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The transcriptome of the novel dinoflagellate
Oxyrrhis marina (Alveolata: Dinophyceae):
response to salinity examined by 454 sequencing
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Abstract

Background: The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological
and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for
understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent
O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab
rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale
resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In
addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an
environmental factor potentially important in determining O. marina spatial distributions.

Results: Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of
contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity) revealed 164
transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase) was
composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5
different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp) inter-genic
regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic
arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under
expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate
well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require
careful interpretation.

Conclusion: Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed gene
variants are common and indicate potentially complex genomic arrangements in O. marina. Comparison of the
reported data set with existing O. marina and other dinoflagellates ESTs indicates little sequence overlap likely as a
result of the relatively limited extent of genome scale sequence data currently available for the dinoflagellates. This
is one of the first 454-based transcriptome surveys of an ancestral dinoflagellate taxon and will undoubtedly prove
useful for future comparative studies aimed at reconstructing the origin of novel features of the dinoflagellates.

Background
Oxyrrhis marina is a basal dinoflagellate taxon that has
been extensively studied in both experimental and eco-
logical contexts [1,2] and increasingly represents a target
for studies of dinoflagellate evolution [3]. Oxyrrhis mar-
ina appears to have diverged early in the evolutionary

branch leading to the dinoflagellate lineage, close to
when the dinoflagellates diverged from the apicomplex-
ans [4-6] and thus occupies a novel position within the
alveolates (i.e. the ciliates, dinoflagellates, and apicom-
plexans). The alveolate lineages have each evolved a
variety of unusual molecular and genomic features, the
development of which has remained unclear in many
cases [7]. The phylogenetic position of O. marina, as an
intermediate lineage between the dinoflagellates and the
apicomplexans, and the recognition that it possesses
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further unusual cytological and genetic features, make it
a significant target for the study of evolutionary patterns
and genome organisation within the alveolates [3,7-10].
Despite increasing scientific interest in O. marina,

genetic and genomic data for this taxon remain rela-
tively scarce (though see [8]). In part, this is because
comparative genomic approaches are limited by the rela-
tively large phylogenetic distances separating O. marina
from other genetic/genomic-model protists (e.g. [4,5]).
More generally, dinoflagellate genomes remain poorly-
characterised due to several genomic characteristics. For
example, dinoflagellates typically possess large genomes
[7,11,12] that contain numerous genes arranged in repe-
titive tandem-arrays [13]; further, they have potentially
complex transcriptomes composed of multiple transcript
variants for many genes [14]. The occurrence of such
traits in O. marina remains only partially characterised:
the genome appears to be large [15], and a number of
genes occur as multiple transcribed variants [16], but
whether these genes are present as tandem-arrays has
not been demonstrated.
While full genome sequences remain out of reach,

next generation sequencing platforms nonetheless pro-
vide an efficient strategy to characterise transcriptomes,
which can then be used to (1) quantify genomic features
such as novel gene transcripts, alternative splicing, and
levels of gene expression; and (2) uncover the molecular
basis of adaptive traits in ecological model-organisms
that lack reference genomes [17,18]. Thus, high
throughput transcriptome sequencing represents a com-
mon starting point for large scale sequencing projects
for a broad taxonomic range of organisms [18-20].
Indeed, several EST and transcriptome sequence data-
sets now exist for dinoflagellate species (e.g. [21,22],
including an EST dataset for one strain of O. marina
[8]. For O. marina, many components of its biology are
well-characterised, and it is commonly employed as a
model to parameterise ecological processes and trophic
interactions (e.g. [23]). Additionally, as a result of its
broad distribution and abundance in intertidal environ-
ments, O. marina is a useful model of the evolutionary
and biogeographic processes that determine the distri-
butions of free-living protists [24]. The wide distribution
of O. marina is undoubtedly associated with an ability
to tolerate a range of environments, notably variation in
salinity, temperature, and pH [25]. Beneath this general
pattern, however, is evidence for intra-specific variation
in physiological tolerances; for example O. marina iso-
lates display differing tolerances to environmental sali-
nity, which potentially correlate with their occurrence in
open water compared with intertidal habitats [26]. Cru-
cially, the molecular basis of differences in physiological
tolerances, and hence the mechanisms by which physio-
logical adaptation potentially drives biogeographic

patterns, are unknown. Identifying genes that respond
to key parameters such as salinity stress represents the
first step towards indentifying the basis of physiological
differences between strains.
In this paper, we present the first 454-based transcrip-

tome sequence data for O. marina, with the aim of (1)
highlighting the occurrence of genomic features such as
extensive gene transcript variants, tandemly-arrayed
genes, and a gene complement that make it an impor-
tant target for understanding genome evolution within
the dinoflagellates. Moreover, (2) we assess the use of
454 read abundance to determine variation in gene
expression in response to salinity stress, and thus we
examine the potential molecular basis of salinity toler-
ance in this eurytopic flagellate. In doing so we provide
a substantial dataset that increases the publically avail-
able DNA sequence resources for this highly unusual
dinoflagellate species.

Methods
Cell culturing
To provide RNA for cDNA synthesis and subsequent
454 sequencing, monoclonal cultures of the O. marina
isolate 44_PLY01 (source: Plymouth harbour, UK,
50.3632 N, -4.139 W; see [24]) were established in tripli-
cate with media adjusted to 30 and 50 PSU (practical
salinity units). Cultures were grown in modified Droop’s
S69 axenic growth medium [25] (see [27] for details)
and were treated with gentamycin (50 μg ml-1) and
penicillin/streptomycin solution (100 μg ml-1) to limit
bacterial growth; absence of bacteria and fungi was con-
firmed by culturing small volumes of O. marina cultures
in L1p, L1m, and L1pm test media (media recipes pro-
vided by The Provasoli-Guillard National Center for
Culture of Marine Phytoplankton, Bigelow Laboratory,
Maine, USA) and by visual inspection of DAPI stained
culture aliquots using a UV-equipped inverted micro-
scope. Cultures were maintained in the dark at 18°C
and serially transferred to ensure exponential growth.
Specific growth rate (μ, d-1) was calculated from daily
estimates of cell density over 5 days (cell densities were
estimated by counting 1 ml subsamples using a Sedge-
wick-Rafter chamber). Cultures were maintained at 30
and 50 PSU for > 10 generations and were harvested
when 1 L flasks contained ~3.5 × 107 cells.

RNA extraction and cDNA synthesis
Cells harvested from triplicate cultures were combined,
and total RNA was extracted using an RNeasy extraction
kit (Qiagen) following the manufacturer’s standard pro-
tocol. RNA quantity and integrity was assessed using an
Agilent Bioanalyser PicoRNA assay (Agilent technolo-
gies). cDNA template for sequencing was generated
using the standard SMART cDNA synthesis protocol
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(Clontech). First strand cDNA was synthesised using
Superscript II reverse transcriptase from ~0.75 μg total
RNA. Sufficient template for sequencing (~5 μg) was
generated by long-range PCR; briefly, cDNA was ampli-
fied in 90 μl PCR containing 1.5 μl first strand cDNA as
template, 20 mM dNTPs, 12 μM SMART oligo, ~50 U
Advantage 2 Taq polymerase (Clontech), and the manu-
facturer’s standard PCR buffer; thermal cycling condi-
tions were: 95°C for 1 min, followed by 18 cycles of [95°
C 15s, 65°C 30s, 68°C 6 min]. Amplified DNA was puri-
fied using a standard column-based protocol (Qiagen).

454 sequencing and sequence assembly
Library construction and pyrosequencing was completed
by the Centre for Genomic Research (CGR, http://www.
liv.ac.uk/cgr/), University of Liverpool, UK on a 454 GS
FLX system (Roche). Libraries created from 30 and 50
PSU salinity treatments were multiplex identified (MID-
tagged) and then pooled for sequencing using 0.5 ×
GS454flx sequencing run. Sequencing reads were quality
trimmed and adaptor sequences removed prior to
assembly. Contig assembly was performed using New-
bler (release 1.1.03.24, Roche), with overlap settings of
35 bp and 99% identity and default values for the
remaining parameters. The overall assembly was per-
formed using the combined sequence data for both sali-
nity treatments, and differentially-expressed genes were
identified subsequent to annotation.

BLAST identity searches and sequence annotation
Sequence contigs were annotated using a priority
BLAST search strategy [28]. Briefly, O. marina contigs
were compared sequentially against the following data-
bases: Uniprot (release 15.0), NCBI Nr (release 172.0),
Pfam (release 24.0), and Smart (version 4.1); identity
searches were conducted using BLASTX (for Uniprot,
Pfam, Smart) and megaBLAST (BLASTN - for NCBI
Nr) implementations of the standalone BLAST program.

Initial BLAST parameters were word size 30 (BLASTN),
3 (BLASTX) and an e-value cut-off of 1e-10. After each
search the contigs that were not identified at the
selected e-value cut-off were queried against the subse-
quent database (see Table 1). This priority BLAST pro-
cedure was repeated for the remaining unidentified
contigs at a less-stringent e-value cut-off (1e-5). Finally,
contigs identified by BLAST (i.e. those identified at an
e-value of 1e-5 or better) were submitted to blast2GO
[29] for GO category assignment [30].
Two additional BLASTN searches (using parameters

specified above) were conducted between the O. marina
RNAseq dataset reported here, an existing genbank O.
marina EST dataset, and the dinoflagellate EST genbank
collection. The degree of similarity between O. marina
datasets was further explored based on a CAP3 [31]
assembly of the combined datasets (see following
section).

Analysis of expressed gene variants
The occurrence of gene variants/clusters was explored
based on a CAP3 assembly [31] of 454 contigs; thus
potential clusters/variants were identified as groups of
contigs sharing ≥ 90% similarity. For each of the largest
clusters indentified in this way, contributing contigs
were aligned using Seqman (DNAstar Inc, USA) and
obvious errors (e.g. homopolymer length variations) or
mis-alignments edited manually. For CAP3 contigs that
were identifiable and contained open reading frames >
200bp in length, dN/dS ratios were calculated using
KaKs calculator [32]. A further assembly was performed,
which included the O. marina CCMP1788 EST dataset.
Prior to assembly the CCMP1788 EST data were
screened for redundancy (≥ 99.5% identity, 50 bp mini-
mum overlap), which reduced the data from 18, 024
sequences to 11, 024. Subsequently, the 454 RNAseq
and EST datasets were assembled at ≥ 90%. Transcripts
identified as shared between the datasets were subjected

Table 1 BLAST annotation summary

Database e-value (1e-10) % contigs ID’d e-value (1e-5) % contigs ID’d

All contigs (n = 6, 497)

Uniprot 655 8.9 139 1.9

Nr 434 5.9 61 0.8

Pfam 118 1.6 343 4.7

Smart 8 0.1 61 0.8

All databases 1, 215 16.5 604 8.2

Large contigs (n = 901)

Uniprot 322 35.7 79 8.8

Nr 71 7.9 130 14.4

Pfam 58 6.4 117 13.0

Smart 15 1.7 9 1.0

All databases 466 61.7 335 37.2
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to BLASTX searches against the Genbank non-redun-
dant protein database to infer identity.

Tandem gene PCR and cloning
For 5 candidates the occurrence of a tandem gene orga-
nisation was assayed by PCR. Outward orientated pri-
mers were designed within 100 bp of the 3’ and 5’ ends
of contigs. PCRs using Phusion polymerase (NEB, Cam-
bridge) were conducted using genomic DNA as template
and 3.0 pmol of each primer. In all cases PCR amplicon
identity was confirmed by capillary sequencing using
Bigdye v3.1 chemistry on an AB3130xl genetic analyser.
In 4 of 5 cases, tandem spacer regions generated a
mixed sequencing signal indicating the presence of mul-
tiple amplicons. For 2 candidates (alpha tubulin and
HSP90), PCR products were cloned using the cloneJET
blunt end ligation kit (Fermentas) and JM109 competent
cells (Promega). For each gene, 24 transformants were
sequenced in forward and reverse orientations.

Differential transcript abundance
The relative abundances of sequence reads from the 2
RNAseq datasets were used to quantify the pattern of
gene expression in O. marina exposed to 30 and 50
PSU. The representation of sequence reads from 30 and
50 PSU libraries for each 454 contig was normalised for
total library size (i.e. the total number of reads contri-
buting to the assembly), and statistically significant dif-
ferences in relative abundance between salinity
treatments were assessed using the pairwise Audic and
Claverie, Fisher exact and Chi-squared tests implemen-
ted in the software package IDEG6 [33]. Statistical sig-
nificance was taken at a≤ 0.05, following Bonferroni
correction implemented by the IDEG6 software.
Gene expression predictions from sequence read

abundances were validated by quantitative PCR (qPCR).
PCR primers were designed against 16 contigs with a
range of read abundances and 3 nominal control/house-
keeping genes. Template for qPCR assays was the same
as that used for 454 sequencing. Assays were performed
following the manufacturers protocol in 15 μl reactions,
containing 2x PowerSYBR green (Ambion, Inc, CA) and
3 pmol forward and reverse primer. Target and control
primer efficiencies were estimated based on serial dilu-
tions of cDNA template. All PCRs were performed in
triplicate on an AB7500 quantitative PCR system. Rela-
tive normalised expression metrics were calculated
based on ΔΔCT [34]. Consistency of control gene
expression was assessed based on pairwise ΔΔCT com-
parisons between actin, alpha-tubulin, and beta-tubulin.
454 target read abundances were normalised to control
gene abundance to allow direct comparison between
454 and qPCR expression metrics.

Results
Sequence output and assembly statistics
Sequencing generated 299, 081 raw reads (totalling 57.2
Mbp) from the transcriptome of O. marina isolate
44PLY_01; following trimming to remove poor-quality
and adaptor sequence, 238, 240 reads (median length
228 bp) were available for assembly. 194, 644 reads
could be assembled, generating 7, 398 contigs, leaving
30, 869 singletons and 12, 727 reads that were removed
as outliers. Median contig length and the mean read
number per contig were 226 bp and 25.5, respectively.
2, 221 contigs were composed of 10 or more reads (10 -
2, 114 reads) and varied in length from 97-1, 938 bp -
901 contigs were greater than 500 bp long (between 4
and 1, 617 reads per contig; Figure 1). Short contigs (<
200bp) were typically represented by relatively small
numbers of reads (median = 3). However, a small num-
ber of short contigs (n = 49) were highly represented in
the sequence output (between 203 and 1, 909 reads per
contig). Sequence reads are available via the NCBI
sequence read archive (SRA accession SRA035395.1).
Contig assemblies are included with this manuscript as
Additional file 1, and summaries of the longest and
most abundant contigs are included as Tables S1 and
S2, respectively, in Additional file 2.

Sequence Annotation
Based on BLASTX and BLASTN identity searches against
Uniprot, NCBI Nr, Pfam, and SMART databases we iden-
tified 16.5% of the O. marina contigs at the more strin-
gent e-value cut-off (1e-10). A subsequent reduction in
stringency (1e-5) allowed a further 8% of contigs to be
assigned a putative function (thus, 76% of the O. marina
contigs could not be identified, Table 1). Notably, ~98%
of the large (> 500 bp) and all of the contigs greater than
1, 500 bp in length were identified by BLAST searches
(Table 1, Figure 1), thus the relatively low annotation
rate of the dataset stems from an inability to identify rela-
tively short contigs (Figure 1, discussion). The overall
degree of similarity between the O. marina RNAseq data
presented here, an existing EST data set for O. marina
(CCMP1788), and ESTs for the dinoflagellates as a whole
was examined by further BLAST identity searches
between these 3 datasets. Based on an e value of 1e-10

and > 80% similarity the numbers of shared sequences
are provided in Figure 2; O. marina data sets shared 1410
contigs/ESTs (~15%), and 495 contigs/ESTs were com-
mon to all three datasets.

Transcriptome coverage, representation, and gene
variants
To examine the relative coverage of transcripts by 454
sequencing, the length and aligned position of contigs
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relative to corresponding full length mRNA sequences
was examined (Figure 3). For 20 contigs, full length
mRNA sequences were available in Genbank for O.
marina, or from relatively closely related taxa (i.e. basal

dinoflagellates or Perkinsus spp). In all cases 454 contigs
were truncated and no spliced leader sequences [9] were
detected in the dataset. Relative contig length varied
between 70 and 15% of the full mRNA transcript

Dinoflagellates
155,472 ESTs

O. marina 44_PLY01
7,398 contigs

O. marina 
ccmp1788
11,093 ESTS A

B CD

Figure 2 A summary of reciprocal BLAST identity searches between O. marina sequence datasets and all EST sequences from
Genbank. The numbers of shared ESTs/contigs are: (A) 1410, (B) 372, (C) 161, (D) 495. Note that Venn diagram scaling is approximate.
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(Figure 3). The most complete identifiable contigs
occurred for elongation factor 2 and ribonucleoside-
diphosphate reductase large subunit (Figure 4a). Shorter
contigs tended to cluster at the 3’ end of mRNAs thus
an overall 3’ bias in coverage occurred (Figure 3).
In addition to single contigs some mRNA transcripts

were represented as multiple non-overlapping fragments
or as variable numbers of substantially overlapping frag-
ments (Figure 4b, c). In the cases where multiple frag-
ments occurred (e.g. HSP90 and Actin) one contig/
fragment was typically highly abundant (Figure 4b).
Manual checking of fragment alignments suggested that
overlapping regions contained genuine polymorphisms,
though the occurrence of multiple non-overlapping frag-
ments is presumably an artefact of library preparation or
sequencing (see discussion). The second arrangement,
multiple highly overlapping contigs, appears to be a gen-
uine biological signal (Figure 4c). To assess the preva-
lence, of these expressed gene variants, 454 contigs were

further grouped/assembled using CAP3. This higher
level assembly of contigs generated 164 gene clusters
consisting of 2-28 contigs. In the majority of cases clus-
ters consisted of truncated cDNAs bearing 3’ UTR var-
iants with < 100bp of coding sequence. However, for
identified gene clusters, with > 200bp of coding
sequence, variation was predominately synonymous,
with dN/dS ratios between 0.33-0.023 (Table 2). For the
most extensive gene variant clusters, contigs were pre-
dominantly highly overlapping and biased toward the 3’
end of mRNAs (e.g. Figure 4c). A similar occurrence of
gene variants was evident in the O. marina CCMP1788
EST dataset. An additional CAP3 assembly of the com-
bined O. marina data highlighted a limited degree of
overlap (74 CAP3 contigs contained sequences derived
from both datasets) and ~750 gene variant clusters in
the CCMP1788 ESTs (Figure 5). The most abundant
gene cluster in CCMP1788 consisted of 33 variants, but
was not identifiable by BLAST similarity searches

00.20.40.60.81
(Stop codon)(Start codon)

Contig length (as a proportion of full length transcript)

Actin
fragment

HSP90 
fragment

EF II
RNR

Figure 3 The distribution of 20 contigs relative to their respective full length mRNA transcripts. Transcript lengths were normalised to 1
(1 represents the position of the start codon and 0 the stop codon). The longest contigs (relative to total transcript length) were elongation
factor 2 (EF II) and ribonucleoside-diphosphate reductase (RNR). Examples of ‘contig fragments’ of actin and HSP90 are indicated for reference.
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against nr or nt databases. The largest gene variant clus-
ter for which both strains possessed multiple gene var-
iants was a type II rhodopsin gene.

Tandem gene arrangements
The genomic context of variants was explored for 5 can-
didate genes (Table 3). In all cases, outward orientated
primers designed against cDNA sequences generated

PCR products confirming that genes were present as
tandem repeated copies. Subsequent PCR and sequen-
cing confirmed the length of intergenic regions (195-
415bp). Cloning and sequencing of alpha tubulin and
HSP90 PCR amplicons revealed the occurrence of a sin-
gle 195bp intergenic region (IGR) for alpha tubulin and
for HSP90, 6 variable IGRs (Figure 6). By percent iden-
tity HSP90 IGRs formed 2 groups (~82% identity);

0 500 1000 1500 2000 2500 30000 500 1000 1500 2000

0 500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500

0 500 1000 1500 2000 25000 500 1000 1500

Ribonucleoside-diphosphate reductase
(large subunit)

Elongation factor 2

Actin HSP 90

Phosphoribosylaminoimidazole
succinocarboxamide synthase

3-dehydroquinate synthase/
O-methyltransferase fusion

A

B

C

Length (bp) Length (bp)

(16)
(8)

(59)
(416)

(496)

(10)
(10)

(87)

(86)

(17)

(35)

(181)

(832)

(60)

(660)

(24)

(68)

(356)

Figure 4 Six examples of the different patterns of contig distribution in the O. marina 454 RNAseq dataset. (A, and blue lines) unigenes
- unique, relatively long contigs; (B, and red lines) fragments - multiple short and partially overlapping contigs; (C, and green lines) gene variant
clusters - multiple extensively overlapping contigs sharing ≥ 90%. Bracketed numbers indicate the numbers of reads contributing to the two
most abundant and least abundant contigs for each alignment. Note that polymorphisms are indicated along contigs where the reference
sequence was derived from O. marina 44_PLY01.

Table 2 A summary of expressed gene variants and their synonymous/non-synonymous substitution rates

Gene Copies Alignment length
(bp)

dS dN dN/dS

Phosphoribosylaminoimidazole-succinocarboxamide
synthase

27 561 0.038 ± 0.011 0.0039 ± 0.002 0.123 ± 0.062

3-dehydroquinate synthase/O-methyltransferase fusion 12 408 0.0304 ± 0.012 0.008 ± 0.003 0.3294 ± 0.152

Heat shock protein 70 8 1353 0.0218 ± 0.006 0.0004 ± 0.004 0.0330 ± 0.0032

Calmodulin 6 447 0.0221 ±
0.0116

- -

S-adenosylmethionine synthetase 5 1302 0.0294 ±
0.0082

0.0007 ±
0.0007

0.0226 ± >
0.0001

Chlorophyll a-b binding protein 25 2 213 0.122 0.009 0.076

Deoxyribonuclease-2-alpha 2 459 0.163 0.020 0.122

Glucose dehydrogenase 2 432 0.205 0.006 0.029

Heat shock protein 90 2 198 0.235 - -

WD repeat-containing protein 2 190 0.170 - -
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groups 1 and 2 consisted of 1 and 5 IGRs, respectively.
Group 2 IGRs were also associated with an aspartic
acid/glutamic acid substitution, occurring 28 residues
from the stop codon (Figure 6). Five-prime ends of

HSP90 and alpha tubulin cDNAs were confirmed to ter-
minate in a generic dinoflagellate spliced leader
sequence; the intergenic spacer/5’ UTR boundary was
inferred from alignment of cDNAs and genomic
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Figure 5 A comparison of the 454 RNAseq (strain 44_PLY01) and EST (strain CCMP1788) sequence datasets. Sequences were assembled
using CAP3 (see methods). Bottom panel: the contribution (as a proportion of the total contigs/ESTS per gene cluster) of 44_PLY01 contigs (red)
and CCMP1788 ESTs (blue) to each gene cluster. Note - columns that are entirely red represent gene clusters composed of 44_PLY01 contigs
only; entirely blue columns represent gene clusters composed of CCMP1788 ESTs only. Middle and top panels: the size (i.e. the number of
contributing contigs and/or ESTs) distribution of gene variant clusters in the 44_PLY01 (middle panel) and CCMP1788 (top panel) datasets.

Table 3 Oxyrrhis marina genes occurring in tandem repeats

Gene Gene size (bp) Tandem repeat?
(Y - yes, N - no)

Intergenic region size (bp)

Beta tubulin - Y -

Elongation factor 2 2499 Y 412

Rhodopsin - Y -

Alpha tubulin 1362 Y 195

HSP90 2121 Y 321-340
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sequences. Five-prime UTRs were 45 and 77bp in
HSP90 and alpha tubulin, respectively. In both cases
spliced leader sequences were spliced at an ‘AG’ accep-
tor site (Figure 6).

Gene content and functional annotation
A total of 571 contigs could be assigned to 1 or more
GO categories (note that contigs may be assigned to
several GO categories). GO annotation for biological
processes (Level 3) highlighted the dominance of contigs
associated with metabolic processes (46%), with fewer
contigs involved with cellular organisation (n = 11%)
and regulation (4%; Additional file 3, Figure S1). Simi-
larly, contigs were assigned to a range of Level 3 Cellu-
lar Components, including intercellular components,
membranes, organelles and protein- and ribonucleopro-
tein-complexes (Additional file 3, Figure S2).
The functional distribution of the GO-assigned O.

marina contigs is relatively typical of eukaryotes, repre-
senting a broad range of biological processes and cellu-
lar components. Notably 60-65 ribosomal proteins

(Additional file 2, Table S3), out of an expected typical
eukaryotic complement of 75-80 [35] were present. Fig-
ure 7 provides a summary of the distribution of molecu-
lar function (Level 3) categories and indicates that the
majority of contigs are associated with binding processes
(n = 468) and catalytic activity (n = 445). The most
abundant transcripts connected with molecular binding
processes include actin (n = 991 reads, protein binding),
rho-associated protein kinase 2 (n = 381 reads, protein
binding), V-type proton ATPase catalytic subunit A (n =
314 reads, nucleotide binding), serine/threonine-protein
kinase (n = 150 reads, nucleotide binding), DNA replica-
tion licensing factor mcm7 (n = 123 reads, nucleotide
binding), and nucleoside diphosphate kinase 7 (n = 119
reads, nucleotide binding). Abundant contigs were
involved with catalysis include cathepsin B-like cysteine
proteinase 6 (n = 1, 617 reads, hydrolase activity), alde-
hyde dehydrogenase (n = 460 reads, oxidoreductase
activity), 2-nitropropane dioxygenase (n = 234 reads,
oxidoreductase activity), ankyrin repeat-containing pro-
tein (n = 231 reads, hydrolase activity), calcium-
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dependent protein kinase (n = 226 reads, transferase
activity), and 2-oxoisovalerate dehydrogenase subunit
alpha (n = 202 reads, oxidoreductase activity).
A diverse range of genes associated with amino acid

synthesis also occurred in the dataset. Based on the
KEGG pathways database [36], 18 of the 22 amino acid
biosynthesis, metabolism, and degradation pathways had
partial representation in the O. marina dataset (Table 4)
and 100 genes with discernable function within these
pathways were detected (Additional file 4). Genes asso-
ciated with the biosynthesis of 6 ‘essential’ amino acids
(valine, leucine and isoleucine, lysine, phenylalanine,
tryptophan) were also present. Three of these amino
acid/nitrogen metabolism genes - dihydrodipicolinate
reductase 2 (associated with lysine synthesis), glutamine
synthetase (associated with nitrogen glutamate

synthesis), and ketol-acid reductoisomerase (associated
with valine, leucine, and isoleucine biosynthesis) - are
typically associated with plastids (Additional file 4, see
discussion).

Differential transcript abundance/gene expression in
response to salinity
Growth rate of O. marina was significantly higher in the
30 PSU treatment (0.67 μ, d-1 and 0.34 μ, d-1 for 30 and
50 PSU, respectively: t4 = 5.72, p < 0.01; Figure 8).
Based on an analysis of total read counts, 29 contigs
were significantly differentially represented in salinity
treatments (Tables 4 and 5). Nine and 20 contigs were
over or under expressed (respectively) in the 50 PSU
treatment. Of the ostensibly differentially expressed
transcripts, 12 were nominally identified by BLAST
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identity (7 and 5 for 50 and 30 PSU libraries, respec-
tively). Differences in expression varied markedly for
transcripts over or under expressed at 50 PSU. For
under expressed transcripts, differences ranged between
1.23 and 23 fold; total read counts varied between 26
and 2, 114 and were inversely proportional to fold dif-
ference (Table 5). For over expressed transcripts differ-
ences ranged between 1.3-1.8 fold, and total read counts
varied between 210 and 1, 617 reads (Table 6). A large
proportion of contigs (2, 285) were rare (< 12 reads)
and occurred in only 1 of the 2 treatments (339 of
which were identified). 1, 399 contigs were present in
the 30 PSU treatment but absent in 50 PSU; 886 contigs
were present at 50 PSU but absent at 30 PSU.
Quantitative PCR validation assays were successful for

13 target genes (2 assays were excluded as a result of
poor primer efficiency, and 2 assays were designed
against 2 target gene to assess conformity). Target gene
expression was normalised to 2 control genes (actin and
alpha-tubulin, Figure 8). Six and 4 targets were identi-
fied as over or under expressed at 50 PSU, respectively,
and greatest fold differences between treatments
occurred for beta-tubulin, 40S ribosomal protein, and

phosphoethanolamine N-methyltransferase (PhNMT)
genes. Comparison of relative expression patterns esti-
mated from qPCR and 454 read abundance indicated
extensive discrepancies between the 2 approaches. In 6
out of 14 comparisons, the direction of expression dif-
ferences was the same based on the 2 approaches. In
the remaining 8 cases there were substantial differences
in relative expression level estimates; for example, esti-
mates of expression for HSP90 were 4.0 fold over
expressed at 50 PSU versus 1.8 fold under expressed for
454 and qPCR based estimates, respectively (Figure 8).

Discussion
Oxyrrhis - an emerging genomic model
Recent interest in the genetic and genomic architecture
of O. marina has informed the evolutionary history of a
range of conspicuous dinoflagellate traits. For example,
it is now clear that the RNA trans-splicing mechanism,
seemingly ubiquitous within the dinoflagellates, also
occurs within O. marina and the more distantly related
Perkinsus marinus [37], suggesting that trans-splicing
was established early in the ancestral lineage leading to
the dinoflagellates. In contrast, studies of the mitochon-
drial genome indicate that the large but highly fragmen-
ted structure, again a feature of this taxon, is a more
recent trait as it is common to the dinoflagellates and
O. marina but probably not to Perkinsus [8]. Perhaps
the most conspicuous dinoflagellate feature, the seeming
massive genome sizes harboured by some species (up to
215 Gb [7]), also predates O. marina (a recent estimate
places the genome size at ~50 Gbp [15]) but occurred
after the divergence of Oxyrrhis/dinoflagellates from
Perkinsus, in which the genome is of more typical pro-
portion (~86Mb). Thus it is clear that O. marina is of
increasing significance in the study of alveolate
evolution.
Here we further indicate that tandem gene arrange-

ments and abundant expressed gene variants are com-
mon in O. marina. EST surveys of several
dinoflagellates have highlighted the occurrence of multi-
ple transcripts coding for the same gene product
[14,38], and detailed studies of specific genes have
revealed complex gene arrangements and expressed
gene variants in several species (e.g.[39,40]). In O. mar-
ina, previous study has shown abundant gene transcript
variants for actin, HSP70, and rhodopsin (e.g. [3,16]).
We indicate the same phenomenon here, with nominally
30 identified expressed genes (and ~130 anonymous
truncated transcripts) present as up to 28 variants, for
which the majority of nucleotide variation was synon-
ymous. A comparison with existing ESTs indicates even
more extensive gene variant clusters in O. marina
CCMP1788. In both cases, a large number of variant
clusters were not identifiable by BLAST searches against

Table 4 Summary of contig assignments to KEGG
pathways associated with amino acid biosynthesis and
metabolism

KEGG
ID

Kegg pathway No. of
contigs

00250 Alanine, aspartate and glutamate metabolism 8

00260 Glycine, serine and threonine metabolism 11

00270 Cysteine and methionine metabolism 8

00280 Valine, leucine and isoleucine degradation 12

00290 Valine, leucine and isoleucine biosynthesis 3

00300 Lysine biosynthesis 4

00310 Lysine degradation 6

00330 Arginine and proline metabolism 7

00340 Histidine metabolism 2

00350 Tyrosine metabolism 3

00360 Phenylalanine metabolism 4

00380 Tryptophan metabolism 7

00400 Phenylalanine, tyrosine and tryptophan
biosynthesis

4

00410 Beta-Alanine metabolism 6

00430 Taurine and hypotaurine metabolism 2

00440 Phosphonate and phosphinate metabolism 0

00450 Selenoamino acid metabolism 3

00460 Cyanoamino acid metabolism 2

00471 D-Glutamine and D-glutamate metabolism 0

00472 D-Arginine and D-ornithine metabolism 0

00473 D-Alanine metabolism 0

00480 Glutathione metabolism 8

A complete list of assignments, and identifications are included in Additional
file 4.
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Figure 8 454 read abundance and qPCR based estimates of relative expression in response to 2 salinity treatments. (Main panel)
comparison of relative gene expression (normalised to actin and alpha-tubulin) determined from qPCR assays and 454 read abundance. Target
gene abbreviations are as follows: Cys - cysteine proteinase, phNMT - phosphoethanolamine N-methyltransferase, 40Sr - 40S ribosomal protein,
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Table 5 Transcripts over expressed at 50 PSU

Total Normalised
abundance

Pairwise differential Closest BLAST

Contig Length (bp) reads 50 PSU 30 PSU abundance (a 0.05) ID (BLAST) hit (GI No.)

05386 296 160 4.3 11.3 - -

07320 629 210 14.3 8.1 - -

00270 1938 496 32.6 19.9 elongation factor 2 3122059

06781 844 387 24.9 15.9 p < 0.001 deoxyribonuclease-2-alpha 3182984

07146 780 603 38.1 24.7 putative phosphoethanolamine N-methyltransferase 2 24212079

06493 249 738 44.5 32.8 glyceraldehyde-3-phosphate dehydrogenase 462139

06673 118 1158 69.7 51.5 heat shock protein 90 38885054

06337 220 893 53.7 39.8 cysteine proteinase precursor 32172429

06388 572 1617 94.2 74.4 cathepsin B-like cysteine proteinase 1169087
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Genbank databases and no obvious functional class of
genes appeared to dominant the most abundant variant
clusters. For 44_PLY01 the largest gene cluster occurred
for phosphoribosylaminoimidazole-succinocarboxamide
synthase, a gene associated with purine metabolism [41],
and the largest variant cluster in CCMP1788 coded for
a type II rhodopsin gene. Notably, Slamovits et al. [16]
have described ~50 variants encoding rhodopsin in
strain CCMP1788; here we detected far fewer variants
(2-4 rhodopsin contigs). This discrepancy may simply be
a result of different methodologies. Oxyrrhis marina cul-
tures in this study were grown in the dark, and given
the likely role of rhodopsin in phototaxis [42], it would
seem a potential that this treatment may reduce rhodop-
sin expression. Alternatively, differences in gene variant
abundance may occur between strains. Whether struc-
tural or transcriptional differences exist at this level has
yet to be examined, though global comparisons of the
44_PLY01 and CCMP1788 datasets using BLAST and
CAP3 (Figures 2 and 5) both highlighted limited similar-
ity (~15% of ESTs/contigs were common to both
strains). We have previously documented extensive
genetic diversity within O. marina [43] and strains
CCMP1788 and 44_PLY01 occur within different O.
marina clades (44_PLY01 and CCMP1788 occur within
clades 1 and 2, respectively) based on sequence variation
at 2 gene loci [1,24]. Whilst it is beyond the scope of the
current study, it is likely that comparative assessments

of gene/genome complement, arrangement, and struc-
ture at a range of phylogenetic between basal dinoflagel-
lates will be highly informative. In particular, such
comparative strategies will be useful to assess the rate of
change of, for example, gene copy number at a key evo-
lutionary juncture within the alveolates.
In addition to the occurrence of extensive expressed

gene variants we have also shown that genes encoding
transcribed variants occur as tandem repeated arrays in
O. marina, an arrangement that has been demonstrated
for a number of other dinoflagellate taxa [14]. The 5
genes examined here (Table 3) were each arrayed in
tandem, separated by short intergenic regions. HSP90
occurs in several contexts, with 2 major variants of the
intergenic region; notably however, based on 3’ UTR
sequence the variants detected in a genomic context did
not tally with those present in the RNAseq dataset.
Given that mRNA sequences for HSP90 were fragmen-
ted and incomplete at the 3’ end it is most likely that
the corresponding portion of transcripts were simply
missing in the RNAseq data, though it is also possible
that we have under sampled the existing variation for
this gene. In contrast, only a single intergenic sequence
was recovered for alpha tubulin, which did match the
mRNA sequence. In both cases cDNAs were trans-
spliced, a universal feature of dinoflagellate transcription
[9], and the trans-splicing acceptor site corresponded to
an ‘AG’ signal as noted in other dinoflagellates [14]. Of

Table 6 Transcripts under expressed at 50 PSU

Normalised abundance Pairwise differential closest BLAST

Contig Length (bp) total reads 50 PSU 30 PSU abundance (a 0.05) ID (BLAST) hit (GI No.)

05236 109 26 0.1 2.3 - -

06334 295 119 1.1 9.3 - -

00224 199 35 0.4 2.9 - -

06976 117 295 3.6 24.2 putative fumarate reductase 74581896

07063 294 148 3.1 10.4 - -

06664 272 131 3.2 9.5 - -

06325 275 442 11.3 31.6 - -

05868 162 138 3.6 9.8 - -

05866 175 279 7.1 19.1 - -

04983 255 111 2.8 7.1 p < 0.001 - -

06926 166 179 5.1 11.7 - -

05228 243 192 6.4 12.6 - -

05401 151 336 11.2 21.1 - -

05956 131 691 26.2 42.8 - -

06694 123 480 18.2 29.7 - -

06660 221 632 26.2 37.4 calreticulin precursor 11131631

07447 146 725 30.5 42.5 - -

05032 247 1058 46.8 60.3 conserved hypothetical protein 239877215

07041 200 1520 68.3 85.7 40S ribosomal protein S25 112253591

06775 258 2114 96.4 118.2 60S ribosomal protein L26-1 27735242

05386 296 160 4.3 11.3 - -
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course, as a result of potential amplification biases asso-
ciated with PCR detection, the actual diversity of inter-
genic regions is difficult to assess; nevertheless the
occurrence of tandem gene repeats separated by differ-
ent intergenic spacers suggests a number of potential
genomic arrangements. Different intergenic spacers
potentially indicate the occurrence of multiple tandem
arrays at different genomic loci. Alternatively, individual
arrays may be a complex arrangement of gene copies
and heterogeneous intergenic spacers. Notably an in situ
hybridisation based study of several genes in O. marina
indicated 3, 4, and 5 genomic locations for actin, alpha
tubulin, and HSP90 [15]. The precise structure and the
extent of these tandem gene arrays remains to be inves-
tigated in O. marina; regardless, it is now increasingly
clear that gene duplication is extensive in dinoflagellates
more generally, and results in complex gene arrange-
ments (e.g. [13,39]. Understanding the mechanisms pro-
moting such expansions is an important focus for
dinoflagellate genome biologists. A systematic survey of
the arrangement of such duplicated genes will be infor-
mative and given the basal position of Oxyrrhis it will
almost certainly prove valuable for establishing the likely
origin of extensive duplication in the dinoflagellate
lineage.

The gene complement of O. marina
Analysis of the existing CCMP1788 EST dataset identi-
fied a range of O. marina genes indicative of significant
evolutionary processes [3]. Oxyrrhis marina possesses
genes such as proteorhodopsins that appear to have
been laterally transferred from a bacterial origin [16]
and a number of plastid genes, including ketol-acid
reductoisomerase, carbonic anhydrase, and cysteine
synthase, which suggests an evolutionary ancestry that
included a chloroplast bearing cell [10]. In this study,
we highlight the occurrence of a broad range of genes
associated with amino acid synthetic and metabolic
pathways, including genes which indicate the ability to
synthesise ‘essential’ amino acids, a capacity not typical
in heterotrophic protists. Molecular evidence for exten-
sive biosynthetic capacities certainly supports previous
study on the nutritional biochemistry of O. marina. A
series of comprehensive studies of nutritional physiology
by MR Droop and co-workers (e.g. [25,44]) highlighted
that, in addition to phagotrophy, O. marina displayed a
“plant-like” biochemistry including the ability to synthe-
sise the full complement of amino-acids from ammo-
nium or other simple nitrogen sources. While amino
acid biosynthesis capability in heterotophic protists is
exceptionally diverse, an absolute requirement for sev-
eral amino acids is typical [45]. A broad range of tran-
scripts indentified in this study were associated with
amino acid metabolism and biosynthesis; based on the

KEGG databases [36], 18 of the 22 amino acid biosynth-
esis pathways were represented by 100 454 contigs. The
ability to undertake population growth on a fully syn-
thetic medium with relatively simple absolute require-
ments (acetic acid or ethanol; valine, alanine; biotin;
thiamine; vitamin B1s; ubiquinone; and a sterol [46])
and an exceptionally broad phagotrophic capacity (35-40
different prey items are documented as supporting O.
marina population growth in vitro [27]) make O. mar-
ina exceptional. One mechanism by which O. marina
may have gained its biosynthetic capacity is via an
ancestral plastid or ancestral cyanobacterial endosym-
biont [3]. The occurrence of plastid targeting signalling
peptides and genes that are almost certainly plastid or
cyanobacterial in origin (e.g. those coding for 1-deoxy-
D-xylulose-5- phosphate reductoisomerase, haem, carbo-
nic anhydrase, ketol-acid reductoisomerase, and dihy-
drodipicolinate reductase [3], and this study) are
certainly strong support for such a mechanism.
More generally, based on GO and BLAST annotations

a broad range of gene families and metabolic processes
are nominally represented in the O. marina RNAseq
library presented here. However, estimation of transcrip-
tomic diversity, the comprehensiveness of the sequen-
cing, and thus the likely gene complement of O. marina
is difficult in the absence of a reference or close refer-
ence genome. Estimates of gene content based on gen-
ome size are possible; recent work by Hou and Lin [47]
shows a strong non-linear correlation between genome
size and protein-coding gene number across a broad
range of eukaryotes. Hou and Lin [47] estimate total
gene content of the largest dinoflagellate genomes to be
on the order of 80-90, 000 genes comprising ~1% of the
total genome. An estimated DNA content for O. marina
of ~55.8 pg cell-1 [15] places its genome within the
dinoflagellate range (~50 Gbp) and suggests some ~70,
000 genes (assuming an average eukaryotic gene size of
1.3 Kbp [47]). Gene-content predictions of this magni-
tude are exceptionally high in comparison to other
eukaryotes; however, as noted above, many genes in
dinoflagellates occur in high copy numbers (up to 5, 000
gene copies in some cases, e.g. [40]); thus, it is possible
that much of the ‘gene space’ in dinoflagellates is occu-
pied by multi-copy genes and the total proteomic diver-
sity is closer to that displayed by eukaryotes more
generally [47].
The representation of conserved gene classes also pro-

vides an approximate indication of transcriptome cover-
age. In this study we detected 61 ribosomal protein
coding transcripts of the 75-80 that are typical of most
eukaryotes [35]; while contigs did not represent full
transcripts and such a comparison can only give a crude
estimate these figures suggest a representation in the
region of 75% of the transcriptome. It should be noted
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however, that comparison of the RNAseq and EST data-
sets for O. marina potentially conflict with this estimate.
Assuming strains are relatively similar (sequence diver-
gence based on mitochondrial cytochrome oxidase I is
~2% [24]), the degree of overlap in transcriptome
sequence datasets between strains was relatively small
(~15%), potentially indicating a high degree of under-
sequencing in both cases. Of course, strains might differ
more than suspected, or biases in sequencing (e.g. trun-
cation or fragmentation of transcripts) might reduce
overlap between the datasets. In either case, it seems
clear that comprehensive sampling of the O. marina
transcriptome is likely to require a further substantial
sequencing effort.

Transcriptomic novelty and the problem of identification
by identity
We have identified a number of interesting features of
the O. marina transcriptome adding to previous descrip-
tions of an unusual gene content in this organism. How-
ever, the majority of the sequences generated in this
study were not identified by identity searches. This lim-
ited identification success, whilst partially accounted for
by a 3’ bias in this dataset (and thus a high representa-
tion of UTR sequence), is nevertheless diagnostic of a
broader difficultly for genomic studies of dinoflagellates.
While, the dinoflagellates are increasingly regarded as
important targets for the study of genome evolution,
large scale sequence resources are only relatively
recently accumulating [21,22,48,49]. This poor sequence
representation has an impact on the current use of such
databases for sequence identification. For example,
within the NCBI databases, EST datasets (totalling 155,
474 sequences) exist for only 21 dinoflagellate species,
and the majority of ESTs (122, 235) are derived from
just 5 species. Similarly, in a genomic context, only a
handful of plastid genomes and genome sequence sur-
veys exist for dinoflagellates and the majority of nucleo-
tide sequences are environmental rDNAs. Consequently,
identification of new sequences via database searches
presents a significant challenge for dinoflagellate taxa.
In context, the relatively low annotation rate achieved

in this study is, therefore, not surprising. EST projects
on metazoa, with relatively close ancestry to many geno-
mic model organisms, can yield high proportions of
ESTs (e.g. > 95%) that are identified by reference to
existing sequence databases (e.g. [50]). By contrast, only
1, 890 (16%) contigs were identified for O. marina, and
less than 2% of transcripts matched to a single relatively
closely related species, such as Perkinsus marinus. Com-
parably low rates of annotation have been reported for
other dinoflagellate EST projects, with only 9% of the
(~1, 400) ESTs isolated from Alexandrium ostenfeldii
homologous to known proteins [48] and ~20% (of 6,

723) of ESTs from Alexandrium tamerense identified
[21]. While ESTs from a number of other eukaryotic
protist taxa, for example diatoms, do not appear to be
so different from the protein and transcript data avail-
able in public databases, a typical annotation rate of
~50% of transcripts again highlights gaps in genomic
information [48,51]. Most notably a recent EST project
on Perkinsus marinus generated ~31, 000 EST
sequences, clustered into ~8, 000 unique sequences of
which 55% were identified [37]; possibly the higher
annotation rate in this case is a result of the closer (rela-
tively) phylogenetic affinity between Perkinsus and the
Apicomplexa (a group that is well characterised by vir-
tue of containing numerous parasites of humans and
livestock). It is notable that only 145 O. marina tran-
scripts produced significant identity to P. marinus
sequences, and only 161 matches occurred between O.
marina contigs and those from other dinoflagellate taxa.
Whether, this is a genuine result of a high degree of
novelty of the O. marina genome or a simple result of
limited genomic data can only be confirmed by further
genome scale sequencing, although inferences from phy-
logenetic analysis do suggest that Oxyrrhis represents a
highly divergent and novel lineage [4].

Identification of salinity tolerance mechanisms by
differential gene expression
The application of next-generation sequencing technol-
ogy to directly characterise transcript abundance is an
increasingly used strategy for gene expression profiling
[52-54]. The most precise strategies quantify either 5’or
3’ (or both) cDNA fragments and thus overcome poten-
tial biases associated with sequence read length and
incomplete reverse transcription [55]; but for species
that lack genome references (for fragment mapping) this
approach negates the generation of full or near full
length coding sequences, which are typically a valuable
output of transcriptome sequencing projects in the case
of poorly characterised organisms. Our aim here was to
determine whether a de novo transcript assembly can be
used concurrently with an experiment to obtain an
informative gene expression profile.
Comparisons of transcript abundance profiles for cells

grown under 2 salinity treatments nominally identified
differing gene expression patterns and in combination
with growth rate estimates seemed to provide evidence
for specific physiological responses and a tangible mole-
cular mechanism. A higher maximum grow rate at 30
PSU, was concurrent with a relatively strong induction
of ~20 transcripts at this salinity. Likewise, a reduced
growth rate and modest induction of a different set of 8
genes occurred at 50 PSU. However, agreement between
transcript abundance and qPCR gene expression esti-
mates were relatively poor, both in terms of direction
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and magnitude, and in only 6 out of 14 assays were
expression estimates similar. In a broader context, gene
expression patterns derived via different methodologies
(e.g. qPCR vs. microarray platforms) often do not
strongly correlate, although there appears to be more
concordance between qPCR and next-generation
sequencing platforms than with microarrays (cf. [53,54]),
which may relate to overall transcript abundance [52]. It
is clear from a range of studies that some features of
next generation sequencing protocols not specifically
designed/targeted to quantify transcript abundance
potentially generate significant biases in representation
(e.g. [56]). From the study presented here for example,
the representation of a number of gene transcripts in
the O. marina RNAseq dataset by numerous non-over-
lapping fragments (with differing read abundances) is
clearly problematic and is likely a result of either incom-
plete cDNA synthesis and/or a proportion of read
assembly errors. Likewise, the occurrence of extensive
expressed gene variants, seemingly common in most
dinoflagellates has the potential to result in extensive
discrepancy between sequence and qPCR bases
approaches; particularly if qPCR assays co-amplify
extensive gene variant families.
Accepting the above issues, those genes whose expres-

sion profiles were confirmed by qPCR did tentatively
suggest a potential underlying salinity response. In 3
cases qPCR and 454 expression estimates identified
genes as up regulated at 50 PSU; most notable was the
up regulation of phosphoethanolamine N-methyltrans-
ferase - this enzyme is a component of a common path-
way in plants that generates the osmoprotectant glycine
betaine [57]. Thus, increased salinity appears to elicit a
decrease in specific growth rate and tentatively a con-
current osmoregulatory response. Clearly such an infer-
ence is speculative and confirmation of the occurrence
of this metabolic pathway in O. marina is required.

Conclusion
We have generated some 7,398 cDNA sequence contigs
for the basal dinoflagellate O. marina. BLAST searches
identified ~14% of contigs; this relatively modest level of
identification is likely due to O. marina’s unusual phylo-
genetic position and the limited sequence data for dino-
flagellate taxa more generally. Nonetheless, we have
identified a large number of transcripts associated with
amino acid biosynthesis, and demonstrated the occur-
rence of extensive expressed gene variants and tandem
gene arrangements; thus further highlighting the utility
of next-generation sequencing platforms for generating
de novo large scale sequence data to characterise non-
genetic-model taxa. Additionally in this study, compari-
sons of relative read abundance of cells grown under
differing osmotic stress nominally identified ~30 genes

differentially regulated in response to salinity. While
agreement between sequencing and qPCR based gene
expression estimates was relatively poor; qPCR expres-
sion data tentatively identified candidate genes for
further study of salinity tolerance in this taxon. In an
evolutionary context, this is one of the first 454-based
transcriptome surveys of an ancestral dinoflagellate
taxon and will undoubtedly prove useful for future com-
parative studies aimed at reconstructing the origin of
novel features of the dinokaryon. In an ecological con-
text, these data highlight candidate genes for further
research into potential adaptive mechanisms behind
broad geographic distributions in eukaryotic microbes.

Additional material

Additional file 1: Oxyrrhis marina 454 contigs. Text file containing 7,
398 fasta-formatted sequences generated by Newbler (Roche 454)
assembly.

Additional file 2: supplementary information for the BLAST
identification of Oxyrrhis marina transcripts. This file (.doc) contains
summary tables of the longest contigs (Table S1) and the most abundant
contigs (Table S2) and corresponding identifications (assigned by BLAST
identity). Table S3 provides a summary of the ribosomal protein
encoding genes present in the dataset.

Additional file 3: supplementary information for GO annotation of
the Oxyrrhis marina transcripts. This file (.doc) contains summaries of
annotations for GO biological processes level 3 (Figure S1) and GO
cellular component level 3 (Figure S2).

Additional file 4: supplementary information for contigs associated
with KEGG amino acid synthesis pathways. Data file (.csv) containing
a summary of contigs associated with amino acid synthesis and a contig
identification based on KEGG orthology.
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