression of the
TNF gene between the M. bovis-infected and control
animals examined here. The most likely explanation for
this apparent discrepancy is the different cell sample
types used for gene expression analyses (PBL versus
PBMC).

IPA canonical pathway analysis identified a number of
DE genes which, to our knowledge, have not previously
been reported to be involved in the host response to
tuberculosis in cattle or other mammalian species.
These included CTLA4 and TLR3. TLR3 encodes an
intracellular PRR involved in the recognition of viral-
derived nucleic acids [77]. In the present study, reduced
relative TLR3 expression in BTB animals (-1.55-fold)
may suggest some hitherto unknown role for this PRR
in intracellular mycobacterial infection. In support, we
have observed significant differential expression of TLR3
in bovine monocyte-derived macrophages (MDM) sti-
mulated in vitro with M. bovis when compared to non-
stimulated control MDM (unpublished data). CTLA4
encodes an inhibitor of the T cell-mediated response
[78,79] and this gene displayed increased relative expres-
sion (+3.20-fold, P < 0.05) in the M. bovis infected ani-
mals in the present study. The observed increased
relative expression of CTLA4 may reflect a mechanism
of immuno-modulation used by M. bovis to subvert a
host T cell response.

Finally, hierarchical clustering analysis was performed
here using a total of 5,388 genes that passed the infor-
mative probe filtering criteria. This analysis unambigu-
ously differentiated animals on the basis of their disease
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status. This result suggests that genome-wide expression
profiling of PBL from BTB animals can be used to
enable the identification of suitable transcriptional mar-
kers for the detection of infected animals within herds
and augment current surveillance strategies in countries
where control programmes have been implemented
[21,22]. However, further work using PBL samples from
additional animals infected with M. bovis and other
microbial pathogens will be required to identify and
validate robust M. bovis-specific transcriptional signa-
tures of infection.

Conclusions

The results presented here support the hypothesis that
repression of immune-related genes is an important fea-
ture of mycobacterial infections [25,48-50,80,81]. In par-
ticular, the gene expression results obtained suggest that
M. bovis infection may target the innate immune cellu-
lar pathways necessary for the initiation of the appropri-
ate T cell response. Notably, analysis of the cell
populations present in the PBL from the BTB animals
showed an increase in the number of lymphocytes rela-
tive to the control animals, suggesting that the actively-
infected BTB animals do mount a T cell response. How-
ever, it is possible that the T cell response elicited by
these animals is compromised, resulting in disease pro-
gression. Indeed, failure of the adaptive immune
response to contain the mycobacterial infection is
regarded as the primary cause of the development of
active tuberculosis from a latent state of infection [74].
Finally, cluster analysis using all informative mRNA
transcripts permitted a clear delineation between healthy
and infected animals. These results demonstrate that
functional genomics approaches based on transcriptional
profiling can be used to supplement current protein-
based diagnostics for BTB.
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Additional file 1: Perl script used for bootstrapping of cluster
analysis results in Figure 2.
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time qRT-PCR validation of microarray results.
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